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Abstract: Cricket has a massive global following and is ranked as the second most popular sport
globally, with an estimated 2.5 billion fans. Batting requires quick decisions based on ball speed,
trajectory, fielder positions, etc. Recently, computer vision and machine learning techniques have
gained attention as potential tools to predict cricket strokes played by batters. This study presents a
cutting-edge approach to predicting batsman strokes using computer vision and machine learning.
The study analyzes eight strokes: pull, cut, cover drive, straight drive, backfoot punch, on drive, flick,
and sweep. The study uses the MediaPipe library to extract features from videos and several machine
learning and deep learning algorithms, including random forest (RF), support vector machine, k-
nearest neighbors, decision tree, linear regression, and long short-term memory to predict the strokes.
The study achieves an outstanding accuracy of 99.77% using the RF algorithm, outperforming the
other algorithms used in the study. The k-fold validation of the RF model is 95.0% with a standard
deviation of 0.07, highlighting the potential of computer vision and machine learning techniques for
predicting batsman strokes in cricket. The study’s results could help improve coaching techniques
and enhance batsmen’s performance in cricket, ultimately improving the game’s overall quality.

Keywords: batsman stroke prediction; computer vision; machine learning; random forest

1. Introduction

Human pose estimation (HPE) is a rapidly developing field of research that employs
computer vision techniques to estimate the positions of various human body components
in images or video footage. Despite recent advancements in computer vision, accurately
understanding human actions from visual data is still challenging. Human body move-
ments are often driven by unique activities, making identifying and categorizing them
accurately difficult. Understanding a person’s body pose is crucial for identifying their
actions, which is where HPE techniques come in handy. By recognizing and categorizing
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human body joints, such as the head, arms, and torso, HPE can capture coordinates for
each joint that define a person’s position [1].

In sports analytics, computer vision has become increasingly crucial for extracting
valuable insights from various forms of visual data [2]. Coaches and athletes can use com-
puter vision techniques to track and analyze movement patterns during games or practice
sessions, providing valuable performance feedback, identifying areas for improvement,
and making strategic decisions [3]. Additionally, computer vision can be used for activity
recognition, outcome prediction, and injury prevention. Using computer vision in sports
can revolutionize how we analyze and train athletes, improving their performance and
reducing the risk of injury.

Human pose estimation, in particular, is an exciting area of research within sports
analytics. With advancements in camera technology and computer vision algorithms,
tracking of athletes’ body movements during training and competition has become more
accurate over time [4]. This technology has significant applications in sports performance
analysis and injury prevention. Coaches and athletes can monitor progress, identify areas
for improvement, and prevent potential injuries by tracking body movements. Human pose
estimation can also provide insights into the biomechanics of athletic movements, helping
coaches and trainers optimize training methods and improve performance. The application
of human pose estimation in sports extends to various sports, including basketball, soccer,
and volleyball, making it an area of growing interest among researchers exploring its
potential for improving athletic performance and reducing the risk of injury.

Human pose estimation through computer vision has revolutionized how cricket
strokes are analyzed and predicted. By scrutinizing batsmen’s body posture and move-
ments during a game, coaches and analysts gain detailed insights into their batting tech-
niques and strategies [5]. Computer vision techniques are used to detect the orientation
of the bat and the position of the batsman’s body, enabling the identification of different
types of strokes played by the batsman. This data analysis helps recognize a batsman’s
strengths and weaknesses, empowering coaches and players to optimize their training
and gameplay. Furthermore, the integration of machine learning algorithms enables the
system to forecast the type of shot the batsman is likely to play based on their previous
performances [6]. Such predictions are instrumental in helping bowlers anticipate the
shot and modify their strategy accordingly. For instance, if the system forecasts that the
batsman is likely to play a cover drive, the bowler may adjust their line and length to make
it more difficult to play that shot. In conclusion, human pose estimation using computer
vision in cricket has exhibited enormous potential in enhancing performance analysis and
improving training methods. It enables coaches and players to make data-driven decisions,
ultimately improving their chances of winning. For accurate stroke prediction, the use of
machine learning methods holds significant importance. In this regard, this study adopts a
machine-learning approach for batsmen’s stroke prediction. This research makes several
significant contributions to the field:

• The study collects a comprehensive video dataset to classify different cricket strokes.
In contrast to previous studies that only use image datasets and cover a maximum of
five strokes, this study covers eight strokes, including ‘flick’, ‘back foot punch’, ‘pull’,
‘cut’, ‘cover drive’, ‘straight drive’, ‘on drive’, and ‘sweep’.

