Items where Division is "Universidad Internacional do Cuanza > Research > Scientific Production" and Year is [pin missing: value2]

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Title | Creators | Item Type | No Grouping
Jump to: 2022 | 2021 | 2020
Number of items at this level: 27.

2022

Article Subjects > Nutrition Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Age-related macular degeneration (AMD) is a serious degenerative disease affecting the eyes, and is the main cause of severe vision loss among people >55 years of age in developed countries. Its onset and progression have been associated with several genetic and lifestyle factors, with diet appearing to play a pivotal role in the latter. In particular, dietary eating patterns rich in plant foods have been shown to lower the risk of developing the disease, and to decrease the odds of progressing to more advanced stages in individuals already burdened with early AMD. We systematically reviewed the literature to analyse the relationship between the adherence to a Mediterranean diet, a mainly plant-based dietary pattern, and the onset/progression of AMD. Eight human observational studies were analysed. Despite some differences, they consistently indicate that higher adherence to a Mediterranean eating pattern lowers the odds of developing AMD and decreases the risk of progression to more advanced stages of the disease, establishing the way for preventative measures emphasizing dietary patterns rich in plant-foods metadata Gastaldello, Annalisa and Giampieri, Francesca and Quiles, José L. and Navarro-Hortal, María D. and Aparicio Obregón, Silvia and García Villena, Eduardo and Tutusaus, Kilian and De Giuseppe, Rachele and Grosso, Giuseppe and Cianciosi, Danila and Forbes-Hernández, Tamara Y. and Nabavi, Seyed M. and Battino, Maurizio mail UNSPECIFIED, francesca.giampieri@uneatlantico.es, jose.quiles@uneatlantico.es, UNSPECIFIED, silvia.aparicio@uneatlantico.es, eduardo.garcia@uneatlantico.es, kilian.tutusaus@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, maurizio.battino@uneatlantico.es (2022) Adherence to the Mediterranean-Style Eating Pattern and Macular Degeneration: A Systematic Review of Observational Studies. Nutrients, 14 (10). p. 2028. ISSN 2072-6643

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Population and industrial growth in Mexico’s Bajío region demand greater electricity consumption. The production of electricity from fuel oil has severe implications on climate change and people’s health due to SO2 emissions. This study describes the simulation of eight different scenarios for SO2 pollutant dispersion. It takes into account distance, geoenvironmental parameters, wind, terrain roughness, and Pasquill–Gifford–Turner atmospheric stability and categories of dispersion based on technical information about SO2 concentration from stacks and from one of the atmospheric monitoring stations in Salamanca city. Its transverse character, its usefulness for modeling, and epidemiological, meteorological, and fluid dynamics studies, as suggested by the models approved by the Environmental Protection Agency (EPA), show a maximum average concentration of 399 µg/m3, at an average distance of 1800 m. The best result comparison in the scenarios was scenery 8. Maximum nocturnal dispersion was shown at a wind speed of 8.4 m/s, and an SO2 concentration of 280 µg/m3 for stack 4, an atypical situation due to the geography of the city. From the validation process, a relative error of 14.7 % was obtained, which indicates the reliability of the applied Gaussian model. Regarding the mathematical solution of the model, this represents a reliable and low-cost tool that can help improve air quality management, the location or relocation of atmospheric monitoring stations, and migration from the use of fossil fuels to environmentally friendly fuels. metadata Violante Gavira, Amanda Enrriqueta and Sosa González, Wadi Elim and Pali-Casanova, Ramón and Yam Cervantes, Marcial Alfredo and Aguilar Vega, Manuel and Chacha Coto, Javier and Zavala Loría, José del Carmen and Dzul López, Luis Alonso and García Villena, Eduardo mail amanda@ugto.mx, UNSPECIFIED, ramon.pali@unini.edu.mx, marcial.yam@unini.edu.mx, UNSPECIFIED, UNSPECIFIED, jose.zavala@unini.edu.mx, luis.dzul@uneatlantico.es, eduardo.garcia@uneatlantico.es (2022) Application of the Gaussian Model for Monitoring Scenarios and Estimation of SO2 Atmospheric Emissions in the Salamanca Area, Bajío, Mexico. Atmosphere, 13 (6). p. 874. ISSN 2073-4433

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés The highly fragmented blockchain and cryptocurrency ecosystem necessitates interoperability mechanisms as a requirement for blockchain-technology acceptance. The immediate implication of interchain interoperability is automatic swapping between cryptocurrencies. We performed a systematic review of the existing literature on Blockchain interoperability and atomic cross-chain transactions. We investigated different blockchain interoperability approaches, including industrial solutions, categorized them and identified the key mechanisms used, and list several example projects for each category. We focused on the atomic transactions between blockchain, a process also known as atomic swap. Furthermore, we studied recent implementations along with architectural approaches for atomic swap and deduced research issues and challenges in cross-chain interoperability and atomic swap. Atomic swap can instantly transfer tokens and significantly reduce the associated costs without using any centralized authority, and thus facilitates the development of a sustainable payment system for wider financial inclusion. metadata Mohanty, Debasis and Anand, Divya and Aljahdali, Hani Moaiteq and Gracia Villar, Santos mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, santos.gracia@uneatlantico.es (2022) Blockchain Interoperability: Towards a Sustainable Payment System. Sustainability, 14 (2). p. 913. ISSN 2071-1050

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Developments in medical care have inspired wide interest in the current decade, especially to their services to individuals living prolonged and healthier lives. Alzheimer’s disease (AD) is the most chronic neurodegeneration and dementia-causing disorder. Economic expense of treating AD patients is expected to grow. The requirement of developing a computer-aided technique for early AD categorization becomes even more essential. Deep learning (DL) models offer numerous benefits against machine learning tools. Several latest experiments that exploited brain magnetic resonance imaging (MRI) scans and convolutional neural networks (CNN) for AD classification showed promising conclusions. CNN’s receptive field aids in the extraction of main recognizable features from these MRI scans. In order to increase classification accuracy, a new adaptive model based on CNN and support vector machines (SVM) is presented in the research, combining both the CNN’s capabilities in feature extraction and SVM in classification. The objective of this research is to build a hybrid CNN-SVM model for classifying AD using the MRI ADNI dataset. Experimental results reveal that the hybrid CNN-SVM model outperforms the CNN model alone, with relative improvements of 3.4%, 1.09%, 0.85%, and 2.82% on the testing dataset for AD vs. cognitive normal (CN), CN vs. mild cognitive impairment (MCI), AD vs. MCI, and CN vs. MCI vs. AD, respectively. Finally, the proposed approach has been further experimented on OASIS dataset leading to accuracy of 86.2%. metadata Sethi, Monika and Rani, Shalli and Singh, Aman and Vidal Mazón, Juan Luis and Bhatia, Surbhi mail UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, juanluis.vidal@uneatlantico.es, UNSPECIFIED (2022) A CAD System for Alzheimer’s Disease Classification Using Neuroimaging MRI 2D Slices. Computational and Mathematical Methods in Medicine, 2022. pp. 1-11. ISSN 1748-670X

