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Abstract: Automated dental imaging interpretation is one of the most prolific areas of research
using artificial intelligence. X-ray imaging systems have enabled dental clinicians to identify dental
diseases. However, the manual process of dental disease assessment is tedious and error-prone when
diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer
vision techniques, as well as machine and deep learning models for dental disease diagnoses using
X-ray imagery. In this regard, a lightweight Mask-RCNN model is proposed for periapical disease
detection. The proposed model is constructed in two parts: a lightweight modified MobileNet-v2
backbone and region-based network (RPN) are proposed for periapical disease localization on a
small dataset. To measure the effectiveness of the proposed model, the lightweight Mask-RCNN
is evaluated on a custom annotated dataset comprising images of five different types of periapical
lesions. The results reveal that the model can detect and localize periapical lesions with an overall
accuracy of 94%, a mean average precision of 85%, and a mean insection over a union of 71.0%.
The proposed model improves the detection, classification, and localization accuracy significantly
using a smaller number of images compared to existing methods and outperforms state-of-the-art
approaches.

Keywords: Mask-RCNN; MobileNet; deep learning; dental disease detection

1. Introduction

Over the past decade, artificial intelligence (AI) has made remarkable contributions to
various subdisciplines falling under the category of dentistry, specifically periodontology.
Different studies have explored dental disease detection, localization, classification, and
segmentation within the dental domain (e.g., [1]). However, few studies have explored
dental disease localization as discussed in the literature. From the existing literature,
several challenges are found regarding dental carious region localization. A comprehensive
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overview of existing studies is presented in Table 1. Further exploration is required to
propose detection and localization approaches for dental caries diagnosis in real time.

Table 1. Strengths and weaknesses of baseline dental lesion localization models.

Study Image
Modality Task Method Strengths Weaknesses

Jader et al.,
2018 [2]

Panoramic
images

Localize missing
teeth

M-RCNN with
ResNet-101
backbone

The model is helpful in identifying
missing or broken teeth with an accuracy
of 98%

- Highly variable data
- Other metrics i.e., mAP, IoU
are not reported for comparison

Anantharaman
et al., 2018 [3] Colored images Detect and segment

cold/canker sores
M-RCNN with
ResNet-101
backbone

The model is helpful in performing pixel-
wise segmentation of visible light images
of oral cavity with accuracy of 74.4%

- Sparse dataset
- Other metrics i.e, mAP, IoU,
precision, F1-score, recall are
not reported for comparison

Moutselos et al.,
2019 [4] Colored images Localize and classify

caries occlusal
surfaces

M-RCNN with FCN
and ResNet-101
backbone

The model provided encouraging
performance for automatically selecting
image texture features and detect lesions
without additional pre-processing
actions

- The computational complexity
is not reported

Chen et al., 2019 [5] Periapical
radiographs

Teeth localization
and numbering

Faster-RCNN
The model detects and numbers teeth
with recall and precision exceeding
90% on manually annotated dataset

- The model suffers in numbering
teeth in complicated cases such
as heavily decayed teeth

Laishram &
Thongam, 2020 [6]

Panoramic
radiographs

Localize and classify
different type of
teeth

Faster-RCNN
built on RPN and
ODN

The model is helpful in detecting
different types of teeth achieving mean
average precision (mAP) of 91.40%
and accuracy of 91.03%

- Limited dataset in terms of size

Zhu et al., 2022 [7] Periapical
radiographs

Detection of carious
teeth

Faster-RCNN with
pretrained ResNet-50

The model is helpful in with an average
precision of 73.49%, F1-score of 0.68
with sample detection speed of 0.1923

- It suffers from computational
compexity
- The model does not identify
caries type

Rashid et al.,
2022 [8]

Mixed images
(colored and
periapical
radiographic
images)

Detect and localize
dental carious regions

Hybrid M-RCNN
The model was helpful in localizing
dental carious regions with a precision
of 81.02% and accuracy of 95.75%

- Limited dataset in terms of size
- The model does not identify
caries type for both colored and
x-ray image