• A novel technique is employed to extract features from the video dataset. The Medi-
aPipe library extracts seventeen critical points of the human body. Based on these key
points, the batsman’s stroke is accurately classified.

• The study uses fine-tuned machine learning and deep learning models to classify
the strokes based on the extracted feature dataset. Cross-validation is employed to
validate the model’s performance, ensuring accurate results.

• This research provides a more comprehensive and accurate approach to classifying
cricket strokes. The novel technique that extracts features from video datasets and
utilizes state-of-the-art machine learning and deep learning models helps improve
classification accuracy.
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The organization of the study is as follows: Section 2 examines the relevant literature
studies on pose estimation and stroke recognition. Section 3 analyzes the workflow of
the proposed methodology. The video stroke dataset and the technique used for feature
extraction are also described. Results and discussions are presented in Section 4, and
Section 5 concludes this study.

2. Related Work

Machine learning models have witnessed a wide adoption in various fields like image
processing [7–9], text analysis [10,11], education [12,13], medical data analysis [14], etc.,
and sports is no exception. As a result, several studies have been presented involving the
use of machine learning techniques in sports [15–17].

Human pose estimation for predicting players’ performance in sports has been inves-
tigated recently, leading to several techniques and approaches in this field. A recent study
[18] proposed a batsman shorts estimation model to identify four different strokes in cricket:
glance, drive, block, and cut. The study utilized an image dataset of cricket strokes and
extracted feature vectors from head, feet, bat, and hand positions to train several models,
including a k-nearest neighbor, support vector machine, and convolutional neural network
(CNN)/AlexNet. The AlexNet model achieved the highest accuracy of 74.33%.

Along the same directions, ref. [19] extracted 15 critical data points from an image
dataset of different cricket strokes using MediaPipe. The dataset was used to develop a
mobile application to help batsmen improve their accuracy. The random forest (RF) model
achieved an F1 score of 87%. In another study [20], a dataset of 63 different backward and
forward cricket strokes was collected and classified using a long short-memory (LSTM)
network and bidirectional LSTM models. Both models achieved 100% accuracy. The
authors used motion vectors and three-dimensional (3D) match recognition to classify eight
angles of cricket strokes with high precision in [21].

Action recognition using deep learning was also applied to other sports like badminton,
table tennis, and high jump. For instance, in a recent study ([22]), the ResNet-18, VGG-16,
and GoogleNet models were used to classify badminton smashes. The ResNet-18 achieved
a high accuracy of 97.51% and 98.66% on training and testing, respectively. On the Jeston
Nano hardware, the GoogleNet model outperformed, achieving 83.04% and 97.0% accuracy
on training and testing, respectively. In one study ([23]), a new approach was utilized
to collect data on the footwork of badminton players. This study used a deep-learning
method to extract two-dimensional (2D) and 3D coordinates of the players’ shoes. The
model achieved an absolute positioning accuracy of 74%. These data provide valuable
insights into the players’ movements, which can help improve their performance on
the court.

Study [24] employed a novel technique to gather data for the classification of differ-
ent strokes played in table tennis. The authors collected a video dataset of the primary
11 strokes of 14 professional table tennis players and utilized CNN and other machine
learning models to classify the strokes. The CNN model achieved an impressive accuracy of
99.37%. Similarly, ref. [25] studied classifying different human actions using a custom CNN
model. The authors created two datasets, the first consisting of 10 actions obtained using
the Kinect v2 sensor and the second comprising seven subjects performing 20 other actions.
The model achieved 97.23% accuracy on the Kinect dataset and 87.1% on the MRS dataset.

A 13-layered conventional neural network called ‘short net’ is presented in [26] to
classify six different strokes. These strokes include ‘cut shot’, ‘straight drive’, ‘cover
drive’, ‘pull shot’, ‘leg glance shot’, and ‘scoop shot’. The model achieved good accuracy
with a minimum entropy score. All the previous work on cricket stroke recognization is
summarized in Table 1. Table 1 shows the dataset used in the previous studies, the stroke
they classified, and the outperforming model with the reported accuracy.
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Table 1. Summary of the literature review on cricket stroke prediction.