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Agriculture is an important sector that plays an essential role in the economic development of a country. Each year farmers face numerous challenges in producing good quality crops. One of the major reasons behind the failure of the harvest is the use of unscientific agricultural practices. Moreover, every year enormous crop loss is encountered either by pests, specific diseases, or natural disasters. It raises a strong concern to employ sustainable advanced technologies to address agriculture-related issues. In this paper, a sustainable real-time crop disease detection and prevention system, called CROPCARE is proposed. The system integrates mobile vision, Internet of Things (IoT), and Google Cloud services for sustainable growth of crops. The primary function of the proposed intelligent system is to detect crop diseases through the CROPCARE -mobile application. It uses Super-Resolution Convolution Network (SRCNN) and the pretrained model MobileNet-V2 to generate a decision model trained over various diseases. To maintain sustainability, the mobile app is integrated with IoT sensors and Google Cloud services. The proposed system also provides recommendations that help farmers know about current soil conditions, weather conditions, disease prevention methods, etc. It supports both Hindi and English dictionaries for the convenience of the farmers. The proposed approach is validated by using the PlantVillage dataset. The obtained results confirm the performance strength of the proposed system. metadata Garg, Garima and Gupta, Shivam and Mishra, Preeti and Vidyarthi, Ankit and Singh, Aman and Ali, Asmaa mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED (2022) CROPCARE: An Intelligent Real-Time Sustainable IoT System for Crop Disease Detection Using Mobile Vision. IEEE Internet of Things Journal. p. 1. ISSN 2372-2541

Article Subjects > Physical Education and Sport Europe University of Atlantic > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Abierto Inglés Abstract: Sports injuries can affect the performance of athletes. For this reason, functional tests are used for injury assessment and prevention, analyzing physical or physiological imbalances and detecting asymmetries. The main aim of this study was to detect the asymmetries in the upper limbs (right and left arms) in athletes, using the OctoBalance Test (OB), depending on the stage of the season. Two hundred and fifty-two participants (age: 23.33 ± 8.96 years old; height: 178.63 ± 11.12 cm; body mass: 80.28 ± 17.61 kg; body mass index: 24.88 ± 4.58; sports experience: 12.52 ± 6.28 years), practicing different sports (rugby, athletics, football, swimming, handball, triathlon, basketball, hockey, badminton and volleyball), assessed with the OB in medial, superolateral, and inferolateral directions in both arms, in four moments of the season (May 2017, September 2017, February 2018 and May 2018). ANOVA test was used with repeated measures with a p ≤ 0.05, for the analysis of the different studied variances. Significant differences were found (p = 0.021) in the medial direction of the left arm, between the first (May 2017) and fourth stages (May 2018), with values of 71.02 ± 7.15 cm and 65.03 ± 7.66 cm. From the detection of asymmetries, using the OB to measure, in the medial, superolateral and inferolateral directions, mobility and balance can be assessed. In addition, it is possible to observe functional imbalances, as a risk factor for injury, in each of the stages into which the season is divided, which will help in the prevention of injuries and in the individualization of training. metadata Velarde-Sotres, Álvaro and Bores-Cerezal, Antonio and Mecías-Calvo, Marcos and Barcala Furelos, Martín and Aparicio Obregón, Silvia and Calleja-González, Julio mail alvaro.velarde@uneatlantico.es, antonio.bores@uneatlantico.es, marcos.mecias@uneatlantico.es, martin.barcala@uneatlantico.es, silvia.aparicio@uneatlantico.es, UNSPECIFIED (2022) Detection of Upper Limb Asymmetries in Athletes According to the Stage of the Season—A Longitudinal Study. International Journal of Environmental Research and Public Health, 19 (2). p. 849. ISSN 1660-4601

Article Subjects > Social Sciences Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés This article proposes a discussion on the form of coexistence of local Development Agencies in Uruguay, with local governments in the face of the new scenarios marked by the decentralization process, initiated in the country with the Constitutional Reform of 1996 and culminating in February 2009, with the Law of Political Decentralization and Citizen Participation. The discussion applies in particular to the local development agency of the city of Rivera (ADR), located in the northeast of the country. A descriptive, mixed, bibliographic, documentary investigation was carried out with primary data collection to internal and external references to ADR. The results show that the coexistence of both institutions has been difficult, without defining clear roles. Promoting dialogue to define the role of each seems to be the great challenge facing the sustainability of the agency metadata Garat de Marin, Mirtha Silvana and Soriano Flores, Emmanuel and Rodríguez Velasco, Carmen Lilí and Silva Alvarado, Eduardo and Calderón Iglesias, Rubén and Álvarez, Roberto Marcelo and Gracia Villar, Santos mail silvana.marin@uneatlantico.es, emmanuel.soriano@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED, ruben.calderon@uneatlantico.es, roberto.alvarez@uneatlantico.es, santos.gracia@uneatlantico.es (2022) Development Agencies and Local Governments—Coexistence within the Same Territory. Social Sciences, 11 (9). p. 398. ISSN 2076-0760

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés The Information Centric Networking (ICN) is a future internet architecture to support efficient content distribution in a vehicular environment. In-network caching in ICN provides a realistic solution for vehicular communication due to storage of content replicas inside network vehicles. However, the challenge still exists while caching content replicas in resource constraint vehicles ( such as limited power and cache capacity) to minimize the communication latency. To address the above mentioned challenge, this paper proposes EPC - an ICN based Energy efficient Placement of Content chunk that fits well in a vehicular environment. The proposed resource management strategy mainly aims to reduce the content fetching delay by caching content replicas towards the network edge router. The EPC strategy decides on placement of content chunks on each vehicle by jointly considering residual power of current vehicle, local popularity of content, and caching gain. The EPC supports efficient utilization of network available resources by allowing only vehicles with their residual power greater than threshold to perform chunk caching and hence, further offers reduced content duplication in the whole network. The effectiveness of the proposed scheme is evaluated in Icarus- an ICN simulator for analyzing the performance of ICN caching and routing strategies. The EPC outperforms various state of the art caching strategies approximately by 30% when gets evaluated in terms of offered cache hit ratio, content retrieval delay, and the average number of hops utilized for fetching the requested content. metadata Gupta, Divya and Rani, Shalli and Singh, Aman and Rodrigues, Joel J. P. C. mail UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED (2022) ICN Based Efficient Content Caching Scheme for Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems. pp. 1-9. ISSN 1524-9050

