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Abstract: In the last decade, artificial intelligence (AI) and AI-mediated technologies have undergone
rapid evolution in healthcare and medicine, from apps to computer software able to analyze medical
images, robotic surgery and advanced data storage system. The main aim of the present commentary
is to briefly describe the evolution of AI and its applications in healthcare, particularly in nutrition
and clinical biochemistry. Indeed, AI is revealing itself to be an important tool in clinical nutrition by
using telematic means to self-monitor various health metrics, including blood glucose levels, body
weight, heart rate, fat percentage, blood pressure, activity tracking and calorie intake trackers. In
particular, the application of the most common digital technologies used in the field of nutrition as
well as the employment of AI in the management of diabetes and obesity, two of the most common
nutrition-related pathologies worldwide, will be presented.

Keywords: deep learning; machine learning; mobile health applications; natural language processing;
wearable trackers devices

1. Introduction

Nowadays, artificial intelligence (AI) is widely used in many human activities, starting
from single individual to factories and companies. According to the modern dictionary
definition, AI can be defined as “The theory and development of computer systems able to
perform tasks normally requiring human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages” [1]. The main general
goal of developing AI is to produce machines or software that could simulate human
activities and reasoning, including the capacity to identify images, understand language,
solve problems and make decisions learning by error. Depending on how much AI imitates
human reasoning, it can be distinguished into three basic categories: “strong AI” that
strongly simulates human logical reasoning and behavior; “weak AI” systems that perform
fewer human brain activities and the “in-between systems”, those that are inspired by
human reasoning. The “in-between systems” do not reproduce human reasoning perfectly
but use it as a model guide [2].
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In healthcare, the main applications of AI are multiple and are commonly adopted
for four different purposes: (i) for improving the treatment of diseases, by increasing the
therapeutic efficacy; (ii) for the prediction of diseases, by making, for example, diagnosis at
early stages; (iii) for the care and medication of patients, by managing medical records or
drug delivery and development, among others; and finally (iv) for monitoring patients in
real-time, through customizable early warning scores and regular patient surveillance [3].
Consequently, AI may exert a positive impact on the healthcare system, helping profes-
sionals in fast diagnosis, personalized medicine, drug design, disease evaluation and
monitoring, including diet-related diseases, and allows the collection and interpretation of
a large amount of data in a fast and accurate way, giving continuous feedback and avoiding
time-consuming procedures and significantly reducing costs.

Despite the integration of digital technologies and AI in both clinical and medical
areas, it is not so common in the field of nutrition, even if recently, especially during
the COVID-19 pandemic, progress has been made by using both telematic tools to ensure
nutrition assessments at a distance and devices that permit patients to self-monitor different
health metrics linked to nutrition, such as blood glucose levels, body weight, heart rate, fat
percentage, blood pressure, activity tracking, calorie intake tracking, diet composition and
quality [4]. In this context, digital technologies and AI can be a promising and helpful tool,
especially in chronic diseases that are highly disabling such as diabetes mellitus, obesity
and metabolic disorders which are often challenging to handle and can show non-optimal
outcomes. Digital technologies and devices can be connected to AI, allowing the prediction,
screening and monitoring of treatment processes, thus helping clinicians, patients, and
more generally the whole healthcare system. For instance, smartphone mobile systems, one
of the most common digital devices, which are able to identify the type of food on a plate
and calculate its nutrient and caloric content, have recently been developed; these systems
are essential in aiding patients affected by diabetes to make better decisions regarding
their food choices. Similarly, other modern technological devices help patients self-monitor
blood glucose concentrations. For its part, AI could be involved in the design of new
bioactive small molecules that can be used in medicinal chemistry and in many other
biological areas or in discovering bioactive sequences, encoded in food proteins, which
may modulate, for example, inflammatory markers. Digital devices should be increasingly
integrated with AI systems and applied in daily clinical practice, for predicting the risk of
disease, optimizing diets or developing personalized nutrition, among others.

The principal goal of the current work is to briefly present the most common digital
technologies and the application of AI in the field of nutrition, with a particular focus on
the implication of using AI in the diagnosis and management of diabetes and obesity.

2. Digital Technologies and Devices in Nutrition

In recent years, digital technologies and devices, such as mobile health applications
and wearable trackers, have simplified the collection of different types of data, in a real-time
and longitudinal manner, improving the safety and the quality of nutrition support care.
Mobile health applications generally use algorithms to ensure a large amount of data are
collected for nutrition assessments, in particular biometric values, laboratory data, food
intake tracking and macronutrient/micronutrient tracking.