Refs. Dataset Strokes Technique Accuracy

[18] Images Glance, drive, block, and cut AlexNet 74.33%

[19] Images Cut, cover drive, straight drive,
pull, leg glance, scoop

Random forest 87%

[20] Videos Backward and forward LSTM 100%

[18] Videos Strokes and gameplay AlexNet 96.66

3. Proposed Methodology

The workflow of the proposed approach is presented in Figure 1. The study collected
videos of eight different types of batsman strokes. The videos were preprocessed to remove
any noise present to ensure accurate analysis. The MediaPipe library was used to extract
human key points from the preprocessed videos, and a novel dataset was created based
on these features. The dataset was preprocessed again to eliminate any remaining noise,
and the analysis focused on 17 critical points of human movement. Before implementing
machine learning and deep learning models on the dataset, it was split into test and train
sets. The research dataset was used to train and test the models, and a performance
evaluation was conducted to assess their effectiveness in real-time.

Figure 1. Workflow of adopted methodology.

3.1. Video Cricket Strokes Dataset

This study aims to create a comprehensive dataset of cricket stroke videos by collecting
a diverse range of videos from various platforms. To ensure the dataset’s generalizability,
the videos were collected from both YouTube channels and the Liaquat Pur cricket club,
Pakistan, focusing on eight primary strokes: ‘pull’, ‘cut’, ‘cover drive’, ‘straight drive’,
‘backfoot punch’, ‘on drive’, ‘flick’, and ‘sweep’. Multiple videos of each stroke were
collected to provide a diverse range of examples for analysis. The count plot in Figure 2
visually represents the number of videos collected for each stroke. The x-axis displays the
number of videos, and the y-axis displays the type of strokes. This information provides an
overview of the distribution of videos in the dataset.
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Figure 2. Number of videos for different strokes.

To ensure accurate analysis, the recorded video data were preprocessed, and any noise
present was manually removed. Each stroke video has a length of approximately 1.5 to 2 s,
providing a consistent length for analysis. A few sample frames from the recorded videos
are shown in Figure 3, demonstrating the video quality. The resulting dataset provides a
valuable resource for researchers to analyze and compare different cricket stroke techniques.
The diverse range of videos ensures that the dataset is comprehensive and can be used to
study the nuances of each stroke.

Figure 3. Sample frames from different videos.
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3.2. Feature Extraction from Videos

Once the cricket stroke videos are preprocessed and the noise removed, the MediaPipe
library extracts features from the videos. This library is a pre-built set of components that
can be used to create complex machine-learning models for tasks such as pose estimation,
facial recognition, hand tracking, and object detection. It can extract 33 landmarks from
the human body pose estimation. The pose landmarks P can be used to represent the pose
of a person in various ways. One common representation is the skeletal representation,
where the pose landmarks are connected by lines to form a skeletal structure representing
the person’s body. The skeletal representation can be represented as follows:

S = {li} (1)

where
li = (pi, pj), i, j ∈ {1, 2, . . . , 17}, i < j (2)

The value S is the set of 16 lines that connect the 33 pose landmarks P to form the
skeletal structure, and pi and pj are the two endpoints of the ith line. The pose estimation
pipeline can be summarized as follows:

I → f → P→ S (3)

where I is the input frame from the video, f is the deep neural network that performs
the pose landmark estimation, P is the set of 33 pose landmarks, and S is the skeletal
representation of the pose.

For this study, only 17 landmarks were selected, as they are critical to detecting strokes,
namely the nose, left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist,
left hip, right hip, left knee, right knee, left ankle, right ankle, right heel, left heel, left foot
index, and right foot index. The MediaPipe library extracts the 17 landmark points and
their x, y, and z coordinate values from every video frame.

The MediaPipe library also provides a visibility value that can be set to extract features
from the videos. This study’s visibility value was set to extract 17 landmarks only. The
OpenCV library passes every video to the MediaPipe library to extract the landmark points.
Extracting these landmarks creates a new data frame containing 51 feature columns and
one label column named as cricket stroke dataset. The working of the proposed approach
is shown in Algorithm 1.

