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Abstract: Data mining is an analytical approach that contributes to achieving a solution to many
problems by extracting previously unknown, fascinating, nontrivial, and potentially valuable infor-
mation from massive datasets. Clustering in data mining is used for splitting or segmenting data
items/points into meaningful groups and clusters by grouping the items that are near to each other
based on certain statistics. This paper covers various elements of clustering, such as algorithmic
methodologies, applications, clustering assessment measurement, and researcher-proposed enhance-
ments with their impact on data mining thorough grasp of clustering algorithms, its applications,
and the advances achieved in the existing literature. This study includes a literature search for papers
published between 1995 and 2023, including conference and journal publications. The study begins by
outlining fundamental clustering techniques along with algorithm improvements and emphasizing
their advantages and limitations in comparison to other clustering algorithms. It investigates the
evolution measures for clustering algorithms with an emphasis on metrics used to gauge clustering
quality, such as the F-measure and the Rand Index. This study includes a variety of clustering-related
topics, such as algorithmic approaches, practical applications, metrics for clustering evaluation, and
researcher-proposed improvements. It addresses numerous methodologies offered to increase the
convergence speed, resilience, and accuracy of clustering, such as initialization procedures, distance
measures, and optimization strategies. The work concludes by emphasizing clustering as an active
research area driven by the need to identify significant patterns and structures in data, enhance
knowledge acquisition, and improve decision making across different domains. This study aims to
contribute to the broader knowledge base of data mining practitioners and researchers, facilitating
informed decision making and fostering advancements in the field through a thorough analysis of
algorithmic enhancements, clustering assessment metrics, and optimization strategies.

Keywords: clustering; distance measures; data mining; evolution measures; symmetry

1. Introduction

In today’s globalized world, organizations are confronted with an explosive prolif-
eration of data from many sources, making it difficult to focus on important information.
Artificial intelligence (AI) is developing as a pillar of contemporary problem solving, lead-
ing to a new era of innovation as a result of technological advancements. The extraordinary
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advancements in a variety of sectors have been made possible by AI’s capacity to analyze
enormous volumes of data and uncover hidden insights. An essential component of AI
called data mining is used to extract useful information from large databases. Data mining
is an analytical approach that contributes to achieving a solution to this problem by extract-
ing previously unknown, fascinating, nontrivial, and potentially valuable information from
massive datasets. According to Shukor [1], data mining is the act of discovering patterns,
linkages, changes, variations, and distinctive structures in data preserved from diverse
sources. To extract information and insights from data, data scientists employ a wide range
of expensive computer approaches. In a wide range of industries, including business,
healthcare, and finance, data mining has critical applications. Data mining aids in decision
making, marketing strategy optimization, and consumer behavior analysis in business.
Data mining in healthcare helps with illness diagnosis, patient outcome prediction, and
treatment plan optimization [2]. Data mining algorithms provide a variety of patterns
or insights to be found across the data mining processes. The most common of these
capabilities are summarization, characterization, discrimination, association, clustering,
classification, outlier analysis, regression modeling, and pattern analysis [3]. This powerful
tool investigates data utilizing a range of methods, like association rule mining, clustering,
classification, and anomaly detection. Data mining is employed in a variety of areas like
financial services, marketing, medical treatment, and social networking development [4–8].
It is an essential tool for firms that wish to make decisions based on data-driven insights.

Data mining encompasses a variety of methodologies from several domains [9] in-
cluding data analysis, database platforms, artificial intelligence techniques, recognition of
patterns, visualization, data retrieval, and computational performance, whereas statistics,
database technology, and artificial intelligence are the primary sources of data mining
innovations. By extracting important information from enormous datasets, these technolo-
gies enable organizations to make logical decisions based on insights generated by data.
Data mining algorithms provide a variety of patterns and insights across the data mining
processes. The most common of these capabilities are summarization, characterization,
discrimination, association, clustering, classification, outlier analysis, regression model-
ing, and pattern analysis [10]. These features help the extraction of relevant information
from datasets by recognizing associations, patterns, and anomalies, along with modeling
anticipated trends and behaviors.

Researchers have looked into a range of methodologies that are utilized in data mining.
Among these techniques are AI, statistics, artificial neural networks, database and data
storage structures, algorithms based on genetics, fuzzy sets, visualization, and others [11].
These techniques are used to retrieve relevant information from big datasets by discovering
patterns, grouping, and anomalies, and by modeling forthcoming trends and behavior.
Scholars are continually studying novel ways and methods to improve the precision and
efficacy of data mining jobs and to meet the increasing expectations of organizations in
today’s data-driven environment. Many researchers have created numerous algorithms,
also known as techniques, for carrying out data mining activities that utilize data mining
techniques. Examples include the Apriori method, Naive Bayesian, rule-based classification,
k-nearest neighbor, k-Means, k-medoid, partition around medoids (PAM), clustering large
applications (CLARA), CLIQUE, clustering large applications based upon randomized
search (CLARANS), statistical information grid (STING), and others [12].

Data mining may be applied in a variety of fields, for example, time-lapse data mining,
mining the web, temporal information mining, spatial information mining, temporal–
spatial data mining, educational information mining, commerce, healthcare, sciences,
technical data mining, and so on. Each domain may have a few different data mining
applications [13]. It is a collection of application domains in which a variety of data mining
functions can be applied. Statistical analysis of data, market-basket analysis, detection of
intrusions, identification of fraud, recommendation systems, cancer diagnosis, and other
applications can be used [14].
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Data mining is a method of identifying patterns and insights in massive databases
using computational and statistical approaches. It entails collecting useful information
from massive volumes of data and applying it to make sound judgments. Clustering,
classification, association rule mining, regression analysis, and outlier identification are all
data mining approaches. However, the three basic data mining approaches are association
rule mining, classification, and clustering. Association rule mining produces implications
between multiple data sets; classification is a form of supervised learning that categorizes
data items [15], and regression-analysis is employed to imitate the relationship between a
dependent variable and numerous independent variables [16]. Outlier detection includes
recognizing data points that stray considerably from the norm, while clustering is a form
of unsupervised learning that organizes data items into unknown subgroups [17].