Evidence suggests that these web-based and smartphone apps ensure a better follow-
up, data collection, monitoring and care process and improvements in clinical outcomes,
including nutrition knowledge and weight control [5–8]. The patient can easily download
the apps and put in personal data, such as food intake, weight, height, hydration, activity,
blood glucose and more, enabling them to continuously self-monitor parameters and
progress. All the data can be shared with the health provider who can guide the individual
to select and correct the nutritional interventions. Not surprisingly, the mobile applications
market has been valued at approximately 40 billion dollars; it is predicted to increase even
more in the future.
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Specifically, the use of mobile apps for controlling health data is expected to grow
by approximately 17.7% from 2021 to 2028; in the United States, health-related apps were
downloaded by about 58% of mobile phone users and nearly 83% of dieticians use mobile
apps in their daily practice [9,10].

In the field of nutrition, many applications for monitoring weight loss and dietary
patterns have been extensively used and studied. For example, an important reduction in
body mass index (BMI) of approximately 0.43 kg/m2 has been measured in subjects who
used weight loss mobile apps, since these mobile tracking apps provided a continuous
real-time response to the health interventions that they followed [11]. Additionally, from
the point of view of clinicians, the use of mobile apps, together with the dietary recalls, can
represent a valid tool in the care process as they evaluate the real dietary pattern followed
by patients who usually tend to under-report their consumption. There are different types
of diet-focused apps available on the market, depending on their “easy-to-use” modes or
their functions; some of these applications allow users to record both physical activities and
dietary intake with the possibility to establish specific objectives from time to time, while
others may also offer social aspects by directly connecting with other users or interacting
with online forums.

Applications can work simultaneously with other wearable trackers for complete
assistance. The synergy between mobile apps and wearable trackers can provide estimated
an energy expenditure from heart rate. Wearable dietary trackers are a novel device,
increasingly used, to inertly register daily data about health and exercise. These devices,
like smartwatches, are equipped with sensors that are able to capture image, sound or
even emotion; due to the different types of sensors that trackers have, they can collect a
quantity of health-related information. For example, on the one hand, some devices use
microphones that, analyzing sounds, report chewing and collect data about the quantity
of food ingested and can also quantify the number of bites [12]; on the other hand, other
kinds of devices may contain microcameras to identify not only the foods ingested but
also the portion sizes. For these reasons, algorithms for identifying food, databases with
food images and/or databases with portion size information have been recently developed
and tested on several devices that are usually used for monitoring food intake [13]. Some
examples are represented by the app named “Snap-n-eat”, which is able to estimate food,
energy content, and nutrient intake by simply analyzing the images taken directly by
the user through the mobile phone [14], or by the app called “Keenoa”, which works in a
similar way, but with the addition of sending the nutrient analysis directly to a dietician [15].
Finally, to monitor emotion, devices are usually equipped with sensors (i.e., gyroscope
and/or accelerometer) that capture movements, including rotation, lifting or turning of
the wrist, in order to detect the number of bites, and can estimate the total caloric intake
by using predictive equations. However, it should be highlighted that these motion-based
tools must be worn on the hand used for eating.

Some examples of wearable trackers include fitness trackers, which can monitor vari-
ous health parameters, such as blood oxygen levels, heart rate, stress levels and sleep; these
trackers can also analyze physical activities, like running movements and step counting
and suggest improvements. Additionally, other digital applications have been designed
to synchronize with continuous glucose monitors or with glucometers to immediately
measure the concentration of blood glucose.

Importantly, it must be underlined that these wearable sensors are still in development
and that further work is needed to address and clarify some important aspects, including
algorithms that are able to discriminate between foods (solid vs. liquid) or more precisely
identify food volumes and portions.

3. Principles of Artificial Intelligence

Machine learning (ML), deep learning (DL) and natural language processing (NLP)
are the three most common types of AI techniques [16] (Figure 1).
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ML, a subset of AI, shares several similarities with the traditional statistical approach.
It is able to discriminate between correct and incorrect categorizations and is oriented
towards prediction, through the use of variable algorithms; it includes supervised and
unsupervised learning. Supervised learning uses algorithms such as random forests (RF),
decision trees (DT), k-nearest neighbor (KNN) or support vector machines (SVMs), to
improve predictions (especially in classification or regression) by finding relationships
among variables. Unsupervised learning uses algorithms that investigate hidden/natural
patterns or relations within the data (especially in clustering, extraction and visualization)
without any pre-existing labels [17–22].