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Food and agriculture are significant aspects that can meet the food demand estimated by the Food Agriculture Organization (FAO) by 2050. In addition to this, the United Nations sustainable development goals recommended implementing sustainable practices to meet food demand to achieve sustainability. Currently, aquaponics is one of the sustainable practices that require less land and water and has a low environmental impact. Aquaponics is a closed-loop and soil-less method of farming, where it requires intensive monitoring, control, and management. The advancement of wireless sensors and communication protocols empowered to implementation of an Internet of Things- (IoT-) based system for real-time monitoring, control, and management in aquaponics. This study presents a review of the wireless technology implementation and progress in aquaponics. Based on the review, the study discusses the significant water and environmental parameters of aquaponics. Followed by this, the study presents the implementation of remote, IoT, and ML-based monitoring of aquaponics. Finally, the review presents the recommendations such as edge and fog-based vision nodes, machine learning models for prediction, LoRa-based sensor nodes, and gateway-based architecture that are beneficial for the enhancement of wireless aquaponics and also for real-time prediction in the future. metadata Gayam, Kiran Kumari and Jain, Anuj and Gehlot, Anita and Singh, Rajesh and Akram, Shaik Vaseem and Singh, Aman and Anand, Divya and Delgado Noya, Irene and Ahmad, Shafiq mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, aman.singh@unic.co.ao, divya.anand@uneatlantico.es, irene.delgado@uneatlantico.es, UNSPECIFIED (2022) Imperative Role of Automation and Wireless Technologies in Aquaponics Farming. Wireless Communications and Mobile Computing, 2022. pp. 1-13. ISSN 1530-8669

Article Subjects > Social Sciences Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Angola, as with many countries on the African continent, has great inequalities or asymmetries between its provinces. At the economic, financial, and technological level, there is a great disparity between them, where it is observed that the province of Luanda is the largest financial business center to the detriment of others, such as Moxico, Zaire, and Cabinda. In the latter, despite the advantages of high oil production, from a regional point of view, they remain almost stagnant in time, in a social dysfunction where the population lives on extractivism and artisanal fishing. This article analyzes the most important events in contemporary regional history, the Portuguese occupation that was the Portuguese colonial rule over Angola (1890–1930) and the civil war that was a struggle between Angolans for control of the country (1975–2002), in the consolidation of the asymmetries between provinces. For this work, a theoretical-reflective study was conducted based on the reading of books, articles, and previous investigations on the phenomenon studied. Considering the interpretation and analysis of the theoretical content obtained through the bibliographic research conducted, this theoretical construction approaches the qualitative approach. We conclude that the deep inequalities between regions and within them, between the provinces studied, originated historically in the form of exploitation of the regions and from the consequences of the war. The asymmetries, observed through the variables studied show that the provinces historically explored and considered object regions present a lower growth compared to those that were considered subject regions in which the applied geopolitical strategy, as they are centers of primary production flows, was different. We also observe that, due to the conflicts of the civil war in the less developed regions, the inequalities have deepened, contributing seriously to a higher level of poverty and a lower development of the provinces where these conflicts took place. metadata Catoto Capitango, João Adolfo and Garat de Marin, Mirtha Silvana and Soriano Flores, Emmanuel and Rojo Gutiérrez, Marco Antonio and Gracia Villar, Mónica and Durántez Prados, Frigdiano Álvaro mail UNSPECIFIED, silvana.marin@uneatlantico.es, emmanuel.soriano@uneatlantico.es, marco.rojo@unini.edu.mx, monica.gracia@uneatlantico.es, durantez@uneatlantico.es (2022) Inequalities and Asymmetries in the Development of Angola’s Provinces: The Impact of Colonialism and Civil War. Social Sciences, 11 (8). p. 334. ISSN 2076-0760

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés In December 2019, a group of people in Wuhan city of Hubei province of China were found to be affected by an infection called dark etiology pneumonia. The outbreak of this pneumonia infection was declared a deadly disease by the China Center for Disease Control and Prevention on January 9, 2020, named Novel Coronavirus 2019 (nCoV-2019). This nCoV-2019 is now known as COVID-19. There is a big list of infections of this coronavirus which is present in the form of a big family. This virus can cause several diseases that usually develop with a serious problem. According to the World Health Organization (WHO), 2019-nCoV has been placed as the modern generation of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) coronaviruses, so COVID-19 can repeatedly change its internal genome structure to extend its existence. Understanding and accurately predicting the mutational properties of the genome structure of COVID-19 can form a good leadership role in preventing and fighting against coronavirus. In this research paper, an analytical approach has been presented which is based on the k-means cluster technique of machine learning to find the clusters over the mutational properties of the COVID-19 viruses’ complete genome. This method would be able to act as a promising tool to monitor and track pathogenic infections in their stable and local genetics/hereditary varieties. This paper identifies five main clusters of mutations with as best in most cases in the coronavirus that could help scientists and researchers develop disease control vaccines for the transformation of coronaviruses. metadata Dumka, Ankur and Verma, Parag and Singh, Rajesh and Bhardwaj, Anuj and Alsubhi, Khalid and Anand, Divya and Delgado Noya, Irene and Aparicio Obregón, Silvia mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, divya.anand@uneatlantico.es, irene.delgado@uneatlantico.es, silvia.aparicio@uneatlantico.es (2022) Intelligent Approach for Clustering Mutations’ Nature of COVID-19 Genome. Computers, Materials & Continua, 72 (3). pp. 4453-4466. ISSN 1546-2226

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Education 4.0 imitates Industry 4.0 in many aspects such as technology, customs, challenges, and benefits. The remarkable advancement in embryonic technologies, including IoT (Internet of Things), Fog Computing, Cloud Computing, and Augmented and Virtual Reality (AR/VR), polishes every dimension of Industry 4.0. The constructive impacts of Industry 4.0 are also replicated in Education 4.0. Real-time assessment, irregularity detection, and alert generation are some of the leading necessities of Education 4.0. Conspicuously, this study proposes a reliable assessment, irregularity detection, and alert generation framework for Education 4.0. The proposed framework correspondingly addresses the comparable issues of Industry 4.0. The proposed study (1) recommends the use of IoT, Fog, and Cloud Computing, i.e., IFC technological integration for the implementation of Education 4.0. Subsequently, (2) the Symbolic Aggregation Approximation (SAX), Kalman Filter, and Learning Bayesian Network (LBN) are deployed for data pre-processing and classification. Further, (3) the assessment, irregularity detection, and alert generation are accomplished over SoTL (the set of threshold limits) and the Multi-Layered Bi-Directional Long Short-Term Memory (M-Bi-LSTM)-based predictive model. To substantiate the proposed framework, experimental simulations are implemented. The experimental outcomes substantiate the better performance of the proposed framework, in contrast to the other contemporary technologies deployed for the enactment of Education 4.0 metadata Verma, Anil and Anand, Divya and Singh, Aman and Vij, Rishika and Alharbi, Abdullah and Alshammari, Majid and Ortega-Mansilla, Arturo mail UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, arturo.ortega@uneatlantico.es (2022) IoT-Inspired Reliable Irregularity-Detection Framework for Education 4.0 and Industry 4.0. Electronics, 11 (9). p. 1436. ISSN 2079-9292