Clustering, which includes putting data points into useful clusters based on under-
lying patterns, is one of the key techniques used in data mining. This method has shown
to be quite useful in a variety of fields and makes it easier to comprehend large datasets.
Clustering plays an increasingly prominent role as datasets continue to expand in size and
complexity. A crucial tool for discovering hidden patterns without the need for explicit
labeling is unsupervised clustering algorithms, a subset of AI approaches [10]. These algo-
rithms work by grouping data points into clusters based on shared characteristics, aiding in
the clarification of significant connections and insights. This powerful tool investigates data
utilizing a range of methods, like association rule mining, clustering, classification, and
anomaly detection. Data mining is employed in a variety of areas, like financial services,
marketing, medical treatment, and social networking development. It is an essential tool
for firms that wish to make decisions based on data-driven insights [18]. Figure 1 depicts
the data mining strategies which are used in the existing literature. Clustering is one of
the widely used approaches to data mining and holds significant importance. This study
considers both supervised and unsupervised clustering approaches from a data mining
perspective and provides a comprehensive review of the clustering approaches.

Figure 1. Categorization of data mining techniques.

The main goal of this study is to thoroughly examine unsupervised clustering tech-
niques in the context of data mining. This study will examine the effectiveness and
efficiency of clustering, the application of algorithmic techniques across a range of domains,
and the effects of suggested improvements. This study’s sub-objectives include assessing
clustering assessment measures, looking at optimization techniques, and investigating
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how algorithms change over time. The basic assumption is that a thorough analysis of
unsupervised clustering algorithms would reveal their various strengths, weaknesses, and
potential for knowledge discovery, advancing data mining techniques. This study analyzes
the benefits and drawbacks of various unsupervised clustering methods, identifies practical
uses for them, and describes recent developments in the field. The study aims to give
practitioners and scholars a comprehensive grasp of the current approaches by addressing
these factors, opening the way for improved information extraction and data analysis.

This review is further divided into five sections. The background of the clustering
approach is presented in Section 2. Section 3 provides the adopted review methodology
including research questions, paper selection, and inclusion and exclusion criteria. It is
followed by a discussion of the findings related to set research questions in Section 4.
Section 5 provides a brief discussion of the findings. Conclusions and future directions are
given in Section 6.

2. Background

Clustering is a key data mining approach for splitting databases into subgroups so that
visualization and efficient extraction of valuable data from enormous amounts of structured
and unstructured data points can be realized. In fact, clustering is a rational arrangement
of large amounts of unstructured data in order to analyze it [19]. Meanwhile, clustering is
regarded as a difficult issue in the field of data mining, and it has gained significant attention
among scholars in the past. Furthermore, this displays the applicability of data points for
each technique and identifies numerous parametric variables that may be used to compare
various clustering algorithms. These characteristics are the data size, managing noisy
information, dataset category, cluster form, input parameter and complexities, database
applicability, overlapping cluster, rapidity, the effect of input control, and scalability.

Clustering is a technique for splitting/segmenting data items (or data points) into
groups and clusters. Items that are near to each other are grouped together. Clustering,
similar to classification, identifies related data items; however, unlike classification, the class
identities are unknown (like unsupervised learning) [11]. Cluster analysis is a common
approach that is utilized not just in the field of data mining but also in statistics, segmenta-
tion of pictures, recognition of patterns, object recognition, retrieving data, computational
biology, and other fields [19–22].

The origin of clustering may be linked back to the initial stages of statistics and pattern
detection [23]. In the beginning, clustering algorithms concentrated on dividing the dataset
into distinct sections with the goal of maximizing similarity inside each group while mini-
mizing dissimilarity across groups. These approaches, like K-means and K-medoids, served
as the foundation for many future advances in clustering. Scholars gradually realized that
the premise of distinct clusters could not be true for all forms of data. This resulted in the
development of algorithms capable of dealing with clusters that overlap and clusters with
complicated forms. Hierarchical clustering methods were created to portray clustering
outcomes within a hierarchical framework, enabling study at many granularity stages [24].
Clustering approaches have been developed even further as a result of developments in
artificial intelligent computational methodologies, and the accessibility of huge datasets.
To handle various types of data and clustering events, new methods like density-based
clustering, for example, DBSCAN, model-based clustering, for example, Gaussian mixture
models, and grid-based clustering, have recently been developed. Evaluation metrics have
proven crucial in the formation of techniques for clustering. To determine the effectiveness
of clustering findings, many metrics like clustering efficiency, silhouette coefficient, and
Rand index have been proposed [25]. These criteria aid in the comparison and selection of
the best clustering method for a particular task and dataset.

Clustering techniques have encountered additional hurdles since the emergence of
big data and the explosion of datasets with high dimensions. Kang et al. [26] introduced
subspace clustering and ensemble clustering techniques that were originally established
for handling data with many sub-spaces and to integrate the results of various clustering
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methods. Efforts have also been made to increase the scalability and effectiveness of
techniques for clustering when dealing with huge datasets. Clustering has an extended
history of algorithmic advancement, assessment approaches, and adaptability to changing
data properties and processing constraints. Clustering is a thriving research topic, driven
by the desire to detect significant patterns and frameworks in data, promote the acquisition
of knowledge, and enhance methods for making decisions across several domains [27].

Chitra et al. discuss various forms of clustering in [28]. A cluster constitutes one
of the data mining procedures, according to them. It is a form of unsupervised learning
that involves grouping a bunch of identical items into a single cluster. The co-authors
of this work compare several methods of clustering such as partition-based, hierarchical,
grid-based, and density-based clustering. There are several clustering approaches in
the literature, including partitioning, hierarchical, model-based, density-based, and grid-
based clustering, among others. Figure 2 depicts the data mining hierarchy as well as the
approaches and their types.

Figure 2. Categorization of clustering techniques for data mining.

3. Methodology

This section defines the article selection criteria, data sources, and the search strategy
for data extraction and analysis procedure. Figure 3 shows the workflow of the methodol-
ogy adopted for this study.
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Figure 3. Methodology adopted for the literature review.