ML is particularly helpful in processing dietary patterns, macronutrient and food
intake data with the use of algorithms like RF, SVM or KNN. For example, ML has been
applied to predict malnutrition in children under 5 years and to calculate the risk factors
for overweight or obesity in prematurely born children [23,24]. KNN and RF algorithms
are able to calculate, on the basis of dietary patterns, long-term cardiometabolic risk by
using standard statistical models [25]. Similarly, RF algorithms are being used to improve
the cardiovascular mortality risk prediction [26].

On the contrary, DL, a subset of ML that deals with creating self-learning systems,
is based on a neural network of algorithms, without the need to process structured data;
in fact, a categorization from the outside is not necessary [27]. It is the system itself that
identifies the distinctive characteristics in the data and controls whether the classifications
need to be modified. In addition, unlike ML, which works with a controllable database and
is used for simple routine tasks, DL requires more than 1 million data (e.g., texts, images,
social media) to be able to provide desirable results. For this reason, its fields of application
are more complex and less used [28].

Finally, NLP, usually used for text analysis, for translation and for speech recognition,
can answer questions, paraphrase or detect meaning and context [29]; it is especially used
to collect and organize information from medical files, blogs and social media [18].

4. Artificial Intelligence in the Management of Nutrition-Related Diseases

Recently, AI has become prominent as a powerful tool that aims to break down
the “gold standard” lifestyle of people. People tend to increasingly procrastinate and
underestimate their health problems, such as diabetes, obesity and other chronic and non-
communicable disorders which, if ignored, can cause permanent damage. New technology
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systems can participate in this process by allowing real-time access and delivery to treat-
ment, helping overcome these barriers through the use of smartphones, websites, video
calls, social media and systems based on algorithms of medium or high complexity. There-
fore, AI can be really helpful in disease management, in order to control its progression
and prevent complications. Although dozens of AI-based medical devices using AI/ML
technology exist and are especially used in the field of radiology, oncology and cardiology,
the devices approved and used in the field of nutrition-related diseases are still scarce.

4.1. Artificial Intelligence in Diabetes

Diabetes is a complex metabolic condition characterized by high levels of blood glucose
and serious clinical complications, whose prevalence is expected to rise worldwide from
537 million in 2021 to 783 million in 2045. The classification of diabetes identifies three main
types: type 1, type 2 and gestational type, with type 2 > 90% of the total prevalence [30].

In general, for the diagnosis and treatment of diabetes, the clinical application of
AI can be divided into four main sectors: (i) retinal screening; (ii) support for clinical
diagnosis; (iii) management tools; and (iv) risk evaluation [31]. Briefly, regarding the first
group, AI is already being used to screen and diagnose retinopathy, as demonstrated, for
example, by the recently developed algorithm based on deep ML with high specificity and
sensitivity for identifying diabetic retinopathy from the fundus images of adult patients [32].
Consequently, using AI in diabetes can increase the prevention, detection and prompt
treatment of this common complication, also integrating the continuous monitoring of
parameters that can instantly indicate blood glucose fluctuation with new generation
glucometers. The second group includes systems that send data collected from continuous
glucose monitoring to a cloud server and utilizes AI to remotely decide and suggest the
appropriate adjustment for insulin dose; the physicians can then evaluate the suggestion
and, if necessary, alert patients [31]. The third group includes tools that help patients to
manage their disease themselves, and through which AI collects their data and possibly
notifies the physicians to check and ameliorate the control of patient blood glucose. For
example, in the Guardian Connect System, AI predicts hypoglycemia 1 h in advance on
the basis of data received from continuous glucose monitoring and warning the patient
who can take, for example, glucose tablets in time [31]. Finally, the last group involves ML
technologies that are able to identify subjects at high risk of developing diabetes, even if
ML does not currently outperform the conventional statistical models already employed to
calculate the risk of diabetes onset, so that more studies are needed in this regard [31].