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Coronavirus (COVID-19) has impacted nearly every person across the globe either in terms of losses of life or as of lockdown. The current coronavirus (COVID-19) pandemic is a rare/special situation where people can express their feelings on Internet-based social networks. Social media is emerging as the biggest platform in recent years where people spend most of their time expressing themselves and their emotions. This research is based on gathering data from Twitter and analyzing the behavior of the people during the COVID-19 lockdown. The research is based on the logic expressed by people in this perspective and emotions for the suffering of COVID-19 and lockdown. In this research, we have used a Long Short-Term Memory (LSTM) network model with Convolutional Neural Network using Keras python deep-learning library to determine whether social media platform users are depressed in terms of positive, negative, or neutral emotional out bust based on their Twitter posts. The results showed that the model has 88.14% accuracy (representation of the correct prediction over the test dataset) after 10 epochs which most tweets showed had neutral polarity. The evaluation shows interesting results in positive (1), negative (–1), and neutral (0) emotions through different visualization. metadata Dumka, Ankur and Verma, Parag and Singh, Rajesh and Kumar Bisht, Anil and Anand, Divya and Moaiteq Aljahdali, Hani and Delgado Noya, Irene and Aparicio Obregón, Silvia mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, divya.anand@uneatlantico.es, UNSPECIFIED, irene.delgado@uneatlantico.es, silvia.aparicio@uneatlantico.es (2022) A Novel Deep Learning Based Healthcare Model for COVID-19 Pandemic Stress Analysis. Computers, Materials & Continua, 72 (3). pp. 6029-6044. ISSN 1546-2226

Article Subjects > Engineering Universidad Internacional do Cuanza > Research > Scientific Production
Europe University of Atlantic > Research > Scientific Production
Abierto Inglés Infectious Disease Prediction aims to anticipate the aspects of both seasonal epidemics and future pandemics. However, a single model will most likely not capture all the dataset’s patterns and qualities. Ensemble learning combines multiple models to obtain a single prediction that uses the qualities of each model. This study aims to develop a stacked ensemble model to accurately predict the future occurrences of infectious diseases viewed at some point in time as epidemics, namely, dengue, influenza, and tuberculosis. The main objective is to enhance the prediction performance of the proposed model by reducing prediction errors. Autoregressive integrated moving average, exponential smoothing, and neural network autoregression are applied to the disease dataset individually. The gradient boosting model combines the regress values of the above three statistical models to obtain an ensemble model. The results conclude that the forecasting precision of the proposed stacked ensemble model is better than that of the standard gradient boosting model. The ensemble model reduces the prediction errors, root-mean-square error, for the dengue, influenza, and tuberculosis dataset by approximately 30%, 24%, and 25%, respectively metadata Mahajan, Asmita and Sharma, Nonita and Aparicio Obregón, Silvia and Alyami, Hashem and Alharbi, Abdullah and Anand, Divya and Sharma, Manish and Goyal, Nitin mail UNSPECIFIED, UNSPECIFIED, silvia.aparicio@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, divya.anand@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2022) A Novel Stacking-Based Deterministic Ensemble Model for Infectious Disease Prediction. Mathematics, 10 (10). p. 1714. ISSN 2227-7390

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Pneumonia is one of the leading causes of death in both infants and elderly people, with approximately 4 million deaths each year. It may be a virus, bacterial, or fungal, depending on the contagious pathogen that damages the lung’s tiny air sacs (alveoli). Patients with underlying disorders such as asthma, a weakened immune system, hospitalized babies, and older persons on ventilators are all at risk, particularly if pneumonia is not detected early. Despite the existing approaches for its diagnosis, low accuracy and efficiency require further research for more accurate systems. This study is a similar endeavor for the detection of pneumonia by the use of X-ray images. The dataset is preprocessed to make it suitable for transfer learning tasks. Different pre-trained convolutional neural network (CNN) variants are utilized, including VGG16, Inception-v3, and ResNet50. Ensembles are made by incorporating CNN with Inception-V3, VGG-16, and ResNet50. Besides the common evaluation metrics, the performance of the pre-trained and ensemble deep learning models is measured with Cohen’s kappa as well as the area under the curve (AUC). Experimental results show that Inception-V3 with CNN attained the highest accuracy and recall score of 99.29% and 99.73%, respectively metadata Mujahid, Muhammad and Rustam, Furqan and Álvarez, Roberto Marcelo and Vidal Mazón, Juan Luis and Díez, Isabel de la Torre and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, roberto.alvarez@uneatlantico.es, juanluis.vidal@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2022) Pneumonia Classification from X-ray Images with Inception-V3 and Convolutional Neural Network. Diagnostics, 12 (5). p. 1280. ISSN 2075-4418

Article Subjects > Engineering Universidad Internacional do Cuanza > Research > Scientific Production
Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Abierto Inglés Deep learning is used to address a wide range of challenging issues including large data analysis, image processing, object detection, and autonomous control. In the same way, deep learning techniques are also used to develop software and techniques that pose a danger to privacy, democracy, and national security. Fake content in the form of images and videos using digital manipulation with artificial intelligence (AI) approaches has become widespread during the past few years. Deepfakes, in the form of audio, images, and videos, have become a major concern during the past few years. Complemented by artificial intelligence, deepfakes swap the face of one person with the other and generate hyper-realistic videos. Accompanying the speed of social media, deepfakes can immediately reach millions of people and can be very dangerous to make fake news, hoaxes, and fraud. Besides the well-known movie stars, politicians have been victims of deepfakes in the past, especially US presidents Barak Obama and Donald Trump, however, the public at large can be the target of deepfakes. To overcome the challenge of deepfake identification and mitigate its impact, large efforts have been carried out to devise novel methods to detect face manipulation. This study also discusses how to counter the threats from deepfake technology and alleviate its impact. The outcomes recommend that despite a serious threat to society, business, and political institutions, they can be combated through appropriate policies, regulation, individual actions, training, and education. In addition, the evolution of technology is desired for deepfake identification, content authentication, and deepfake prevention. Different studies have performed deepfake detection using machine learning and deep learning techniques such as support vector machine, random forest, multilayer perceptron, k-nearest neighbors, convolutional neural networks with and without long short-term memory, and other similar models. This study aims to highlight the recent research in deepfake images and video detection, such as deepfake creation, various detection algorithms on self-made datasets, and existing benchmark datasets. metadata Shahzad, Hina Fatima and Rustam, Furqan and Soriano Flores, Emmanuel and Vidal Mazón, Juan Luis and de la Torre Diez, Isabel and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, emmanuel.soriano@uneatlantico.es, juanluis.vidal@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2022) A Review of Image Processing Techniques for Deepfakes. Sensors, 22 (12). p. 4556. ISSN 1424-8220

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Network slicing is expected to be critical in the deployment of 5G mobile networks and systems. On top of a single physical infrastructure, the technology enables operators to operate several virtual networks. As the 5G commercialization was recently deployed, network function virtualization (NFV) and software-defined networking (SDN) will drive network slicing. In this article, we present an overview of SDN in 5G, and the motivation, role, and market growth of network slicing. We then discuss usage scenarios of SDN in network slicing for 5G. The proposed architecture comprises the three usage scenarios: enhanced mobile broadband (eMBB) provides the support to varying types of services used; ultra-reliable low-latency communications (URLLC) provides a certain class of applications such as higher bandwidth, high definition video streaming, mobile TV, and so on; massive machine type communications (mMTC) throws light on the types of services used to connect huge numbers of devices. Finally, challenges and solutions based on network slicing in 5G are presented. metadata Babbar, Himanshi and Rani, Shalli and AlZubi, Ahmad Ali and Singh, Aman and Nasser, Nidal and Ali, Asmaa mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2022) Role of Network Slicing in Software Defined Networking for 5G: Use Cases and Future Directions. IEEE Wireless Communications, 29 (1). pp. 112-118. ISSN 1536-1284