To classify enamel, dentin, and pulp caries, Oprea et al., proposed rule-based classifi-
cation. The authors were able to categorize regions as dentin caries sized over 2 mm [9].
Another rule-based approach based on the gradient histogram and threshold was proposed
by ALbahbah and fellow authors on panoramic radiographs to extract and segment de-
cayed and normal teeth [10]. Lin et al., investigated the level segmentation method based
using SVM (support vector machine), KNN (K nearest neighbor), and a Bayesian classifier
for localizing alveolar bone loss [11]. Results show that the model can localize alveolar
bone loss with higher classification accuracy. A cluster-based segmentation technique was
proposed by Datta and Chaki to detect dental cavities in [12]. The proposed model utilized
a Wiener filter to extract caries lesions followed by region segmentation to monitor the
lesion size and growth. To detect and classify proximal carious and non-carious lesions
on panoramic radiographs, Na’am et al., explored multiple morphological gradient-based
image processing methods on images with manually cropped regions [13].

Different deep learning approaches have been employed by researchers to pave way
for more efficient and effective methods to diagnose dental caries. To classify carious and
non-carious teeth on a small labeled dataset, a pre-trained CNN was utilized by Prajapati et
al. [14]. The model was able to classify dental caries, periodontitis, and periapical infection.
Lee et al. utilized a deep CNN to diagnose and classify caries using 3000 periapical
radiographs [15]. The model achieved an AUC of 0.91 for premolar, 0.89 for molar, and 0.84
for both premolar and molar models. For the identification of dental caries, Cantu et al.,
investigated U-Net on bitewing radiographs [16]. It was found that segmentation-based
models possess the potential to aid dental clinicians in detecting and locating dental caries
more efficiently. For the identification of endo-perio lesions on periapical radiographs,
Sajjad et al., investigated AlexNet, for which the model achieved an accuracy of 98% [17].
For early identification of dental caries, Kumari et al., preprocessed bitewing radiographic
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images using contrast limited adaptive histogram equalization (CLAHE) and noise filtering
followed by a meta-heuristic based ResneXt RNN (recurrent neural network) [18].

Radiological examinations help dental clinicians in the identification of teeth abnormal-
ities, cysts, infections, and infections. However, manual examinations are time-consuming
and rely solely on a specialist’s opinion which may bring differences in the diagnosis.
Different methods have been employed by researchers in recent years mainly relying on
boundary-based, region-based [19], cluster-based, and threshold-based methods [11]. As
the first step, Jader et al., employed an RCNN for the segmentation of caries and the
detection of missing teeth on buccal images. The results indicated that deep learning-based
instance segmentation has the potential to automate the process of caries detection and
medical report generation [2].

The faster region-based convolutional neural network (Faster-RCNN), which extends
the Fast-RCNN is utilized to localize teeth lesions [5]. The model achieves both a recall and
precision of above 90%, however, the model suffers in numbering the teeth in complicated
cases. A Faster-RCNN built on the region proposal network (RPN) and object detection
network (ODN) detected different types of teeth achieving a mean average precision (mAP)
of 91.40% and an accuracy of 91.03% [6]. However, the model was applied to a small dataset
and performance can not be generalized. Another variant of Faster-RCNN pre-trained on
ResNet-50 was employed in [7] for the detection of carious teeth, achieving a precision of
73.49% and an F1 score of 0.68. The model, however, does not identify the type of caries
and only localizes the caries region.

An M-RCNN, which extends the Faster-RCNN with pre-trained ResNet-101 was
found to be helpful in the identification of missing or broken teeth, achieving an accuracy
of 98% [2]. However, segmentation performance metrics were not reported in the study.
For pixel-wise segmentation of visible light images for identification of oral cavities [3],
M-RCNN achieves an accuracy of 74.4%. However, the dataset is sparse and other relevant
performance metrics have not been reported for comparison. In another attempt, an M-
RCNN with a fully convolutional network (FCN) and a ResNet-101 backbone [4] was
investigated to localize occlusal surface caries on a limited dataset, but the computational
complexity was not reported. In a recent attempt, a hybrid M-RCNN [8] was employed to
identify dental caries on mixed images achieving an average precision of 81.02% and an
accuracy of 95.75%, however, the model does not identify caries type for both colored and
X-ray images. Additionally, an M-RCNN with ResNet as its backbone requires a substantial
amount of calculations to learn and analyze, and the training process for M-RCNN requires
high-performance computational resources such as GPU and memory [20].