AI technologies can be applied for the management of the different types of diabetes.
For example, regarding type 1 diabetes, a new generation of closed-loop (CL) systems,
based on AI/ML algorithms that are able to continuously evaluate plasma glucose and
insulin levels as well as deliver appropriate doses of insulin, has been recently developed;
these systems enable the instant prediction of both hyperglycemic and hypoglycemic
fluctuation [33]. The best-known systems used in type 1 diabetes include the Cambridge
Simulator, the UVA-Padova simulator and the ABBA system, that are all important tools for
evaluating insulin absorption, levels and effects on target cells, glucose uptake, availability
and levels, prandial carbohydrate absorption and for delivering the most appropriate
dose of insulin [34–37]. In young/adolescent patients affected by type 1 diabetes, the
use of these CL insulin delivery systems has been associated with: (i) a reduction in the
occurrence of hypoglycemia without increasing the glucose excursions related to meals [38];
(ii) an improvement in the time spent in the range of 70–180 mg/dL, a decrease in the
time under (<70 mg/dL) and above (>180 mg/dL) the range and a reduction in overnight
hypoglycemia [39] and (iii) a decrease in the levels of glycated hemoglobin (HbA1c) and a
concomitant increase in the time spent in the range [40]. Altogether, these results suggest
the ability of these systems to improve glycemic control in young patients.

Regarding type 2 diabetes, different AI technologies have been proposed to improve
the management protocols, the tracking of patient outcomes and daily-life support for the
therapies [41–43]; some algorithms have also been developed to help physicians select the
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appropriate medication [44] as well as to aid patients in attending regular doctor visits [45].
These tools comprise mainly multiple ML techniques (bagging, Bayesian decision trees and
SVM) [46], k-means clustering analysis [47,48] and NLP methods [49]. All these studies
reported a general improvement of diabetic conditions and patient life quality, including
a decrease in the levels of HbA1c levels, an improvement of diabetes awareness and an
enhancement of patients’ skills in managing the diabetic disease.

AI could also be useful in pregnancy with diagnosed diabetes. Available technolo-
gies, like continuous subcutaneous insulin infusion or automated insulin delivery sys-
tems, have been found to ameliorate outcomes in pregnant users [50]. For example, in
gestational diabetes mellitus patients AI tools are being used for weight-management
counseling [51] or for clinical control (collecting biometric data, physical activity and food
intake) through mobile apps or a web support system [52,53], suggesting a general im-
provement in patient outcomes.

Finally, AI can also be applied in pre-diabetic conditions, where its use, essentially
based on a decision support system with reinforcement learning algorithms, has been
correlated with a reduction in the HbA1c level and weight, with a concomitant increase in
physical activity [54,55]. If prolonged for a long time, the application of AI could decrease
the onset and progression of diabetes in this high-risk population.

4.2. Artificial Intelligence in Obesity

Obesity is a clinical condition with a high prevalence and multifactorial etiology
characterized by an excessive increase in body weight, mainly caused by the increase in
adipose tissue that negatively affects the state of health [56]. Genetic predisposition has an
incision level of 20–25%, while the remaining percentage depends on individual, behavioral,
socioeconomic and psychological factors that can be partly modified by adopting a healthy
lifestyle and healthy eating habits, such as the abandonment of a sedentary life and a careful
choice in the consumption of meals. For its progressive expansion, especially in the western
world, this nutritional disorder is defined by the World Health Organization as a “global
epidemic” [57]. Nowadays, obesity is no longer considered a problem of the developed
world, because, thanks to the social, cultural and economic progress that occurred towards
the second half of the last century, people have established a secondary relationship with
food. They pay more attention to low cost and to quantity rather than to the quality of the
raw material, with an increasing trend shifted towards processed foods compared to fresh
foods such as fruits and vegetables. In general, women present a higher rate of obesity than
men, who conversely have a higher rate of being overweight. Obesity may increase the risk
of developing common non-communicable diseases, such as cardiovascular and metabolic
disorders, as well as some forms of tumor; additionally, it reduces the quality of life and
increases the risk of premature death [57].