Algorithm 1 Batsmen stroke prediction.
Input: Video strokes dataset (VSD)
Output: Stroke prediction {cover driver, pull, sweep, state drive, on drive, cut and back
foot punch}

1: MPF ←−MediaPipe(VSD) // VSD ∈ Video strokes dataset, MPF ∈ extracted features
from the MediaPipe library.

2: TRF ←− RFtraining(MPFTe) // MPFTe ∈ MPF, here MPFTe is the training data of MPF.
3: RFPred ←− TRF(MPFTs) // MPFTs ∈ MPF, here MPFTs is the testing data of MPF,

RFPred ∈{cover drive, pull, sweep, state drive, on drive, cut and back foot punch}

3.3. Cricket Stroke Exploratory Data Analysis

This section deeply explores the cricket stroke dataset after extracting features from the
videos. The new dataset contains 51 feature columns. The 51 feature columns correspond
to the x, y, and z coordinates of each of the 17 selected landmark points. The label column
contains the name of the stroke performed in the video. The column names for the features
and labels are shown in Table 2.
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Table 2. Features in the dataset.

Attribute Dtype Attribute Dtype Attribute Dtype

nosex float lshoulderx float64 nosey float64

lshouldery float64 nosez float64 lshoulderz float64

rshoulderx float64 lelbowx float64 rshouldery float64

lelbowy float64 rshoulderz float64 lelbowz float64

relbowx float64 rWristx float64 relbowy float64

rWristy float64 relbowz float64 rWristz float64

lWristx float64 rhipx float64 lWristy float64

rhipy float64 lWristz float64 rhipz float64

lhipx float64 rkneex float64 lhipy float64

rkneey float64 lhipz float64 rkneez float64

lkneex float64 rankelx float64 lkneey float64

rankely float64 lkneez float64 rankelz float64

lankelx float64 rheelx float64 lankely float64

rheely float64 lankelz float64 rheelz float64

lheelx float64 lfindexx float64 lheely float64

lfindexy float64 lheelz float64 lfindexz float64

rfindexx float64 rfindexy float64 rfindexz float64

The cricket strokes dataset (CSD) is a collection of numeric features extracted from
videos using the MediaPipe library, resulting in 8998 records. However, the final dataset
is not balanced, with different strokes having varying numbers of instances. Specifi-
cally, the dataset includes 1060 records for ‘straight drive’, 2276 instances for ‘on drive’,
1236 records for ‘cover drive’, 1011 rows for ‘cut’, 779 records for ‘pull’, 511 records for
‘sweep’, 908 instances for ‘flick’, and 1217 records for ‘back foot punch’. A summary of
the dataset is presented in Table 3. The highest percentage belongs to ‘on drive’ with
25.29% instances, whereas ‘sweep’ has the lowest ratio to the total records at 5.68% of the
total records.

Table 3. Number of instances of every stroke.

Strokes Records Percentage

State Drive 1060 11.78%

On Drive 2276 25.29%

Cover Drive 1236 13.74%

Cut 1011 11.24%

Pull 779 8.66%

Sweep 511 5.68%

Flick 908 10.09%

Backfoot Punch 1217 13.53%

The cricket strokes dataset is analyzed in three-dimensional space. A Python library
HyperTools created a cubic scatter plot. HyperTools uses dimensionality reduction to
visualize high-dimensional data in a lower-dimensional space using the t-distributed
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stochastic neighbor embedding (t-SNE) technique. The features extracted from the video
are more detachable, and the machine learning model can easily classify these features, as
shown in Figure 4.

Figure 4. Feature space analysis.

The pair plot is plotted on the dataset to check the correlation between different
features. We extract the five most important features from the dataset using principal
component analysis to plot the pair plot on these features. The pair plot shows that these
points are more easily detachable, as shown in Figure 5.

3.4. Target Label Encoding

Label encoding is a common technique used in machine learning to convert categori-
cal variables into numerical representations. Label encoding is necessary because many
machine learning algorithms require input data to be in numerical format. Label encoding
assigns a unique numerical value to each category within a variable, allowing the algorithm
to identify patterns and relationships within the data. The label column is encoded in this
study, and every class is assigned a different serial number from 0 to 7.

3.5. Dataset Splitting

Dataset splitting is a technique used in machine learning to partition a dataset into
two subsets: a training dataset, and a testing dataset. The purpose of this is to assess
the performance of a machine learning model on unseen data, which can help to identify
whether the model is overfitting, underfitting, or generalized. This study splits the dataset
into three different ratios, 70:30, 80:20, and 90:10, and gets the accuracy on all splits. On the
80:20 data split, the models give high accuracy.