3.1. Research Questions

The following are the research questions formulated to analyze the relevant studies:

i. What approaches and algorithms are currently available in clustering?
ii. What are the benefits and drawbacks of various clustering techniques?
iii. What are the clustering evaluation measures to consider when selecting a centroid

finding method?
iv. What are the applications or fields where some clustering algorithms outperform

others?

3.2. Inclusion and Exclusion Criteria

The most significant aspect of a systematic literature review (SLR) is the inclusion and
exclusion criteria. This is used to choose or reject research articles. This study proposes the
following six criteria for study inclusion and exclusion.

3.2.1. Subject

A key point in this SLR is unsupervised clustering algorithms. As a result, the research
papers should include only the role of data mining in unsupervised clustering algorithms
for looking at optimization techniques, and investigating how algorithms change over time.
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3.2.2. Application Research

The selected research has a crucial positive effect on the effectiveness and efficiency
of clustering, also taking into account the use of algorithmic approaches across various
domains and the effects of suggested improvements, by closely examining clustering
assessment metrics, exploring optimization techniques, and following the development of
algorithms over time.

3.2.3. Publication Year

Recent research is predicated on the background of preceding studies. As a result,
we choose a well-balanced publishing year duration from 2003 to 2022 for this SLR. This
timeline not only includes the recent clustering techniques but also systematically includes
past achievements.

3.2.4. Publisher

This SLR considers six major scientific sources for the collection of research papers,
which are as follows:

• Google scholar;
• IEEE;
• Springer;
• ACM;
• Taylor & Francis;
• Elsevier.

3.2.5. Validation of Proposal

For the best possible study, the idea must be properly validated. As a result, the
research should only be chosen if the idea is validated using the best clustering technique.
There are research works in this domain where inadequate information is supplied for
idea validation. The SLR discards those research papers which have inadequate or missing
information.

3.2.6. Repetition

In this SLR, papers with almost identical study materials are removed and only
the most reliable and consistent data are considered. We carried out this SLR using the
previously given inclusion and exclusion criteria. The research is chosen specifically if
all inclusion and exclusion criteria are satisfied. Even if only one inclusion and exclusion
criterion is ignored, the research is dismissed.

3.3. Risks of Bias
3.3.1. Methods for Risk of Bias Assessment

Reviewers independently evaluated the risk of bias for the included studies. Each
study’s risk of bias was assessed using a standardized tool, which improved the assess-
ment’s consistency and impartiality.

3.3.2. Reviewer Independence

To reduce bias and increase the reliability of the evaluation, the reviewers each worked
separately during the risk of bias assessment process.

3.3.3. Automated Tools in Bias Assessment

Where appropriate, automation techniques were used to speed up the risk of the bias
assessment process and guarantee that it was carried out in a methodical manner.
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3.3.4. Impact Measures

Specific impact measures were chosen for the synthesis and presentation of results for
each outcome mentioned in the relevant research papers. These metrics were chosen in
light of their applicability and relevance to the research topic.

3.4. Search Process

To obtain the most significant results, we carried out automated searches. The search-
ing method was carried out in electronic databases and validated by data analysts [12]. The
selected sources were chosen because they contain high-quality networking articles and
conference papers. The search period is between 2002 and 2023. The search query was cre-
ated by analyzing the following search terms in order to obtain the necessary information
from the selected sources. Keywords include ‘data mining’, ‘clustering’, ‘partition based
clustering’, ‘k-mean’, ‘k-medoid’, ‘density based clustering’, ‘hierarchical clustering’, and
so on. Table 1 shows the search process used for various databases and results from each
database against searched terms.

Table 1. The search process uses various search terms to filter the results.

Sr. no. Search Term IEEE Springer ACM

1 Data mining 32 14 09

2 Clustering 34 23 27

3 Different clustering techniques 28 18 13

4 Partition based clustering 74 33 10

5 Hierarchal Clustering 82 57 18

6 Density-based clustering 92 69 16

A thorough search of numerous databases produced an initial pool of 698 studies
for the systematic review. A total of 100 duplicate studies were successfully deleted after
careful efforts to do so; this left a well-curated group of 598 studies for future analysis.
These 598 studies underwent a stringent screening procedure, which involved a careful
examination of their titles and abstracts. After the screening step, 300 full-text publications
were obtained and evaluated to see if they qualified for the study. Following a rigorous
evaluation of these full-text papers, 298 research papers that did not meet the predetermined
inclusion criteria were excluded. The selection procedure was streamlined by the strict
application of exclusion criteria, which led to the final inclusion of 143 research papers.

3.5. Quality Assessment

In quality assessment criteria, we analyzed all the collected studies based on the
coherence and relevancy of addressing the research questions defined. Figure 4 shows the
distribution of papers concerning the venue, including conferences, journals, and books.

Figure 4. Distribution of selected papers.
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Figure 5 shows the primary sources of references. It shows that IEEE has the largest
number of references at 54, Elsevier has 39 references, Springer has 19 references, ACM
has 4 references, and the remaining 27 references are from other categories, which include
different sources like ResearchGate, etc.

Figure 5. Distribution of selected papers concerning sources.

3.6. Data Extraction and Synthesis

After selecting research based on inclusion and exclusion criteria, the data extraction
and synthesis procedure is carried out. Initially, the key components are taken from chosen
research. Table 2 shows the details of data extraction and synthesis.

Table 2. Elements of data extraction and synthesis.

Sr. No. Extracted Elements Particulars

1 Bibliographic information
Title, author name, year to publications, publisher details,
and type of research (i.e., journal and conference papers or
books)

2 Abstract Proposal of research paper

3 Limitation Selected research limitation in accessing the goals.

4 Validation method Validation method is used in each selected research.

Data extraction with synthesis

5 Clustering techniques Leading clustering techniques. The result is summarized
in Sections 4.1–4.4.

6 Comparison
Leading clustering techniques in terms of accuracy,
complexities, and with their limitations. The results are
summarized in Section 4.5.