Obesity is generally defined using a numerical parameter referred to as BMI, which
evaluates, in a generic way, the extent to which our weight is above or below the limit
threshold; in fact, it does not distinguish between fat mass and lean mass, and the dis-
tribution of body fat is not a relevant factor in this case. A subject is defined as obese
if their body weight exceeds their ideal weight by 20% [58]. Another parameter used to
assess abdominal obesity is the waist circumference/hip circumference ratio (WHR) which
should be less than 0.9 in men and 0.85 in women. In the first case, if the ratio is high, we
talk about android or “apple” obesity, since the fat is mainly localized at the abdominal
level; in the second case, we talk about gynoid or “pear” obesity, where the fat is mainly
concentrated in the hips and buttocks. In addition, the circumference of the waist should
not exceed 88 cm in women and 102 cm in men, according to the European guidelines [59].
Untreated obesity during the childhood and adolescence period represents a risk factor
for the onset in adulthood of a wide variety of pathological conditions (cardiovascular
diseases, diabetes, gastrointestinal alterations, metabolic syndrome, atherosclerosis, dysp-
nea, osteoarthritis, hepatic steatosis, cancer) accompanied by an increased risk of mortality.
The frequency of childhood obesity is constantly increasing in populations with a high
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socio-economic level, with 38.2 million 5-year-old children who are overweight or obese in
western countries in 2019 [60].

In order to prevent obesity during childhood and adolescence, ML models, thanks to
their predictive power, are becoming potential tools capable of generating very accurate
predictions, modeling complex and nonlinear relationships between variables and process-
ing high-dimensional data in this area [61]. One of the advantages of using ML models is
to make improvements from a socio-economic point of view to the populations that are at
high risk. These predictive models permit a more personalized and economic approach
and allow one to classify the risk factors in order of importance, with the aim of designing
targeted interventions to prevent and counteract this serious pathology. Thus, through
logistic regression, it is possible to quantify the risk of a subject becoming overweight or
obese in certain age groups. This has been demonstrated over the years by several studies,
such as the work carried out in Germany by Pei et al. [62], or the study by Hammond et al.
conducted in New York [63].

To ensure safe prevention, it is necessary to identify in the early stages of age which
children are at risk of being overweight. One of the factors that affects the health of the
unborn child and childhood obesity is closely linked to the state of health of the mother
before and after pregnancy. An unhealthy lifestyle, with the habit of smoking and alcohol,
an unbalanced diet with a prevalence of highly processed and unnatural foods, an irregular
sleep–wake cycle, a poor level of daily physical activity and short breastfeeding are all
determinants associated with the development of obesity in childhood. Until now, very
few studies have evaluated the potential application of ML to predict or prevent childhood
obesity. For example, in a study carried out on 3121 children, a predictive model was
developed considering some determinants described above and collecting scores derived
from anthropometric data on weight and height taken during the first 5 years of the
children’s life [62]. Family income and parental level of education were also included
as covariants. The results of the prediction model were presented as linear regression
coefficients (β) for standardized BMI and as an odds ratio (OR) for overweight (yes/no),
with the corresponding confidence intervals (CI) of 95%. The results showed that the main
risk factors predicting whether a 10-year-old child would be overweight were essentially
a high birth weight, high BMI standardized in the first 60–64 months of life (5 years of
life), parental education, family income and maternal smoking status during pregnancy.
Thus, children with excessive weight at both birth and 5 years of age have a greater chance
of being overweight at the age of 10; this possibility is aggravated by maternal smoking
during pregnancy, low family income and a low level of parental education. In addition, the
study found that children who came from a family with a high level of parental education
were less likely to be overweight, reducing this risk at the tenth year of life [62].

Unlike predictive approaches that rely on traditional statistical methods, ML models
allow greater completeness in data collection at a low cost. For example, in a recent study,
data from electronic health records (EHRs) were collected in order to prevent the onset
of obesity during critical periods of child development, from pre-pregnancy to 2 years of
life [63]. The EHR data, based on 3449 children, covered both those related to the child
and those related to the mother, such as race, nationality, ethnicity, country of origin, home
address, languages spoken, vital signs, drugs taken, analyses carried out by laboratory tests
and medical examinations (e.g., diabetes mellitus in pregnancy, diabetes mellitus without
complications, hypertension in pregnancy, complications at the first year of age). To predict
childhood obesity, 156 analyses were carried out using the LASSO logistic regression model,
a random forest and a gradient boosting classifier, through which the median value of the
BMI was normalized and the classification techniques forecast the dichotomous outcome
of obesity status: obese/non-obese were obtained. Results found that the main risk factors
for the development of obesity in the first 5 years are an elevated weight and BMI during
the first 2 years of life. In fact, by studying the different individual characteristics, the BMI
and the weight for length Z-score (average 19–24 months) and the BMI and the weight for
length Z-score (latest available reading) were predominantly associated with the outcomes
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of obesity at the age of 5 for both female and male subjects [63]. These results confirmed
that EHR and ML models are useful tools to prevent obesity in those children who have all
the high-risk variables. Therefore, through ML algorithms it is possible to identify high-risk
children who are likely to develop obesity and, in this sense, could be specifically selected
for future interventions.