There are very few studies focusing on usable carious region detection and localization
on periapical radiographs. The existing approaches for dental lesion localization provide the
key knowledge, which can be adopted by researchers to focus on implementing improved
segmentation and localization approaches for dental caries. This research aims to

• Put forward an automated deep learning-based dental caries localization and seg-
mentation model to identify the type of periapical lesion and localize the lesion on
periapical radiographs,

• Propose a lightweight MobileNet-v2 with additional layers to enhance the perfor-
mance of the Mask-RCNN on a small periapical dataset,

• Preprocess low-resolution images to obtain better disease diagnosis performance,
• Provide a comprehensive evaluation and comparison of state-of-the-art deep learning-

based segmentation and localization methods with the proposed model,
• Introduce an annotated dental lesion dataset to identify periapical lesions, considering

the limitation of data availability.

The remainder of the paper is organized into four sections. The proposed methodology
is described in Section 2. Section 3 discusses the experimental results, while the conclusion
is provided at the end.
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2. Proposed Methodology for Periapical Disease Detection, Classification, and
Localization

The workflow of the proposed dental lesion detection process is shown in Figure 1.
First, the collected annotated images are preprocessed to remove noise, enhance contrast,
and improve the resolution of the images. Next, the preprocessed images are used by the
proposed lightweight backbone network for feature extraction. The extracted feature maps
are then forwarded to the RPN that generates region proposals using the feature maps and
forwards them to the region of interest (ROI) align block. This block processes both the
feature maps and region proposals and classifies the input image using fully connected
layers. The model further exhibits the bounding box on the identified region so it can be
visualized.

Figure 1. Workflow diagram of the proposed approach.

2.1. Dataset Analysis and Preprocessing

The dataset employed for this study was obtained from the Armed Forces Institute
of Dentistry, Rawalpindi Pakistan. A total of 534 periapical images were collected, out of
which 516 were labeled by experienced radiologists and dentists. The dataset distribution
is shown in Figure 2. The dataset includes radiographs with only periapical lesions.

Inclusion criteria were teeth surrounded by alveolar bone in either the upper or lower
jaws and radiographs with signs of periapical lesions. The exclusion criteria comprised
teeth with radiographic evidence of any other lesion, radiographs that included both upper
and lower jaws, radiographs rated as unacceptable due to positioning and processing, and
issues with exposure and visibility.

Figure 2. Dataset distribution.

The ground truth of the obtained images was generated using a VGG Image Annotator
(VIA) tool [21]. Five types of lesions were localized manually using bounding polygons
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around the carious regions. The annotations were saved in a JSON file, where each mask
represents a set of polygon points. The pixels inside the bounding polygons corresponding
to lesions were assigned values of 1 for primary endodontic, 2 for primary endo with
secondary perio, 3 for primary periodontal, 4 for primary perio with secondary endo, and
5 for true combined, while the rest of the pixels were regarded as background with a value
of 0. For each labeled data point, there is corresponding instance information as illustrated
in Figure 3.

Figure 3. Image labeling process using the VIA tool.

The annotated image dataset is preprocessed to improve image quality and remove
noise in the radiographic images. The influence of image preprocessing has been analyzed
in several studies. Tian et al., found that image enhancement leads to better performance
of Fast-RCNN for detection tasks [22]. Chen et al., evaluated image enhancement on
RGB images followed by a deep learning-based method for accurate prediction of retinal
blood vessels [23]. In a more recent attempt, Pannetta et al. [24] tested different image
enhancement techniques such as histogram equalization (HE) [25], contrast limited adaptive
histogram equalization (CLAHE) [26], dynamic fuzzy histogram equalization (DFHE) [27],
guided filtering (GF) [28], and bi-histogram equalization (BBHE) [29] on a medical image
dataset. It was found that CLAHE performs better in comparison to other techniques
to enhance the contrast of the images. This study utilizes CLAHE to enhance image
contrast to improve the performance of the proposed lightweight disease detection and
localization model.

2.2. Lightweight Mask RCNN

An M-RCNN requires higher computing resources for training in order to learn and an-
alyze substantial information obtained from medical imagery. To reduce the computational
requirements of M-RCNN and ensure that it operates properly, a lightweight backbone
network is utilized with the M-RCNN to classify five types of endo-perio lesions. The focus
of this research is to propose a lightweight M-RCNN model that can operate on platforms
with less computational resources such as graphics processing unit (GPU) and memory
and provide performance similar to that of the original M-RCNN [20].