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés The accelerated evolution in computing and transmission automation of the Internet of Vehicles (IoV) has led to enormous research standards that attract many researchers and industries. This century of the Internet of Things (IoT) is propulsive to the routine vehicular ad hoc networks (VANETs) in the IoV. It has emerged as one of the major driving forces for innovations in the intelligent vehicular industry. The World Health Organization (WHO) report confirms that approximately 1.35 million people die because of accidents on the road every year. This requires considerable attention to incorporate more and more safety measures into the automobile industry. Intelligent transportation systems can help bridge the gap between the traditional and the intelligent automotive industry by connecting vehicle to vehicle (V2V) and vehicle to infrastructure (V2I), hence adding much safety in vehicular communication. This paper provides a comprehensive review of the Internet of Vehicles (IoV) which discusses the architectures of IoV including layer types, functions of layers, application area, and communication type supported. Further, it also provides an in-depth insight into state-of-the-art Medium Access Control (MAC) protocols and routing protocols used in IoV communication. The routing protocol comparative summarization considers important parameters which include communication types broadcast, unicast, cluster, multicast, forwarding strategy, recovery strategy, availability of map, and the type of environment urban or highway. The summarization of various protocols highlights strengths, research gaps, and application areas. Finally, the paper addresses various research challenges along with potential future enhancements for the IoV communication. metadata Seth, Ishita and Guleria, Kalpna and Panda, Surya Narayan and Anand, Divya and Alsubhi, Khalid and Aljahdali, Hani Moaiteq and Singh, Aman and A Saeed, Rashid mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, divya.anand@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, aman.singh@unic.co.ao, UNSPECIFIED (2022) A Taxonomy and Analysis on Internet of Vehicles: Architectures, Protocols, and Challenges. Wireless Communications and Mobile Computing, 2022. pp. 1-26. ISSN 1530-8669

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Thyroid disease prediction has emerged as an important task recently. Despite existing approaches for its diagnosis, often the target is binary classification, the used datasets are small-sized and results are not validated either. Predominantly, existing approaches focus on model optimization and the feature engineering part is less investigated. To overcome these limitations, this study presents an approach that investigates feature engineering for machine learning and deep learning models. Forward feature selection, backward feature elimination, bidirectional feature elimination, and machine learning-based feature selection using extra tree classifiers are adopted. The proposed approach can predict Hashimoto’s thyroiditis (primary hypothyroid), binding protein (increased binding protein), autoimmune thyroiditis (compensated hypothyroid), and non-thyroidal syndrome (NTIS) (concurrent non-thyroidal illness). Extensive experiments show that the extra tree classifier-based selected feature yields the best results with 0.99 accuracy and an F1 score when used with the random forest classifier. Results suggest that the machine learning models are a better choice for thyroid disease detection regarding the provided accuracy and the computational complexity. K-fold cross-validation and performance comparison with existing studies corroborate the superior performance of the proposed approach. metadata Chaganti, Rajasekhar and Rustam, Furqan and De La Torre Díez, Isabel and Vidal Mazón, Juan Luis and Rodríguez Velasco, Carmen Lilí and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, juanluis.vidal@uneatlantico.es, carmen.rodriguez@uneatlantico.es, UNSPECIFIED (2022) Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques. Cancers, 14 (16). p. 3914. ISSN 2072-6694

2021

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Background: To address the current pandemic, multiple studies have focused on the development of new mHealth applications to help curb the number of infections, these applications aim to accelerate the identification and self-isolation of people exposed to SARS-CoV- 2, the coronavirus known to cause COVID-19, by being in close contact with infected individuals. Objective: The main objectives of this paper are: 1)To analyze the current status of COVID-19 apps available the main virtual stores: Google Play Store and App Store, and 2)To propose a novel mobile application based on the limitations of the analyzed apps. Methods: The search for apps in this research was carried out in the main virtual stores: Google Play Store and App Store, until May 2021. After the analysis of the selected apps, a novel app is proposed whose main function will be the multiple transmission of information about the patient's symptoms from the application, without the need for phone calls or chat in real time. For its development, the flowchart shown in this session is followed. Results: The search yielded a total of 50 apps, of which 24 were relevant to this study. It is important to note that 23 of the apps analyzed are free. Of the total number of apps, 54% are available for Android and iOS operating systems. 50% of the apps have more than 5 thousand downloads. This means that Covid-19 related apps are in high demand among mobile device users today. The developed app is called COVINFO and its name comes from the union of the words COVID-19 and information, inserted in such a way that the user can get an idea of the app's functionality just by listening or reading the resulting name. The application has been created for mobile devices with Android operating system, being compatible with Android 4.4 and higher. Conclusions: Of the apps found, 37.5% only offer information about the virus and the necessary measures to avoid infection. During the analysis it was detected that 12.5% of the apps are focused on locating outbreaks and that none of them have been successful for the following reasons: not being interconnected to share data; and the request for access to the user's geolocation, generating distrust on the part of the user who, consequently, rejects them. This work addresses the development of an application for the transmission of the user's symptoms to his regular doctor, based on the fact that only 16.6% of the existing applications have this functionality. The COVINFO app offers a service that no other application on the market has: doctor-patient interaction without the need for calls or chat in real time for constant monitoring by the doctor of the patient's condition and evolution. metadata Herrera Montano, Isabel and Pérez Pacho, Javier and Gracia Villar, Santos and Aparicio Obregón, Silvia and Breñosa, Jose and de la Torre Díez, Isabel mail UNSPECIFIED, UNSPECIFIED, santos.gracia@uneatlantico.es, silvia.aparicio@uneatlantico.es, josemanuel.brenosa@uneatlantico.es, UNSPECIFIED (2021) Analysis of mobile apps for information, prevention and monitoring of covid-19 and proposal of an innovative app in this field. JMIR Preprints. (Submitted)

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés The purpose of this research was to plan an approach to a project framework that integrated a model for sustainability and CSR, with the process groups of the Project Management Body of Knowledge (PMBOK®) standard, in its application to the training of a group of students in Project Design, Management, and Evaluation. The integration was justified by the scarce explicit references to sustainability and CSR found in traditional project management guidelines, norms, and standards. The new framework was used to structure a Sustainability Management Plan, which made it possible to incorporate sustainability criteria throughout the life cycle of the training project. The training proposal in Project Design, Management, and Evaluation was chosen, among several alternatives, by a multi-criteria selection process (fuzzy AHP) in the context of project scope management. The results reveal a great heterogeneity among the models and the lack of a base of key indicators in sustainability and CSR measurement tools as well as of explicit references to sustainability in project management standards. It is therefore necessary to develop a Sustainability Management Plan that can be introduced in the Project Management Plan and thus influence the strategic and operational guidelines of the Institution. metadata García Villena, Eduardo and Gracia Villar, Santos and Dzul López, Luis Alonso and Álvarez, Roberto Marcelo and Delgado Noya, Irene and Vidal Mazón, Juan Luis mail eduardo.garcia@uneatlantico.es, santos.gracia@uneatlantico.es, luis.dzul@uneatlantico.es, roberto.alvarez@uneatlantico.es, irene.delgado@uneatlantico.es, juanluis.vidal@uneatlantico.es (2021) Approach to a Project Framework in the Environment of Sustainability and Corporate Social Responsibility (CSR): Case Study of a Training Proposal to a Group of Students in a Higher Education Institution. Sustainability, 13 (19). p. 10880. ISSN 2071-1050