7 Hyperparameter Tuning in Clustering Algorithms
Approaches

Hyperparameter Tuning for Clustering is summarized in
Section 4.6.

8 Different evolution measures for clustering techniques
Different Evolution Measures for clustering techniques are
utilized in selected studies. And the result is summarized
in Section 4.7.

9 Application of clustering
Applications of different clustering are utilized in selected
studies. And the results are summarized in Section 4.7 and
the last figure and the last table.

4. Results

This section provides precise results in order to offer authentic answers to research
questions. To acquire pertinent and important findings, the literature review that was



Symmetry 2023, 15, 1679 10 of 44

conducted for this study followed a strict and organized methodology. High-quality
networking articles and conference papers from the years 1995 to 2023 were chosen using
automated searches in electronic databases.

Important terms related to data mining and clustering techniques were included
in the search criteria. Following this procedure, 58 eligible studies (partition clustering
n = 19, hierarchical clustering n = 13, other clustering n = 14, clustering application,
and evolution measures n = 12) are included in this review. A total of 58 papers were
considered, and they were divided into partition clustering, hierarchical clustering, other
clustering approaches, clustering application, and evolution measures of clustering. The
coherence and applicability of the gathered research were assessed as part of the quality
evaluation procedure. A noteworthy result of the inclusion criteria was a varied mix of
study forms.

Another crucial element for determining the quality of SLR is the form of research that
has been chosen, such as a journal, conference paper, or book. Although we attempted to
choose as many conference papers as feasible, we were successful in finding 32 conference
papers (out of 58) that were totally compatible with the inclusion and exclusion criteria,
whereas 39% of selected research is from journals, 59% from conferences, and 2% from
books. Figure 6 shows the distribution of the research papers.

Figure 6. Distribution of papers by year.

From the selected studies, different clustering techniques including partitioning, hi-
erarchical, density-based, and grid-based clustering used by experts are identified and
included in this section. Finally, the applications of clustering are provided. Figure 7 shows
the hierarchy of the clustering approaches which are covered in this paper.

4.1. Hierarchical Clustering

Hierarchical clustering is a popular unsupervised learning strategy for grouping
similar data elements. It creates a cluster of hierarchical structure by repeatedly merging and
dividing clusters based on similarity and dissimilarity [29]. The core concept underlying
hierarchical clustering is to construct a dendrogram, which is a tree-like framework that
depicts the connections between data points and clusters. The dendrogram begins with
every data point as a separate cluster and eventually combines related groups according to a
similarity and distance value. The algorithm assesses the closeness of clusters and picks the
clusters to combine at each stage [30]. According to the data and problematic domain, the
similarity and distance metrics employed in hierarchical clustering might differ. Distance
measures that are commonly employed comprise Euclidean distance, Manhattan distance,
and correlation distance. These measurements assess the dissimilarity and similarity of data
points and serve as a basis for the clustering method [31]. In the end, hierarchical clustering
is a strong and adaptable clustering algorithm that provides a hierarchical visualization
of data. It provides observations into the dataset’s linkages and patterns and enables
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study at various degrees of depth. There are a few algorithms that employ hierarchical
clustering in various ways: agglomerative and divisive hierarchical clustering, balanced
iterative reducing and clustering with hierarchies (BIRCH), clustering using representatives
(CURE), robust clustering using links (ROCK), and clustering heterogeneous and attributed
multi-modal environments using localized similarity indicators (CHAMELEON).

Figure 7. Hierarchy of the clustering approaches.

4.1.1. Divisive Method

Divisive clustering is the inverse of agglomerative clustering. This technique is intro-
duced by M. E. Celebi, Q. Wen, and S. Hwang. In this technique, all of the data items are
initially joined into one cluster and then subsequently split into small sub-clusters until a
stopping condition is fulfilled. Using this method, a top-down hierarchy is formed [32].
To segment the data depending on particular criteria, it employs a “divide & conquer”
technique. Several steps are involved in this process, and it begins with an individual
cluster that contains all data items. It identifies the best strategy to separate the cluster using
clustering criteria or dissimilarity measurement. Depending on the specified criteria, the
cluster is broken into a minimum of two sub-clusters. These steps are continued for every
sub-cluster until there is a single data point in every sub-cluster. The binary tree, referred to
as a dendrogram, may be used to describe the consequent hierarchical structure [33]. This
technique is computationally demanding, particularly for big datasets, because it involves
separating the clusters iteratively. However, it offers a thorough hierarchical framework
that identifies the connections between data elements at various degrees of granularity.

4.1.2. Agglomerative Method

S. S. Negi and M. K. Jindal published one of the first papers on agglomerative clus-
tering in 1979. Agglomerative clustering starts with every data point in its own cluster
and then integrates the most comparable clusters periodically until a stopping criterion
is met. The approach is then used to create a cluster hierarchy that finally leads to one
cluster containing all of the data points [34]. This method creates a bottom-up hierarchy.
The hierarchical structure is built using a “merge & agglomerate” technique. Several steps
are involved in the agglomerative technique. First, it begins by treating every point of
data as a different cluster. Then it creates a similarity or distance matrix between all clus-
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ter combinations. Then two adjacent clusters are combined using the selected similarity
and distance metric. The similarity and distance matrix is recalculated to account for the
combined cluster. Steps 2, 3, and 4 are continued until all data points are assigned to a
particular cluster or a preset stopping threshold is satisfied. A dendrogram may be used
to illustrate the consequent hierarchical structure. Because it eliminates the requirement
for recursion division, agglomerative clustering is more productive than divisional clus-
tering [35]. However, it could suffer from the “chaining effect”, in which early integrating
decisions cannot be reversed, thus resulting in inferior clustering outcomes. There are a
few algorithms that employ hierarchical clustering in various ways: BIRCH, CURE, ROCK,
and CHAMELEON.