For this purpose, a lightweight network MobileNet-v3 is utilized for feature extraction
followed by a depthwise separable convolutional layer proceeding a tiny RPN to extract
candidate regions with potential targets [30]. The RPN generates anchor boxes for each
classified object using the softmax activation function. The extracted proposal regions,
along with feature maps, are applied to ROI alignment to locate all the feature map areas.
ROI alignment wraps different feature vectors, which are then applied to mask generation
and classification. The fully connected layer provides classification and bounding boxes for
each identified endo-perio lesion. The masks are generated by the convolution layer for
each object at the pixel level. The proposed framework for the lightweight M-RCNN for
dental lesion classification and localization is depicted in Figure 4.
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Figure 4. Architecture of the lightweight M-RCNN modified with MobileNet-v2 as its backbone.

2.2.1. Backbone Network

To reduce the number of parameters in the proposed lightweight M-RCNN, MobileNet-
v2 is employed, which extends MobileNet-v1 and is faster with 30% fewer parameters [31].
In MobileNet-v2 [32], an inverted residual structure is introduced to reduce complexity
and increase the speed. The employed backbone network comprises two layers with the
first layer of 1 × 1 pointwise convolution with ReLu6 and a depthwise convolutional
layer. The inverted design of the employed MobileNet-v2 makes the model considerably
more memory efficient and improves overall performance. The structure of the employed
MobileNet-v2 is illustrated in Figure 5.

Figure 5. Proposed backbone network (Modified MobileNet-v2).

For the classification of endo-perio lesions, MobileNet-v2 modified with additional
layers, as proposed by Kolonne et al. [33], is utilized in this work. To avoid impairment of
already learned features, the base layers are frozen. Additionally, the fully connected layer
of MobileNet-v2 is replaced with a global average pooling layer which averages the feature
map in the convolutional layers. Additionally, a dropout layer is added to minimize the
model from overfitting. Finally, a dense layer is added for the classification of endo-perio
lesions. The model weights are saved after fine-tuning the hyperparameters of the model
to improve the classification results. As this is a multi-class classification problem, softmax
is used as an activation function in the output layer to predict the probability for each of
the five classes and is defined below

σ(z) =
1

1 + e−z (1)
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2.2.2. Region Proposal Network

Once the multi-scale features are extracted using the proposed lightweight backbone
network, the feature maps are passed onto the RPN. The RPN performs matching of
detected regions to the ground truth. The region proposals are predicted simultaneously in
each sliding window, where k represents the maximum possible proposals at each location.
Additionally, k proposals are parameterized for each proposal to form anchors [34]. Due to
the small size of the regions to be localized in the periapical radiographs, anchor sizes and
anchor aspect ratios are based on extensive experimentation to adequately fit the task at
hand [35]. The anchors are matched to the ground truth regarding the intersection over
union (IoU) between the anchor and the ground truth. The anchors are linked to the ground
truth boxes and are assigned to the foreground once the IoU exceeds the defined threshold,
which is 0.7 in this study. If the IoU is below the defined threshold, the identified region
is ignored. The proposal regions with an IoU higher than the threshold are considered as
foreground. This block provides several ROIs that are then utilized by ROI alignment to
identify where these regions of interest lie in the feature maps. The structure diagram of
the RPN is illustrated below in Figure 6.

Figure 6. Structural diagram of the region proposal network.

2.2.3. Region of Interest Alignment

The ROI align block extracts feature vectors from the feature map based on the regions
of interest identified by the RPN [36]. These feature vectors are turned into fixed-sized
tensors to be processed further. The ROI is scaled with their corresponding areas based on
the regions’ location, scales, and aspect ratios. To ensure uniformity, the samples are aligned
over feature map areas. After generating the region proposals, the next block involves
making predictions by taking ground truth boxes, feature maps generated by the proposed
lightweight backbone network, and region proposals generated by the RPN. Additionally,
the results represented by ROI feature maps are then processed by two parallel branches:
disease detection and mask generation.

• Disease Detection Head: Using the ROI feature map, the disease category is predicted
along with the refined instance boundary box. This branch contains two fully con-
nected (FC) layers to map the feature vector to the classes and instance bounding box
coordinates.