Article Subjects > Psychology Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Many earlier studies conducted on sports betting and addiction have examined sports betting in the context of gambling and have not taken into account the specific motivations of sports betting. Therefore, the effects of motivational elements of sports betting on sports betting addiction risk are unknown. The aim of the present study was to examine the effects of motivation factors specific to sports betting on sports betting addiction. Accordingly, three linked studies were conducted. Firstly, to determine sports betting motivations “Sports Betting Motivation Scale (SBMS)” developed and validated. Secondly, to determine the risks of sports betting addiction “Problem Sports Betting Severity Index (PSBSI)” was adapted from Problem Gambling Severity Index (PGSI). Finally, the third study examined effects of the sports betting motivations on sports betting addiction risk. Study one (n=281), study two comprised (n=230), and the final study comprised (n=643) sports fans who bet on sports regularly for 12 months with different motivations. The findings demonstrate that the SBMS appears to be a reliable and valid instrument for assessing sports betting motivations. Also, the findings provided PSBSI validity for the use of the Turkish and sports betting adapted version of PGSI. As a result of the main research, “make money,” “socialization,” and “being in the game” motivations were found to be positive predictors of sports betting addiction risk, while “fun” motivation was a negative predictor. The motivations “recreation/escape,” “knowledge of the game,” and “interest in sport” were found not to be significant predictors of the risk of sports betting addiction. metadata Gökce Yüce, Sevda and Yüce, Arif and Katırcı, Hakan and Nogueira-López, Abel and González-Hernández, Juan mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, abel.nogueira@uneatlantico.es, UNSPECIFIED (2021) Effects of Sports Betting Motivations on Sports Betting Addiction in a Turkish Sample. International Journal of Mental Health and Addiction. ISSN 1557-1874

Article Subjects > Psychology Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés In recent decades, perfectionism has generated growing interest from the scientific community in understanding exercise addiction, due to the explicative contributions offered its characteristics that can make individuals more susceptible to unhealthy and compulsive exercise. There have been limited studies of such constructions in sports contexts. With the purpose of identifying the most relevant evidence on the constructs in sports contexts, the main links between perfectionism and exercise addiction in athletes were described. Taking into account the principles established by the PRISMA and AMSTAR statements for the qualitative and quantitative description of findings in systematic reviews, a compendium of original articles in English, French and Spanish published on the Web of Science electronic platforms and databases is presented, Scopus, ProQuest, MEDLINE and EBSCO-HOST, and included major resources such as PSY Articles, PsycINFO, LWW, ERIC, SportDISCUS, PubMed, ERIC, Dialnet, PubMed, ISOC, the Cochrane Library and Google Scholar. Of the 754 articles identified, only 22 met the established inclusion criteria. Finally, the relationship between exercise addiction and perfectionism, and the risk function of certain personality traits, such as narcissism, in this association is confirmed. metadata González-Hernández, J. and Nogueira-López, Abel and Zangeneh, M. and López-Mora, C. mail UNSPECIFIED, abel.nogueira@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2021) Exercise Addiction and Perfectionism, Joint in the Same Path? A Systematic Review. International Journal of Mental Health and Addiction. ISSN 1557-1874

Article Subjects > Teaching Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés The purpose of this article was to evaluate the level of satisfaction of a sample of graduates in relation to different online postgraduate programs in the environmental area, as part of the process of continuous improvement in which the educational institution was immersed for the renewal of its accreditation before the corresponding official bodies. Based on the bibliographic review of a series of models and tools, a Likert scale measurement instrument was developed. This instrument, once applied and validated, showed a good level of reliability, with more than three quarters of the participants having a positive evaluation of satisfaction. Likewise, to facilitate the relational study, and after confirming the suitability of performing a factor analysis, four variable grouping factors were determined, which explained a good part of the variability of the instrument’s items. As a result of the analysis, it was found that there were significant values of low satisfaction in graduates from the Eurasian area, mainly in terms of organizational issues and academic expectations. On the other hand, it was observed that the methodological aspects of the “Auditing” and “Biodiversity” programs showed higher levels of dissatisfaction than the rest, with no statistically significant relationships between gender, entry profile or age groups. The methodology followed and the rigor in determining the validity and reliability of the instrument, as well as the subsequent analysis of the results, endorsed by the review of the documented information, suggest that the instrument can be applied to other multidisciplinary programs for decision making with guarantees in the educational field metadata García Villena, Eduardo and Pueyo Villa, Silvia and Delgado Noya, Irene and Tutusaus, Kilian and Ruiz Salces, Roberto and Pascual Barrera, Alina Eugenia mail eduardo.garcia@uneatlantico.es, silvia.pueyo@uneatlantico.es, irene.delgado@uneatlantico.es, kilian.tutusaus@uneatlantico.es, roberto.ruiz@uneatlantico.es, alina.pascual@unini.edu.mx (2021) Instrumentalization of a Model for the Evaluation of the Level of Satisfaction of Graduates under an E-Learning Methodology: A Case Analysis Oriented to Postgraduate Studies in the Environmental Field. Sustainability, 13 (9). p. 5112. ISSN 2071-1050

Article Subjects > Psychology Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Background: In an unprecedented situation of interruption of the sporting dynamics, the world of sport is going through a series of adaptations necessary to continue functioning despite coronavirus disease 2019 (COVID-19). More than ever, athletes are facing a different challenge, a source of discomfort and uncertainty, and one that absolutely alters not only sports calendars, but also trajectories, progressions, and approaches to sports life. Therefore, it is necessary to identify the levels of psychological vulnerability that may have been generated in the athletes, because of the coexistence with dysfunctional responses during the COVID-19 experience, and which directly influence the decrease of their mental health. Methods: With a descriptive and transversal design, the study aims to identify the state of the dysfunctional psychological response of a sample of Spanish athletes (N = 284). The DASS-21 (Depression, Anxiety, and Stress Scale), Toronto-20 (alexithymia), and Distress Tolerance Scale questionnaires were administered to a sample of high-level Spanish athletes in Olympic programs. Results: The results suggest that the analyzed athletes indicate high levels of dysfunctional response (e.g., anxiety, stress, depression, and alexithymia) when their tolerance is low. In addition, the variables show less relational strength, when the capacity of tolerance to distress is worse and age is lower. At the same time, the greater the anxiety and uncertainty are, leading to more catastrophic and negative thoughts, the younger the athletes are. Conclusions: It is clear that both age and tolerance to distress are considered adequate protective factors for psychological vulnerability in general and for associated dysfunctional responses in particular. Moreover, the psychological resources offered by more experienced athletes are also a guarantee of protection against negativity and catastrophism. metadata González-Hernández, Juan and López-Mora, Clara and Yüce, Arif and Nogueira-López, Abel and Tovar-Gálvez, Maria Isabel mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, abel.nogueira@uneatlantico.es, UNSPECIFIED (2021) “Oh, My God! My Season Is Over!” COVID-19 and Regulation of the Psychological Response in Spanish High-Performance Athletes. Frontiers in Psychology, 12. ISSN 1664-1078