4.1.3. Balanced Iterative Reducing and Clustering with Hierarchies Method

BIRCH is a clustering approach that tries to cluster huge datasets effectively by re-
ducing memory utilization and computational difficulties. Zhang et al. [36] presented it
in 1996 as a hierarchical clustering approach. BIRCH is intended to manage big datasets
by building a memory tree-like data structure known as the cluster feature (CF) tree. It
depends on the ideas of the CT tree; CF is a triplet (n, LS, SS), wherein n is the number of
data items in the clusters, LS is the linear product of the item’s attribute values, and SS is
the total number of squares of the item attribute values. These are stored in a tree known as
the CF tree. Because it is kept in a tree, they are unable to retain entire tuples or clusters in
the primary memory, only their tuples [37]. The BIRCH technique has a number of features.
As BIRCH can deal with huge datasets effectively without needing the complete dataset
to be put into memory, it makes it suited for resource-constrained applications. BIRCH
also offers quick online developments, enabling the structure of the trees to be continually
altered as unique data points come. Furthermore, the hierarchical structure of the clustering
findings allows for varying degrees of precision in the clustering outcomes, enabling users
to examine clusters at multiple levels of depth [38].

4.1.4. Clustering Using Representatives Method

CURE is a hierarchical clustering approach aimed at overcoming the constraints of
typical hierarchical clustering techniques when dealing with massive datasets. Guha
et al. [39] presented CURE in 1998 as a hierarchical clustering technique. CURE attempts
to solve the reliability and effectiveness concerns associated with huge datasets in order to
transcend the constraints of existing hierarchical clustering techniques. It is a large data
clustering approach that is more resistant to outliers and obtains clusters of all forms and
shapes. It works well with two-dimensional datasets. It has an O(n2logn) operational
complexity [40]. Both BIRCH and CURE manage outliers effectively. BIRCH has lower
temporal complexity and lower cluster integrity than the CURE method.

CURE has various benefits when it comes to clustering huge datasets. It uses a sample-
based strategy to manage datasets containing billions of data points, lowering processing
needs. CURE’s hierarchical structures allow for the exploration of clusters at various
degrees of granularity. Furthermore, because it is not predicated on any certain cluster
structure or dispersion, CURE may handle clusters of different sizes and forms [41].

4.1.5. Robust Clustering with Links Method

Robust clustering with links (ROCK) is a hierarchical clustering technique developed
in 1999 by Rastogi and Shim [42]. ROCK is a density-based technique to find clusters
in datasets that could have noise and outliers. It uses an agglomerative hierarchical
clustering technique to cluster information based on categories. It depends on the number
of connections that exist between two items; linkages represent the number of additional
data that are adequately comparable to the two. This method does not use a distance metric.
ROCK has a number of benefits like the capacity to manage datasets of varied densities
and its resistance to noise and outliers. ROCK may locate clusters irrespective of a setting
of asymmetrical clusters and noisy data by using the density and connection strength
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measurements. ROCK, on the other hand, has several limits. The similarity function has
a considerable influence on the clustering outcomes, and finding a good measurement of
similarity for individual datasets may be difficult. The efficiency of the method is also
determined by the variables used, like the neighborhood size and the minimal similarity
criterion [43].

4.1.6. Clustering Heterogeneous and Attributed Multi-Modal Environments Using
Localized Similarity Indicators Method

CHAMELEON is a hierarchical clustering approach for datasets with heterogeneity
characteristics and numerous modalities. Karypis, Han, and Kumar presented CHAMELEON
in 1999 as a hierarchical clustering technique [29]. It is built to manage datasets with
varied densities, irregular forms, and changing sizes. It makes use of various similarity
measurements and an adaptive merging method to enhance clustering performance. As
it is a hierarchical clustering algorithm as well, two clusters are combined only if their
interconnection and similarity (proximity) are significant in comparison to their internal
interconnectedness and proximity of items inside the clusters.

The efficiency of the algorithm can be impacted by the similarity metrics used, and
also by the clustering techniques used for the initial attribute partitioning. CHAMELEON,
which is a computational strain of approach, grows with the extent of the dataset and the
number of variables or modalities, which makes it better suited to small to moderate-sized
data [44].

4.2. Density-Based Clustering

Density-based clustering is a type of algorithm for clustering that organizes data
points in the space of features depending on their density. This technique was introduced
by Kriegel et al. in 2011 [45]. Density-based clustering discovers clusters as territories with
significant point density rather than as independent areas with specific features. Density-
based clustering is a clustering method that organizes data points in the dataspace based on
their density. It seeks to detect clusters of any shape or dimension by recognizing significant
data density locations. The primary notion underlying density-based clustering is that
clusters can be described as high-density areas bounded by lower-density regions. It makes
no predictions on the number of clusters in the dataset or on preset cluster forms [46]. The
following are some popular forms of density-based clustering algorithms.

4.2.1. Density Based Spatial Clustering of Applications with Noise

Rehman et al. introduced the density-based spatial clustering of applications with
noise (DBSCAN) where clusters are defined as regions of high density that split from areas
of low density. It is noisy and outlier-tolerant and can recognize clusters of any sort [47].
Because of its capacity to identify clusters of different forms and manage datasets of
different densities, it has become one of the most prominent and commonly used methods
for clustering. DBSCAN defines core, boundary, and noise points depending on the density
of the dataset in the features area [48].

Another variant that offers a hierarchical approach to density-based clustering is
hierarchical DBSCAN (HDBSCAN) [49]. It builds cluster hierarchies by organizing the data
points into a tree-like framework that represents clusters of varying densities. The hierar-
chical model makes it easier to identify clusters at different granularity levels, resulting in a
more thorough comprehension of the data’s cluster pattern.

Categorical DBSCAN (CDBSCAN) expands DBSCAN to accept categorical character-
istics in order to deal with categorical datasets [50]. By specifying distance and density
criteria applicable to category similarity measurements, CDBSCAN extends the density-
based clustering technique. This enables the identification of clusters in data with both
numerical and categorical features.