Sensors 2023, 23, 6839 9 of 16

0.5

0.0

0.5

1.0

1

0.5

0.0

0.5

1.0

1.5

2

0.5

0.0

0.5

1.0

3

0.75

0.50

0.25

0.00

0.25

0.50

0.75

4

1.0 0.5 0.0 0.5 1.0
1

1.0

0.5

0.0

0.5

1.0

5

1 0 1 2
2

1 0 1
3

1.0 0.5 0.0 0.5 1.0
4

1 0 1
5

Label
Pull
onDrive 
state drive 
Cover Drive
back foot punch
Flick
Sweep 
Cut

Figure 5. Pair plot on extracted features.

3.6. Model Training

Various machine learning and deep learning models were applied to the cricket strokes
dataset to classify the batsmen’s strokes. The machine learning models used in the study
included LSTM, k-nearest neighbor (KNN), logistic regression (LR), decision tree (DT),
support vector machine (SVM), and RF. A hyperparameter tuning process was applied
to these models to obtain optimal results. The specific parameters used for the machine
learning models are outlined in Table 4.

3.7. Performance Metrics

Several performance matrices are used in this study to evaluate the performance of
machine learning algorithms. Precision, recall, and F1 score are three standard evaluation
metrics in machine learning classification tasks. With these, standard evaluation matrix
geometric mean, Cohen’s kappa, and log loss are also measured to evaluate the performance
of machine learning models.
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Table 4. Hyperparameter settings for machine learning models.

Model Hyperparameters

LSTM loss = ‘categorical_crossentropy’, optimizer = ‘adam’, metrics = ‘accuracy’,
activation=‘softmax’, batch_size = 64, validation_split = 0.1, epoch = 10

KNN n_neighbors = 2

LR C = 0.1, intercept_scaling = 10, random_state = 100

DT random_state = 0, max_depth = 300

SVM decision_function_shape = ‘ovo’, probability = True

RF random_state = 0, max_depth = 300

4. Results and Discussion

This section discusses the results of the applied machine learning and deep learning
models. Various performance metrics, such as precision, recall, F1 score, Cohen’s kappa,
geometric mean, and log loss were used to evaluate the models’ performance. Different ma-
chine learning and deep learning models are applied to the CSD dataset. A hyperparameter
tuning technique was applied to each model to achieve optimal results. The parameters
used in the machine learning models are explained in Table 4.

4.1. Results for Machine and Deep Learning Models

All the performance measures are evaluated on three different data splits, including
70:30, 80:20, and 90:10 for training and testing, respectively. The deep learning-based LSTM
model has the lowest precision, recall, and F1 score value, as shown in Table 5. The RF has
the highest value of precision, recall, and F1 score on all the data splits in comparison with
all the other machine learning models. RF achieves the highest precision, recall, and F1
score on an 80:20 data split.

Table 5. Experimental results for machine and deep learning models.

Model
Precision Recall F1 Score

70:30 80:20 90:10 70:30 80:20 90:10 70:30 80:20 90:10

LSTM 0.409 0.452 0.470 0.476 0.502 0.527 0.476 0.502 0.527

LR 0.658 0.655 0.649 0.637 0.643 0.651 0.637 0.643 0.651

DT 0.948 0.951 0.970 0.947 0.956 0.968 0.947 0.956 0.968

SVM 0.863 0.867 0.873 0.842 0.846 0.857 0.842 0.846 0.857

KNN 0.982 0.989 0.988 0.984 0.989 0.989 0.984 0.989 0.989

RF 0.996 0.998 0.996 0.995 0.998 0.997 0.995 0.998 0.997

On other performance measures including the Cohen kappa score and geometric
mean, the RF model also outperforms all the employed models. On the 80:20 data split, the
RF has the highest value of Cohen kappa and geometric mean score. LSTM has the lowest
value of Cohen kappa and geometric mean score on every data split. The LSTM model has
the highest log loss value compared to all other applied machine learning models. RF has a
0.076 log loss on an 80:20 split, as shown in Table 6.
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Table 6. Cohen Kappa, geometric mean, and log loss for all models.