Article Subjects > Engineering Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto Inglés Currently, two-wheelers are the most popular mode of transportation, driven by the majority the people. Research by the World Health Organization (WHO) identifies that most two-wheeler deaths are caused due to not wearing a helmet. However, the advancement in sensors and wireless communication technology empowers one to monitor physical things such as helmets through wireless technology. Motivated by these aspects, this article proposes a wireless personal network and an Internet of Things assisted system for automating the ignition of two-wheelers with authorization and authentication through the helmet. The authentication and authorization are realized with the assistance of a helmet node and a two-wheeler node based on 2.4 GHz RF communication. The helmet node is embedded with three flex sensors utilized to experiment with different age groups and under different temperature conditions. The statistical data collected during the experiment are utilized to identify the appropriate threshold value through a t-test hypothesis for igniting the two-wheelers. The threshold value obtained after the t-test is logged in the helmet node for initiating the communication with the two-wheeler node. The pairing of the helmet node along with the RFID key is achieved through 2.4 GHZ RF communication. During real-time implementation, the helmet node updates the status to the server and LABVIEW data logger, after wearing the helmet. Along with the customization of hardware, a LABVIEW data logger is designed to visualize the data on the server side. metadata Gehlot, Anita and Singh, Rajesh and Kuchhal, Piyush and Kumar, Adesh and Singh, Aman and Alsubhi, Khalid and Ibrahim, Muhammad and Gracia Villar, Santos and Breñosa, Jose mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, santos.gracia@uneatlantico.es, josemanuel.brenosa@uneatlantico.es (2021) WPAN and IoT Enabled Automation to Authenticate Ignition of Vehicle in Perspective of Smart Cities. Sensors, 21 (21). p. 7031. ISSN 1424-8220

2020

Article Subjects > Biomedicine Europe University of Atlantic > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Cerrado Inglés Fasting, caloric restriction and foods or compounds mimicking the biological effects of caloric restriction, known as caloric restriction mimetics, have been associated with a lower risk of age-related diseases, including cardiovascular diseases, cancer and cognitive decline, and a longer lifespan. Reduced calorie intake has been shown to stimulate cancer immunosurveillance, reducing the migration of immunosuppressive regulatory T cells towards the tumor bulk. Autophagy stimulation via reduction of lysine acetylation, increased sensitivity to chemo- and immunotherapy, along with a reduction of insulin-like growth factor 1 and reactive oxygen species have been described as some of the major effects triggered by caloric restriction. Fasting and caloric restriction have also been shown to beneficially influence gut microbiota composition, modify host metabolism, reduce total cholesterol and triglyceride levels, lower diastolic blood pressure and elevate morning cortisol level, with beneficial modulatory effects on cardiopulmonary fitness, body fat and weight, fatigue and weakness, and general quality of life. Moreover, caloric restriction may reduce the carcinogenic and metastatic potential of cancer stem cells, which are generally considered responsible of tumor formation and relapse. Here, we reviewed in vitro and in vivo studies describing the effects of fasting, caloric restriction and some caloric restriction mimetics on immunosurveillance, gut microbiota, metabolism, and cancer stem cell growth, highlighting the molecular and cellular mechanisms underlying these effects. Additionally, studies on caloric restriction interventions in cancer patients or cancer risk subjects are discussed. Considering the promising effects associated with caloric restriction and caloric restriction mimetics, we think that controlled-randomized large clinical trials are warranted to evaluate the inclusion of these non-pharmacological approaches in clinical practice. metadata Pistollato, Francesca and Forbes-Hernández, Tamara Y. and Calderón Iglesias, Rubén and Ruiz Salces, Roberto and Elexpuru Zabaleta, Maria and Dominguez Azpíroz, Irma and Cianciosi, Danila and Quiles, José L. and Giampieri, Francesca and Battino, Maurizio mail francesca.pistollato@uneatlantico.es, UNSPECIFIED, ruben.calderon@uneatlantico.es, roberto.ruiz@uneatlantico.es, maria.elexpuru@uneatlantico.es, irma.dominguez@unini.edu.mx, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED (2020) Effects of caloric restriction on immunosurveillance, microbiota and cancer cell phenotype: Possible implications for cancer treatment. Seminars in Cancer Biology. ISSN 1044-579X

This list was generated on Sat Oct 1 12:23:00 2022 UTC.

<a class="ep_document_link" href="/489/1/ijerph-19-00849.pdf"><img class="ep_doc_icon" alt="[img]" src="/489/1.hassmallThumbnailVersion/ijerph-19-00849.pdf" border="0"/></a><a href="/489/1/ijerph-19-00849.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/489/1.hassmallThumbnailVersion/ijerph-19-00849.pdf" border="0"/></a>

en

open

Detection of Upper Limb Asymmetries in Athletes According to the Stage of the Season—A Longitudinal Study

Abstract: Sports injuries can affect the performance of athletes. For this reason, functional tests are used for injury assessment and prevention, analyzing physical or physiological imbalances and detecting asymmetries. The main aim of this study was to detect the asymmetries in the upper limbs (right and left arms) in athletes, using the OctoBalance Test (OB), depending on the stage of the season. Two hundred and fifty-two participants (age: 23.33 ± 8.96 years old; height: 178.63 ± 11.12 cm; body mass: 80.28 ± 17.61 kg; body mass index: 24.88 ± 4.58; sports experience: 12.52 ± 6.28 years), practicing different sports (rugby, athletics, football, swimming, handball, triathlon, basketball, hockey, badminton and volleyball), assessed with the OB in medial, superolateral, and inferolateral directions in both arms, in four moments of the season (May 2017, September 2017, February 2018 and May 2018). ANOVA test was used with repeated measures with a p ≤ 0.05, for the analysis of the different studied variances. Significant differences were found (p = 0.021) in the medial direction of the left arm, between the first (May 2017) and fourth stages (May 2018), with values of 71.02 ± 7.15 cm and 65.03 ± 7.66 cm. From the detection of asymmetries, using the OB to measure, in the medial, superolateral and inferolateral directions, mobility and balance can be assessed. In addition, it is possible to observe functional imbalances, as a risk factor for injury, in each of the stages into which the season is divided, which will help in the prevention of injuries and in the individualization of training.