Other DBSCAN versions and enhancements handle specific issues and circumstances.
For example, k-DBSCAN extends DBSCAN by including how to choose features and
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deal with large data and alleviate the affliction of dimensionality. The local outlier factor
(LOF) [51] extension detects outliers in data by using local density. These modifications and
enhancements illustrate DBSCAN’s versatility and ability to adapt to various clustering cir-
cumstances. These improvements improve the algorithm’s effectiveness and application in
a variety of disciplines, like spatial analysis of data, identifying anomalies, and recognition
of patterns, by combining new methodologies and adjustments.

4.2.2. Density-Based Clustering

H. Rehioui and A. Idrissi introduced the density clustering (DENCLUE) algorithm [52].
It is a density-based clustering approach that uses the concept of attractants to locate clusters.
The data points are modeled as prospective attractors, and clusters are discovered in the
vicinity of these attractors. The approach begins by utilizing a kernel function to estimate
the density of every point of data depending on its local neighborhood. Density estimation
considers the proximity and effect of neighboring locations, enabling DENCLUE to detect
intricate patterns and neighborhood features

DENCLUE is an iterative technique to locate clusters by searching for density attractors
and expanding clusters from them. It locates attractors using a gradient ascent technique
that follows the sharpest ascending path in the predicted density matrix. Data points
are allocated to clusters on the basis of their closeness and density interaction with the
attractors as they are identified. The clustering procedure is repeated until no further
attractors and clusters have been found [53].

X.-G. Yu and Y. Jian proposed a novel clustering technique by merging the concepts
of K-nearest neighbors (KNN) and DENCLUE [54]. To find the initial cluster centers and
allocate data points to their nearest neighbors, the method employs the KNN technique.
The density-based clustering approach of DENCLUE is then used to improve the clustering
outcomes using the local density attractors. The suggested technique seeks to increase the
accuracy and resilience of clustering by taking into account both the local neighborhood
links recorded by KNN and the density-based clustering properties of DENCLUE. The
combination of this method has an opportunity to produce more accurate and complete
clustering results, especially in datasets having complicated structures and changing densities.

4.2.3. Ordering Points to Identify Clustering Structure

Mihael Ankerst, Hans-Peter Kriegel, and Jörg Sander presented ordering points to
identify clustering structure (OPTICS) in 1999. It is a modified version of DBSCAN;
however, the input variable requirements are less stringent [55]. It generates a database
placing orders, saving the core distance and a reasonable reachability distance for every
item. A clustering framework is constructed that defines a wide range of potential values
and clusters the data autonomously and dynamically. OPTICS determines an enhanced
cluster ordering using data on a wide range of characteristics, similar to density-based
clustering. This method has received changes and adjustments over time in order to
increase its performance and meet certain clustering problems.

FastOPTICS, an improved version of the method that enhances the accuracy for huge
datasets, is one improvement of OPTICS [56]. FastOPTICS makes use of a number of
optimization approaches to minimize the computing complexities involved in evaluating
accessibility distances and creating the OPTICS graphic. It enables quicker handling
and evaluation of datasets containing countless data points. Another innovation is the
combination of OPTICS with visualization approaches. Users may more successfully study
and analyze clustering findings by integrating OPTICS with dynamic visualizations. Scatter
graphs, heatmaps, and dendrograms may be employed to show the hierarchical structure
and density distributions of the clusters, allowing for a more instinctive comprehension of
the data.
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4.3. Grid-Based Clustering

Grid-based clustering is a clustering approach that utilizes the data field as divided
into grid cells, and data points are allocated to them. Hinneburg and Keim first used it
in 1998. It can provide efficient and scalable clustering methods, which are extremely
useful for large datasets [57]. Grid-based clustering works by dividing the dataspace into a
standard grid of units. According to the kind of data being clustered, every cell indicates a
geographical region or a collection of values associated with attributes. The grid units are
then allocated data points depending on their precise position or value of an attribute [58].
The following are some popular grid-based clustering approaches.

4.3.1. STING

Statistical information grid (STING) is an acronym that refers to the statistical informa-
tion grid. Bureva et al. introduced STING, a grid-based clustering technique, in 2017 [59].
To promote effective grouping and analysis of spatial data points, STING separates the
data space into a hierarchical grid pattern. STING divides the data space into an irregular
grid at first, and statistical data like mean, variance, and correlation are computed for every
cell in the grid. The statistical analysis provides the distribution of data across each cell.
Cells with similar statistical qualities are combined to produce bigger cells, leading to a
grid structure. Clustering in STING is accomplished by assessing the uniformity of the
statistical data contained within every cell. If a cell fails to match the stated homogeneity
requirements, it is divided into several sub-cells. The method is repeated until all cells meet
the homogeneity criterion or the appropriate degree of precision is obtained. It generates
clusters using cell data and statistical approaches to determine cell similarities [60].

4.3.2. CLIQUE

Clustering in quest (CLIQUE) is an acronym that refers to clustering in the quest.
Agrawal et al. presented it in 1998 as a grid-based clustering technique [61]. CLIQUE
seeks to discover dense areas inside a fixed-size grid pattern referred to as cliques. It is
a clustering algorithm that uses a grid-based framework to find the dense regions in the
data field. Each component in the grid layout is represented by a maximal clique, while
clusters are described as connected dense units. It divides the dataspace into fixed-size grid
cells, and every cell in the grid is considered as a possible clique. Cliques are identified
by analyzing the density of data points across every cell. If the number of points inside a
cell reaches a predetermined density threshold, a clique appears. CLIQUE works from the
ground up. It begins with each cell and combines nearby cells to form bigger cliques once
the density conditions are met. The merging procedure is repeated until no further cliques
may emerge [62].

4.3.3. GridDBSCAN

T. Boonchoo et al. proposed GridDBSCAN. It is a grid-based variant of the well-known
DBSCAN technique. This technique begins by creating a grid structure that divides the
data space [63]. A customized parameter, often the epsilon distance employed by DBSCAN,
determines the capacity of the grid cells. Depending on their geographical supervision,
the data items are subsequently allocated to the respective grid cells. GridDBSCAN then
executes the DBSCAN core stages within every grid cell. It finds its center points that are
placed with an adequate number of neighbors inside the epsilon distance. The technique
grows clusters by linking core locations that have neighbors in general. Points that do not
belong to any cluster are referred to as noise and outliers. It dynamically modifies the
epsilon value for every cell in the grid depending on its density attributes. This enables
dynamic density estimation, which takes into consideration local density fluctuations across
various sections of the data space.