• Mask Generation Head: The ROI feature map is fed into a transposed convolutional
layer followed by another convolutional layer. The segmentation masks are generated
for the classes and the output mask is selected according to the class prediction
provided by the disease detection branch.
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2.3. Loss Function

A multiclass loss function for the proposed lightweight Mask-RCNN is used, which
combines the loss of classification, localization, and segmentation mask and is calculated as
shown in Equation (2)

L = Lcls + Lbox + Lmask (2)

where Lcls and Lbox are similar to the Faster-RCNN and are used as loss functions in both
BBox regression and classification. Additionally, Lmask generates a mask with dimensions
K × m × m for each ROI extracted after the RPN and classifies each pixel for corresponding
classes and K represents the number of classes to be classified, which is five in this case.

2.4. Performance Measure

The performance of the proposed model is measured based on different performance
indicators. For the evaluation of the model’s classification, classification accuracy, sensitiv-
ity, and specificity are chosen. The area under the receiving operating characteristic curve
(AUC). To detect and evaluate the detection performance of the proposed model, mean
average precision (mAP), mean average recall (mAR), and F1 score are chosen. Average
precision (AP) is calculated for each class and then the average is taken over N classes
to calculate mAP [37]. A trade-off between precision and recall is considered along with
both false positive (FP) and false negative (FN) results. The calculation of mAR is similar
to mAP, however, the recall for mAR is calculated for different IoU thresholds [38] and is
calculated as two times the area under the recall IoU curve averaged over 241 IoUs, ranging
between 0.5 and 1. After calculating mAP and mAR, the F1-score is calculated using mAP
and mAR, respectively.

3. Experiments and Results

For comparison, the proposed Mask-RCNN is based on a lightweight MobileNet-v2,
and the base RCNN is trained under the same environment. In the collected dataset, each
image belongs to one of the disease classes. The custom dataset is used to train the proposed
model. The images within the dataset are divided as 80% for training, 10% for validation,
and the remaining 10% for testing. The images within the dataset belong to one of the
disease types

• Primary endo with secondary perio,
• Primary periodontal,
• Primary perio with secondary endo,
• Primary endodontic, and
• True combined

To reduce the computational time and increase the efficiency of Mask-RCNN, a modi-
fied lightweight pre-trained Mobilenet-v2 is employed as the backbone network of Mask-
RCNN. Different values for hyperparameters are employed to see the performance of the
proposed model on the disease detection dataset. To ensure an effective comparative exper-
iment, the hyperparameters for testing different backbone networks with Mask-RCNN are
kept consistent. The following subsections explain the experimental settings, the ablation
experiment conducted to see how the proposed model performs with different backbone
networks, and the performance evaluation of the proposed model on the test dataset.

3.1. Experiment Setting

For conducting experiments, a laptop equipped with an Intel i7-1165G7 processor
(2.80 GHz), and 8GB RAM is utilized. Additionally, the code was implemented on Google
Colab equipped with Python 3.5, Tensorflow 1.14.0, and Keras 2.2.5. The configurations
employed in the implementation of the model are shown in Table 2.
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Table 2. Parameter configuration for this experiment.

Weight Decay Learning Rate Min Detect Confidence Epoch Batch Size

0.0001 0.001 0.7 50 2

Validation Steps Steps per Epoch Learning Momentum RPN Anchor Scale BBOX Standard Deviation

50 200 0.9 (8, 16, 64, 128, 256) [0.1 0.1 0.2 0.2]

3.2. Dataset Preprocessing

To enhance the small details, local contrast, and texture of medical images, CLAHE
[39] is used. Different tile regions of the image based on the histogram are computed
using CLAHE. The local details of the radiograph are enhanced by limiting histogram
amplification and clipping of the histogram. Additionally, CLAHE allows reducing over-
amplification of noise within X-ray images and serves as a better alternative for image
enhancement compared to manual delineation methods [40]. The process of CLAHE is
carried out in two steps. First, the image is divided into non-overlapping regions that are
equal in size followed by obtaining the clip limit for the clipping histogram. In the second
step, the histogram is redistributed so that the height remains under the clip limit. The
results obtained using CLAHE are illustrated in Figure 7.