Producción Científica

Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Antonio Bores-Cerezal mail antonio.bores@uneatlantico.es, Marcos Mecías-Calvo mail marcos.mecias@uneatlantico.es, Martín Barcala Furelos mail martin.barcala@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Julio Calleja-González mail ,

Velarde-Sotres

<a class="ep_document_link" href="/490/1/sustainability-14-00913-v2.pdf"><img class="ep_doc_icon" alt="[img]" src="/490/1.hassmallThumbnailVersion/sustainability-14-00913-v2.pdf" border="0"/></a>

en

open

Blockchain Interoperability: Towards a Sustainable Payment System

The highly fragmented blockchain and cryptocurrency ecosystem necessitates interoperability mechanisms as a requirement for blockchain-technology acceptance. The immediate implication of interchain interoperability is automatic swapping between cryptocurrencies. We performed a systematic review of the existing literature on Blockchain interoperability and atomic cross-chain transactions. We investigated different blockchain interoperability approaches, including industrial solutions, categorized them and identified the key mechanisms used, and list several example projects for each category. We focused on the atomic transactions between blockchain, a process also known as atomic swap. Furthermore, we studied recent implementations along with architectural approaches for atomic swap and deduced research issues and challenges in cross-chain interoperability and atomic swap. Atomic swap can instantly transfer tokens and significantly reduce the associated costs without using any centralized authority, and thus facilitates the development of a sustainable payment system for wider financial inclusion.

Producción Científica

Debasis Mohanty mail , Divya Anand mail , Hani Moaiteq Aljahdali mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es,

Mohanty

<a href="/495/1/ijerph-19-01256.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/495/1.hassmallThumbnailVersion/ijerph-19-01256.pdf" border="0"/></a>

en

open

The Regular Consumption of Nuts Is Associated with a Lower Prevalence of Abdominal Obesity and Metabolic Syndrome in Older People from the North of Spain

Background: The aim of this study was to relate the adherence to nut consumption (30 g) three or more days per week to the prevalence of abdominal obesity and metabolic syndrome (MetS) in an elderly population from the north of Spain. Methods: The study consists of an observational, descriptive, cross-sectional, and correlational study conducted in 556 non-institutionalised individuals between 65 and 79 years of age. To define the consumption recommendation of nuts the indication of the questionnaire MEDAS-14 was followed. The diagnosis of MetS was conducted using the International Diabetes Federation (IDF) criteria. Results: In 264 subjects aged 71.9 (SD: ±4.2) years old, 39% of whom were men, the adherence to nut consumption recommendations was 40.2%. Of these individuals, 79.5% had abdominal obesity. The prevalence of MetS was 40.2%, being 47.6% in men and 35.4% in women (p < 0.05). A nut consumption lower than recommended was associated with a 19% higher prevalence of abdominal obesity (Prevalence Ratio: 1.19; 95% CI: 1.03−1.37; p < 0.05) and a 61% higher prevalence of MetS (Prevalence Ratio: 1.61; 95% CI: 1.16−2.25; p = 0.005) compared to a consumption of ≥3 servings per week. Conclusion: An inverse relationship was established between nut consumption and the prevalence of abdominal obesity and metabolic syndrome.

Producción Científica

Gloria Cubas-Basterrechea mail , Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Carolina Teresa González-Antón mail , Pedro Muñoz-Cacho mail ,

Cubas-Basterrechea

<a class="ep_document_link" href="/496/1/CO-WM-03886-02.pdf"><img class="ep_doc_icon" alt="[img]" src="/496/1.hassmallThumbnailVersion/CO-WM-03886-02.pdf" border="0"/></a><a class="ep_document_link" href="/496/1/CO-WM-03886-02.pdf"><img class="ep_doc_icon" alt="[img]" src="/496/1.hassmallThumbnailVersion/CO-WM-03886-02.pdf" border="0"/></a>

en

open

Effects of ergo-nutritional strategies on recovery in combat sports disciplines

In order to improve the recovery process in combat sports disciplines, ergo-nutritional strategies could be an effective option in training and competition. Some of these ergo-nutritional aids could improve performance but literature references are scarce, with controversial results regarding actual recovery effects. This systematic review aimed to examine which ergo-nutritional methods are most effective for assisting in the recovery process in combat sports, and to determine the appropriate training stimuli. This systematic review was carried out following the Preferred Reporting Items for Systematic Review (PRISMA) guidelines. A computerized search was performed in PubMed, Web of Science, the Cochrane Collaboration Database, Evidence Database, Evidence Based Medicine Search review, National Guidelines, EM-BASE, Scopus and Google Scholar system (from 1995 to April 30, 2021). The PICOS model was used to define inclusion and exclusion criteria. Out of 123 studies initially found, 18 met the eligibility criteria and were included in the review. Data from 367 athletes from different disciplines were examined. The evidence was grouped in 4 areas: oxidative stress, muscle and energy recovery, muscle repair, and metabolic acidosis. Evidence showed that vitamins, minerals, and some natural ergo-nutritional products are effective as antioxidants. Carbohydrates and protein determine the recovery effect. Sodium bicarbonate has a role as primary acidosis metabolic delayer. Accordingly, ergo-nutritional aids can help in the recovery process. Considering the effects outlined in the literature, more studies are needed to provide firm evidence.

Producción Científica

Isaac López Laval mail , Diego Marqués Giménez mail , Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Sebastian Sitko mail , Julio Calleja Gonzalez mail ,

López Laval

<a class="ep_document_link" href="/499/1/s12645-021-00107-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/499/1.hassmallThumbnailVersion/s12645-021-00107-6.pdf" border="0"/></a>

en

open

Non-homogeneous dispersion of graphene in polyacrylonitrile substrates induces a migrastatic response and epithelial-like differentiation in MCF7 breast cancer cells

Background Recent advances from studies of graphene and graphene-based derivatives have highlighted the great potential of these nanomaterials as migrastatic agents with the ability to modulate tumor microenvironments. Nevertheless, the administration of graphene nanomaterials in suspensions in vivo is controversial. As an alternative approach, herein, we report the immobilization of high concentrations of graphene nanoplatelets in polyacrylonitrile film substrates (named PAN/G10) and evaluate their potential use as migrastatic agents on cancer cells. Results Breast cancer MCF7 cells cultured on PAN/G10 substrates presented features resembling mesenchymal-to-epithelial transition, e.g., (i) inhibition of migratory activity; (ii) activation of the expression of E-cadherin, cytokeratin 18, ZO-1 and EpCAM, four key molecular markers of epithelial differentiation; (iii) formation of adherens junctions with clustering and adhesion of cancer cells in aggregates or islets, and (iv) reorganization of the actin cytoskeleton resulting in a polygonal cell shape. Remarkably, assessment with Raman spectroscopy revealed that the above-mentioned events were produced when MCF7 cells were preferentially located on top of graphene-rich regions of the PAN/G10 substrates. Conclusions The present data demonstrate the capacity of these composite substrates to induce an epithelial-like differentiation in MCF7 breast cancer cells, resulting in a migrastatic effect without any chemical agent-mediated signaling. Future works will aim to thoroughly evaluate the mechanisms of how PAN/G10 substrates trigger these responses in cancer cells and their potential use as antimetastatics for the treatment of solid cancers.

Producción Científica

Nazely Diban mail , Marián Mantecón-Oria mail , María T. Berciano mail , Alba Puente-Bedia mail , María J. Rivero mail , Ane Urtiaga mail , Miguel Lafarga mail , Olga Tapia Martínez mail olga.tapia@uneatlantico.es,

Diban