GridDBSCAN has enhanced scalability and lowered computing complexity when
compared with the original DBSCAN technique. GridDBSCAN decreases the number of
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distance computations required by separating the data space into grids, which makes it
more effective for huge datasets [64].

4.4. Partitioning-Based Clustering

It is a type of clustering algorithm which divides datasets into distinct groups by
optimizing a function with objectives. It continuously allocates data points to clusters
and maintains the cluster centroid points until convergence [15]. This method allocates
every data point to precisely one cluster, and the number of clusters is either given ini-
tially or decided by the technique dynamically. K-Means and K-Medoid are two popular
partitioning-based clustering algorithms. K-Means and their related techniques and K-
Medoid-related techniques are discussed here.

4.4.1. K-Means

K-Means clustering is an unsupervised learning technique. Clustering is used to group
data items based on how comparable they are. The letter “K” is based on how comparable
they are. The letter “K” in the K cluster data points are clustered using clustering [15]. Each
data point’s distance from the two center points has to be computed. The distance between
the center points of every data point is determined, and the data item is then assigned
to the center point with the shortest distance. This approach is used for each dataset to
allocate it to a center point. Once the data points have been assigned to centroids, the
next phase is to calculate the exact center point for each of the two clusters of data. To
update the centroid of every cluster, the average of all the data items assigned to it is taken.
It is repeated and each phase is updated iteratively until the centroids no longer change
substantially or until the desired number of iterations is reached. The approach converges
when the centroids stabilize and their locations cease shifting substantially. As the final
outcome of the K-means technique, a set of K clusters with one data point each is produced.
This clustering has been extensively used in a wide range of applications including market
segmentation, image segmentation, and identifying anomalies. However it has several
downsides such as vulnerability to the random assignment of the first centroids or the need
for specialized knowledge to determine the optimal value of K. Despite these shortcomings,
K-Means clustering remains a popular and successful approach for data analysis and
pattern recognition.

K. A. A. Nazeer developed an improved version of the K-Means approach that involves
sorting and partitioning of the dataset into “k” sets, resulting in better beginning centroids
and hence boosting the algorithm’s performance [65]. When compared to the traditional
K-Means method, this strategy converges faster. The value of k (the needed number of
clusters) must still be given as input, which may be tricky in some cases. This is one of the
technique’s major drawbacks.

L. Xumin developed an improved K-Means approach for dealing with the problem
of calculating the Euclidean distance between each data point and all cluster centers in
each iteration, which increases the running time [66]. Each iteration of this procedure
keeps certain information in a structure of data that may subsequently be used in the next
cycle. This dramatically decreases processing time, especially for large datasets with a large
number of clusters. When evaluated against a variety of benchmark datasets, the proposed
approach surpassed the standard K-Means algorithm in regard to accuracy and speed.

The convexity constraints variational K-Means (CV K-Means) approach was created
by S. Ren and A. Fan to address the issue of unnecessary features caused by standard
K-Means clustering’s use of the Euclidean distance as a similarity metric [67]. A weight
vector based on the coefficient of variation is provided to reduce the impact of insignificant
attributes. The main disadvantage of this strategy is that it still requires input, namely the
needed number of clusters (k).

Z. Zhang proposed an improved K-Means clustering algorithm that optimizes the
initial centroids based on data dimension density [68]. The method ensures that the initial
centroids have the most cluster-to-cluster variance. This technique is implemented on the
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Hadoop platform using the Map-Reduce programming model. This strategy improved the
stability of K-Means clustering.

4.4.2. Fuzzy C Mean

The fuzzy c-means (FCM) clustering algorithm is an unsupervised approach to data
clustering. It is a K-Means variant that decreases the sum of the squared distances between
cluster centroids and data points in each cluster. FCM assigns a fuzzy membership degree
to each data point, representing how much it belongs to each cluster. Data points can belong
to many clusters in part, allowing for more sophisticated categorization. The extensive use
of FCM in data mining and machine learning benefits, in particular, image segmentation,
pattern recognition, and informatics [69].

The FCM approach begins by randomly initializing the degree of membership values,
and the number of clusters for every point of data. The centroid of each cluster is then
determined using the membership degrees as weights. After that, the membership degrees
of each data point are adjusted based on its distance from the centroids. It is iterated
until convergence is reached or until a user-specified number of times (the iteration could
become stuck at specific local maxima or minima). FCM has several applications including
data mining, pattern recognition, and image segmentation [70]. It is an effective clustering
method for datasets with ill-defined cluster boundaries.

T. Velmurugan [71] performed a comparison of K-Means and FCM clustering meth-
ods based on the number of samples and groupings. The findings show that K-Means
outperforms FCM in general, as FCM requires more time to complete fuzzy measure com-
putations, increasing its temporal complexity and influencing its outcomes. Although FCM
gives outcomes similar to K-Means, its time complexity remains very high.

Banerjee, S. conducted a comparative analysis of multiple KM algorithm versions,
such as Bisecting K-Means, FCM, and genetic K-Means [72]. Genetic K-Means exceeds the
other clustering algorithms in terms of both internal and external indices and delivers the
best performance, according to the data.

S. Ramathilagam developed an excellent fuzzy segmentation algorithm for breast
magnetic resonance imaging (MRI) data using kernel-induced FCM, an objective function
of FCM [73]. This technique’s foundation is the hyper tangent function, which is based
on the kernel function and Lagrangian multipliers. When compared to current fuzzy
segmentation techniques on the same dataset, the suggested technique performed better in
terms of precision, specificity, as well as accuracy. The approach may be used to precisely
and effectively segment breast MRI datasets, which is critical for breast cancer diagnosis
and therapy.