Method
Cohen Kappa Score Geometric Mean Score Log Loss Accuracy

70:30 80:20 90:10 70:30 80:20 90:10 70:30 80:20 90:10 70:30 80:20 90:10

LSTM 0.372 0.413 0.431 0.526 0.50 0.475 0.0 0.0 0.0 14.09 13.26 12.82

LR 0.562 0.570 0.584 0.636 0.643 0.651 0.452 0.457 0.465 1.09 1.089 1.067

DT 0.938 0.947 0.962 0.947 0.955 0.967 0.941 0.955 0.969 1.895 1.601 1.161

SVM 0.812 0.817 0.831 0.841 0.845 0.856 0.823 0.829 0.848 0.449 0.438 0.420

KNN 0.981 0.986 0.987 0.984 0.988 0.988 0.983 0.988 0.990 0.358 0.231 1.709

RF 0.994 0.997 0.996 0.995 0.997 0.996 0.994 0.997 0.997 0.086 0.076 0.06

The performance of several machine learning and deep learning models was evalu-
ated on the cricket strokes dataset. Precision, recall, F1 score, Cohen’s kappa, geometric
mean, and log loss were used as performance metrics to measure the effectiveness of the
models. The models were trained on three different data splits to ensure the robustness
and generalizability of the results. The results showed that the deep learning-based LSTM
model had the lowest accuracy compared to all other machine learning models. The RF
model outperformed all other models in terms of accuracy on all three data splits, as shown
in Table 6.

Figure 6 shows the visual presentation of models’ accuracy for three training and
testing data splits. It can be observed that the accuracy of DT, KNN, and RF is higher than
the 0.94 score, whereas LSTM and LR show poor performance. The performance of SVM is
moderate with a 0.841 accuracy score. However, the best performance is obtained by the
RF, which has a 0.997 accuracy score.

Model

0.00

0.25

0.50

0.75

1.00

LSTM LR DT SVM KNN RF

70:30 80:20 90:10

Figure 6. Accuracy scores for all models.

The RF model has the highest accuracy on the 80:20 data split, as illustrated in Figure 7.
Furthermore, the RF model has the lowest time complexity on the 80:20 data split, indi-
cating that it could classify cricket strokes more efficiently. Based on these results, it
can be concluded that the RF model is the best machine-learning model for classifying
cricket strokes.
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(a) Sweep shot (b) Back foot shot

(c) Cover drive (d) Cut shot

(e) Flick shot (f) On drive

(g) Pull shot (h) Straight drive
Figure 7. Sample predictions from the RF model.

4.2. K-Fold Cross-Validation Analysis

Cross-validation is a crucial statistical technique used in machine learning to mitigate
the effects of overfitting and enhance the model’s generalization performance. Overfitting
is a common problem in machine learning where a model is too complex and fits the
training data too closely, leading to poor performance on new or unseen data. To overcome
this problem, cross-validation involves dividing a dataset into subsets, where one subset is
used as the validation set to test the model’s performance while the remaining subsets are
used for training the model. This process is repeated multiple times, each subset taking
turns as the validation set. The results of each iteration are averaged to provide an estimate
of the model’s performance.

Using cross-validation, a model’s ability to generalize to new data can be evaluated
more accurately. It helps to identify models that are overfitting the training data and
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allows for selecting the best-performing model. In this study, the researchers used a 60-fold
cross-validation to evaluate the performance of the random forest model. In K-fold cross-
validation, the dataset is divided into K equally sized folds, and the model is trained and
validated K times.

In this study, K was set to 60, which provides a more reliable estimate of the model’s
performance than a smaller value of K. The cross-validation results indicate that the RF
model achieves an accuracy of 95% with a standard deviation of 0.07. This high accuracy
and low standard deviation indicate that the model performs well and is consistent across
different folds.

Overall, cross-validation is a powerful technique for evaluating the performance of
machine learning models. It helps mitigate the overfitting effects and enhances the model’s
generalization performance. The use of 60-fold cross-validation in this study provides a
more accurate estimate of the RF model’s performance and enables the selection of the
best-performing model, as shown in Table 7.

Table 7. Results for k-fold cross-validation.