Figure 7. Preprocessed image sample using CLAHE. The left image is the original image, the middle
image is color equalized image while the right image is the final CLAHE image.

After the image has been preprocessed, the mask generated for the images from the
JSON file in the collected dataset is overlaid on the original images. A visualization of the
mask predicted using the proposed M-RCNN on the collected disease dataset is illustrated
in Figure 8.

Figure 8. Mask overlaid on the original image.
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3.3. Experiments

To further examine the effectiveness and contribution of the proposed method, ad-
ditional ablation experiments are conducted [41]. The aim of the ablation experiment is
to provide deeper insights into the improvements obtained by the proposed model. The
proposed model is built and trained using Tensorflow by Google US which is an open-
resource deep learning application programming interface (API). For comparison of the
backbone networks, the hyperparameters are kept consistent (optimizer ’Adam’ is chosen
with a learning rate of 0.0001 and loss function ’categorical cross entropy’). Additionally, to
prevent the model from overfitting, early stopping is applied. The results obtained from
the ablation studies are shown in Table 3. Additionally, the comparison of the experimental
results using different backbones is shown in Figure 9.

Table 3. Comparison of M-RCNN with different backbone networks.

Model Backbone Network Precision Recall F1-Score ROC AUC

Mask-RCNN

ResNet-50 [19] 0.82 0.83 0.78 0.614

ResNet-101 [42] 0.81 0.84 0.74 0.670

MobileNet-v2 [43] 0.86 0.87 0.84 0.721

Proposed Backbone Network 0.86 0.89 0.89 0.805

Figure 9. Main evaluation indicators for different backbone networks.

The performance of the base Mask-RCNN is evaluated with regard to the evaluation
metrics such as precision, recall, mAP, and AUC. It is evident from Table 3 that the proposed
modified lightweight Mobilenet-v2 performs accurately compared to other models like
ResNet-50 and ResNet-101 that are employed by the base Mask-RCNN, achieving an overall
precision of 0.86, recall of 0.89, mAP of 0.85, and ROC AUC of 0.805 for detection and
classification of five types of disease while reducing the number of parameters compared
to the base Mask-RCNN.

Additionally, the performance of the proposed model was evaluated based on well-
known performance indicators. The result of the proposed model for each classified disease
is shown in Table 4. The performance parameters indicate that the proposed backbone
network provides good performance for disease classification.
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Table 4. Comparison of performance indicators for each disease.

Class Accuracy Precision Recall F1-Score

Primary Endo with Secondary Perio 0.89 0.83 0.75 0.77

Primary Periodontal 0.96 0.80 1.00 0.75

Primary Perio with Secondary Endo 0.87 0.91 0.90 0.91

Primary Endodontic 0.92 0.94 0.86 0.89

True Combined 0.97 0.87 0.89 0.88

Average 0.93 0.86 0.89 0.89

3.4. Performance Evaluation

Different studies have employed an RCNN to segment and detect caries [2–4,7,18].
However, these methods provide less precision for detecting very small lesions within
a periapical radiograph. The proposed lightweight periapical lesion detection system is
able to detect very small periapical lesions (a difficult task for presently available AI-based
systems) with increased precision and is able to distinguish teeth with small lesions from
teeth without any lesions in a periapical radiograph. To verify the effectiveness of the model,
two performance indicators mAP and IoU are used. The results from Table 5 indicate that
the proposed Mask-RCNN with the lightweight modified MobileNet-v2 backbone network
and RPN-based region detection achieved an mAP of 0.85, which is higher compared to
other models. Mask-RCNN with ResNet-50 [18] achieves an mAP of 0.71, ResNet-101 [2,3]
achieves an mAP of 0.74, ResNet-101 with FCN-based region detection [4] has an mAP of
0.67 and Faster-RCNN with ResNet-50 [7] obtains an mAP of 0.80. Results suggest that the
proposed approach outperforms other models.

Table 5. Comparison of the measurement index of different networks for disease localization.