Depending on the availability of data, it is possible to ensure not only prediction or
prevention, but also the monitoring and treatment of obese subjects. If the availability
of data is limited, sensors, her and smartphone apps can be used for monitoring. In the
latter case, for example, a study was conducted on 69 adult men randomly divided into
2 groups (standard group and mobile group) and treated for 12 months [64]. Volunteers
belonging to the standard group, and subjects belonging to the mobile group received
personalized digital assistance with coaching calls (twice a week for 6 months), to register
the consumption of food, weight and physical activity. The participants of the mobile group
lost about 3.9 kg more than those belonging to the standard group, highlighting the fact
that the combination of mobile technology and the addition of telephone coaching can
represent a solution to improve weight loss in obese subjects.

Conversely, for a larger dataset, ML methods provide more sophisticated models to
predict obesity-related risks and outcomes. Besides linear and logistic regression, other
common ML methods include decision tree analysis, artificial neural networks, deep learn-
ing and reinforcement learning, all applied for obesity management. Logistic regression
and decision tree analysis are exclusively used for classification, while artificial neural
networks and deep learning can not only allow classification, but can also be applied to
predict a continuous variable. For example, decision tree analysis is a predictive algorithm
that uses a combination of categorical input data and continuous values with the aim of
assigning samples to specific classes. They have been used in several studies to predict
which patients, among those who had undergone bariatric surgery, had a higher chance
of long-term post-operative success [65] and to predict childhood obesity in high-risk
age groups [66].

Finally, the artificial neural network is a mathematical representation of the architecture
of the human neurological system and is used for the prediction of both numerical and cate-
gorical continuous data. Artificial neural networks are self-adaptive models that can adapt
their data architecture without specifying the form, both functional and distributive [67].
Studies show that the use of artificial neural networks is a tool capable of making predic-
tions on the success of bariatric surgery to which obese patients are subjected [65,68]. Even
today its use in the field of obesity is rather limited, it could become an important resource
to improve and enhance the chances of success in long-term weight loss.

5. Conclusions and Future Directions

In conclusion, the advances made in the development of AI have led to more and
more sophisticated applications and tools that enable the performance of outcome-based
research and assess trends in care delivery. AI has started to be used to evaluate biological
pathways, to make diagnosis, to predict medical outcomes through devices like mobile
phones, smartwatches and others, leading to a more personalized collection of data and
feedback from customers in real time [69]. AI systems could create the possibility of
improving nutrition assessments, collecting and evaluating data about dietary intake and
providing diets that fit one’s personal context and behaviors. Also, AI devices may permit
the creation of practical and precise feedback that is essential in clinical nutrition.

In the future, the adoption of AI could open the avenue for the development of
personalized nutrition and the enhancement of the support care system that could lead to
better health at the individual and national levels. Indeed, there is growing awareness that,
at a nutritional level, the approaches suggested for the general population do not always
address the needs of each individual, since each person may respond in a different way
to food nutrients, because of different factors, including age, gender, microbiota, genetics,
metabolism and lifestyle habits, among others [70,71]. Therefore, from the individual point
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of view, AI technologies could speed up the objective to reach good health well-being, by
making precise customized dietary recommendations and encouraging the development of
both predictive and preventive guidelines to promote health and manage diseases in a better
way. From the point of view of the national healthcare system, AI could help physicians in
selecting the appropriate therapy, in adjusting the dose in time and whenever necessary,
as well as in identifying patients who need more exhaustive or urgent examinations from
those who have good metabolic control; additionally, AI could lighten the work load of
physicians, by reducing the time spent in face-to-face visits, as well as decrease the waiting
list in medical centers, also leading to a reduction in general healthcare costs. Therefore,
digital technologies and AI are promising tools for health promotion and disease prevention
and management, but some issues still need to be addressed, mainly those connected with
patient privacy; thus, close collaboration between healthcare institutions and research is
desirable in the future.
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