Model K-Fold Accuracy Standard Deviation (±)

LSTM 0.115 0.172

LR 0.63 0.12

DT 0.87 0.10

SVM 0.83 0.13

KNN 0.94 0.06

RF 0.95 0.07

4.3. Time Complexity

The time complexity of a machine learning model is a critical factor that refers to the
amount of computational resources required to train and test the model on a given dataset.
The time complexity can vary for different machine learning models and can be influenced
by various factors, such as the size and complexity of the dataset, the number of features,
and the model architecture.

The time complexity of a machine learning model is an essential consideration for
several reasons. First, it can affect the model’s scalability, mainly when dealing with large
and complex datasets. Second, it can impact the speed and efficiency of the model, which
can be critical when dealing with real-time or near-real-time applications. Finally, it can
influence the cost and feasibility of deploying the model in production environments.

This study measured the time complexity of different machine learning models on
different data splits, as shown in Table 8. The time computation was measured in seconds,
and the results indicate that the KNN model has the lowest time computation on the 70:30
data split. In contrast, the RF model has the lowest time complexity on the 80:20 data split,
where it also provides the best results for the same training–testing split.

4.4. Performance Comparison

Performance comparison with existing studies was also carried out in this study. For
this purpose, models from existing studies for batsmen’s stroke prediction are selected. The
studies [18–20] use images and video datasets to predict different types of strokes. These
studies employ AlexNet, LSTM, and RF models for stroke prediction. Performance analysis
given in Table 9 indicates that the RF used in the current study shows better performance
with a higher number of strokes prediction and outperforms existing approaches.
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Table 8. Time complexity of all models for different training-testing splits.

Model
Time Computation (s)

70:30 80:20 90:10

LSTM 43.807 84.171 90.34

LR 0.914 0.518 0.649

DT 0.542 0.453 0.776

SVM 8.571 11.14 13.35

KNN 0.008 0.012 0.014

RF 7.542 5.174 5.695

Table 9. Performance comparison with existing approaches for batsmen stroke prediction.

Refs. Strokes Strokes Model Accuracy

[18] Glance, drive, block, and cut 4 AlexNet 74.33%

[19] Cut, cover drive, straight drive,
pull, leg glance, scoop

6 RF 87%

[20] Backward and forward 2 LSTM 100%

[18] Strokes and gameplay 2 AlexNet 96.66%

This study Straight drive, on drive, cover
driver, cut, pull, sweep, flick,
back foot punch

8 RF 99.7%

4.5. Discussion

The use of human pose estimation holds several strategic advantages in sports. It can
be used by coaches to train players better and enhance their sports performance. Cricket,
being the second most popular sport in the world, is liked and followed by billions of
people around the globe. Consequently, coaches and players are continuously striving for
excellence. The use of machine learning techniques to predict batsmen’s strokes can be very
influential and useful in this regard. This study collects video data for different strokes and
proposes a machine-learning approach for stroke prediction. Different important features
are extracted from the preprocessed video data to train machine learning models. After
training and testing the models, it was found that the RF model achieved the highest
accuracy among all the other machine learning and deep learning models. The RF model
has a higher precision, recall, F1 score, Cohen’s kappa, and geometric mean than other
models. Additionally, the log loss was lower for the RF model. Overall, the results indicate
that the RF model is the most suitable model for classifying the batsmen’s strokes in the
CSD dataset. It can accurately identify the various types of strokes played by the batsmen
with high precision and recall, making it a reliable tool for stroke analysis.

5. Conclusions

Cricket stroke classification is proposed in this study using a machine learning ap-
proach to enhance the performance of batsmen. Several machine learning and deep learning
algorithms are used to benchmark the newly collected video dataset. A novel video dataset
is created that contains eight types of strokes from cricket batsmen. The proposed ap-
proach is implemented along with other machine learning models to analyze its efficacy.
Experimental results demonstrate that the proposed approach outperforms other models
employed in this study. The RF model achieves a 0.997 accuracy, while the accuracy based
on k-fold cross-validation amounts to 0.95 on an 80:20 data split. The proposed model
achieves the highest accuracy and classifies the eight cricket strokes on a video dataset.
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This study demonstrates the significant impact of emerging technologies like computer
vision and machine learning on sports. As these technologies advance, we can expect
even more sophisticated and accurate predictions of batsman strokes and other critical
aspects of cricket. In the future, more strokes will be added to the video dataset. We also
intend to incorporate more features into the training process, such as angel measurement,
acceleration, etc., to further improve the accuracy.
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