Model Variation Mean Average Precision
(mAP)

Mean Insection over Union
(mIoU)

Mask-RCNN

ResNet-50 [19] 0.71 0.70

ResNet-101 [2,3] 0.74 0.68

ResNet101 backbone
and FCN-based region
detection [4]

0.67 0.58

Faster RCNN ReNet-50 [7] 0.80 0.69

Mask-RCNN
Lightweight Modified
MobileNet-v2 backbone
with RPN-based region
detection

0.85 0.71

Comparison with Different Backbone Networks

To demonstrate the performance superiority of the proposed model, the previous
section discusses the experiments conducted to show the performance comparison of
different backbone networks with an M-RCNN based on consistent hyperparameters. The
results indicate that the proposed backbone network performs better than other state-of-
the-art networks employed as the backbone with M-RCNN. However, to further validate
the proposed model’s precision and accuracy, it is compared with the base M-RCNN,
ResNet-50, and ResNet-101 backbone networks. The proposed and comparison model is
tested on different periapical radiographic images.

For the evaluation of the proposed lightweight M-RCNN, the collected dataset is
divided into train, valid, and test sets. In the dataset, for comparison, the proposed model
is compared with the base M-RCNN using the ResNet-50 as a backbone network and



Healthcare 2023, 11, 347 12 of 16

M-RCNN using the ResNet-101 as a backbone network. The parameter configuration for
the experiment is shown in Table 2. For training, the learning rate was set to 0.01, which was
later adjusted to 0.001, the weight decay was set to 0.0001, while the learning momentum
was 0.9. In medical images, the localized regions are often smaller in size, so to fit the
disease regions more accurately in this study, the RPN anchor scale was set to (8,16, 64,
128, 256), and the BBOX standard deviation to [0.1 0.1 0.2 0.2]. The model is trained for 50
epochs, and due to the small dataset, the batch size was kept at 2 with 50 validation steps,
as well as 200 steps per epoch.

3.5. Comparison with Test Images

The proposed model accurately predicts and localizes the lesions as depicted in
Figures 10–14. The results indicate that the model makes predictions similar to that of the
annotated masks using the periapical radiographic images. Additionally, the proposed
model was evaluated based on performance indicators like precision, recall, F1 score,
and accuracy for each classified periodontal lesion. The obtained results indicate that the
proposed backbone network provides good performance for disease classification. All
the test images for the proposed study show a 95% confidence level indicating that the
database annotations are in the right direction.

Figure 10. Test performance for the localization of a ’Primary Endo and Secondary Perio’ lesion.

Authors: high definition figures are not available.

Figure 11. Test performance for the localization of a ’Primary Endodontic’ lesion.

Figure 12. Test performance for the localization of a ’Primary Perio and Secondary Endo’ lesion.
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Figure 13. Test performance for the localization of a ’Primary Periodontal’ lesion.

Figure 14. Test performance for the localization of ’True Combined’ lesions.

4. Conclusions and Future Directions

This study proposes a detection and localization network based on deep learning for
the classification and localization of different periodontal lesions in periapical radiographic
images. For feature map extraction, a lightweight modified MobileNet-v2 is utilized by
adding a global average pooling layer, as well as a dropout layer to enhance the performance
of the Mask-RCNN model followed by a region proposal network for the identification
of region proposals. The proposed mechanism provides multi-disease prediction by ob-
taining anchor boxes. Additionally, hyperparameters are fine-tuned to further improve
the performance of the model and acquire accurate predictions. The presented system
detects periapical lesions that are tough to recognize by other existing methods due to the
complex nature of radiographic images. The images are preprocessed using CLAHE to
enhance image contrast and reduce noise to gain better performance. The proposed model
is tested on a custom-made dataset with annotated disease labels. The masks are generated
using the provided annotations which are then utilized to train the model. The results
indicate that the proposed model is capable of enhanced identification and localization
of periapical disease with increased precision superior to other existing dental disease
localization solutions in radiographic images.

There are certain limitations to the proposed approach that need further research to
improve its performance. The dataset used to train the proposed model is small in terms
of size. In this work, image augmentation is used for better classification accuracy. Other
techniques such as generative adversarial networks can be employed to generate synthetic
data. Additionally, the model’s performance may improve further by employing a larger
annotated dataset with multiple lesions. This work can be extended further by embedding
the Internet of things (IoT) for data collection and making the proposed mechanism widely
accessible. The proposed model’s performance can be analyzed on other radiographic
datasets such as panoramic radiographs, colored images, and a hybrid dataset combining
both radiographic and colored images.
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