Huynh Van Lung and Jong-Myon Kim developed the generalized spatial Fuzzy C-
Means clustering (GSFCM) technique, which is used for brain MRI segmentation [74].
GSFCM employs both pixel characteristics and spatial local information, with the weights
of each neighbor determined by its distance properties. The approach tries to reduce the
over-segmentation problem associated with conventional FCM through the use of spatial
information, resulting in improved segmentation outcomes. According to the results of the
experiments, GSFCM outperforms regular FCM when it comes to segmentation reliability
and precision.

Gerald Schaefer and Abdul H. Sadka presented an FCM calculation using mean shift
for skin lesion removal. They proposed an FCM target function that adds a mean area
factor into the traditional FCM target function according to mean shift [75]. According to
testing data, their system is capable of effectively extracting the borders of skin lesions.

4.4.3. K-Means++

K-Means clustering is a popular clustering algorithm that splits data into K groups
based on their similarities. K-Means has the disadvantage of being sensitive to how the
center points are initialized, which may result in poor clustering [76]. To address this
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issue and improve clustering quality, K-Means++ adopts a more sophisticated centroid
initialization.

The K-Means++ approach ensures that centroids are initialized at distant places,
reducing the chance of empty clusters or numerous clusters linked to a single centroid.
Because of this initialization stage, the centroids are equally distributed over the data space,
reducing the possibility that the algorithm may become caught in a specific minimum [77].
K-Means++ and the regular K-Means method are essentially identical, with the exception of
the initial step. With K-Means++, we may improve our findings and avoid poor clustering.
As a result, K-Means++ is a popular clustering algorithm in a range of fields, like artificial
intelligence, data mining, and image segmentation.

The steps of the K-Means++ clustering method are as follows [78]. To begin, select one
of the data points at random to act as the initial center point. For each subsequent centroid,
calculate the distance between every point of data and the earlier picked closest centroid
(using the Euclidean distance). Create a weighted distribution of probabilities with each
data point’s weight proportionate to its square distance from the nearest center point. Select
the next centroid by choosing a sample from the weighted distribution of probabilities
created in the previous step. Repeat steps 2–4 until all k center spots have been picked.
Determine the distances between each data point’s centroid, and subsequently locate the
point in the cluster with the nearest centroid. Find the new centroid by calculating the
average of the data points assigned to every cluster. Steps 6 and 7 should be repeated
until the center points stabilize and the data point cluster assignments remain consistent.
The procedure delivers the k clusters’ final center points in addition to the final data
point distributions to clusters. It must be mentioned that the K-Means++ approach has
superior initialization than the initially developed K-Means algorithm. Using a weighted
distribution of probabilities, the approach can select more accurate starting center locations,
perhaps producing better clustering results.

Z. Min and D. Kai-fei presented a way of dealing with the K-Means++ technique’s
restrictions. The method selects the cluster center with a small amount of variation as the
first beginning point to lessen the influence of limited points and maximize the reliability
and precision of the clustering findings. However, the proposed strategy has two major
flaws. First, due to the intricacies of the method used, it may take longer [79]. Secondly, if
there is a large amount of data, it may cause computational issues. Several concerns must
be addressed before the approach may be used in real-world applications.

4.4.4. MinMax K-Means

The MinMax K-means technique developed by Georgios Tzortzis and Aristidis Likas
aims to increase the robustness of the K-means method by minimizing the greatest distance
between data points and the center points assigned to them [80]. Utilizing this method, K
centroids are selected at random, data points are clustered by assigning them to the closest
center point, the greatest distance between each data point and its chosen center point is
calculated, and center points are calculated again by placing them in the center of their
respective clusters. MinMax K-Means has been evaluated against kernel K-Means, fuzzy
K-Means, and standard K-Means algorithms.

The MinMax K-Means approach begins by randomly selecting K centroids from the
available dataset. In the subsequent stage, the Euclidean distance is employed for allocating
every data point to the nearest centroid. In the next step, the greatest distance between each
data point and its allocated centroid is calculated. The centroids are determined again in
the subsequent stage by shifting them to the middle of their corresponding clusters. Steps
two through four are performed until convergence is obtained or the maximum number
of iterations is reached. The final result is obtained by organizing the data points with
respect to their nearest center points [80]. The MinMax K-Means approach is designed to
minimize the greatest distance between data points and the allocated center points, thus
being more resistant to complex datasets with intersecting clusters than the classic K-Means
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algorithm. This approach may be particularly useful in boosting the stability and precision
of clustering techniques in situations where points of data are varied or noisy.

4.4.5. K*-Means

K-Means is a well-known unsupervised machine learning technique for clustering
data. Although it is a simple and effective approach, there may be some performance
concerns, such as susceptibility to the starting center points and a tendency to converge
to inferior solutions. M. C. Hung proposed the K*-Means technique to address these
shortcomings [81]. The K*-Means method improves on the standard K-Means algorithm
by using a dynamic sampling technique for selecting initial centroids and an enhanced
updating procedure for the centroid during each iteration. The technique operates by first
utilizing a dynamic sampling strategy that takes into account both distance and weight,
beginning with a small number of data points to act as the first centroids and set the number
of clusters to K. To link all of the data points to the nearest centroids, the Euclidean distance
is employed. The centroids are modified by computing the average of all the data items
assigned to each central point. Steps 2 and 3 are repeated until convergence is reached.

K*-Means uses a dynamic sampling strategy to choose initial center points which takes
into account both the distance between data points and the number of data points. The
approach selects an arbitrary data point as the initial center point and then selects further
center points based on their distance from the preceding center points and their neighbor-
hood weight. The first center points are well-distributed and precise representations. The
number of data points assigned to each center point has been taken into account by an
altered modify rule employed by K*-Means to modify the centroids through each iteration.

4.4.6. K-Means with Classification Method

Arpit Bansal et al. propose a unique method that integrates the K-Means clustering
algorithm and an approach for classification to improve the prediction of data accuracy [82].
The K-Means approach is used in the first stage to group similar data points into K clusters,
and then each cluster is put through a classification approach such as a decision tree or
Naive Bayes to anticipate the result. Utilizing real-world datasets, researchers compared
the precision of the proposed approach to that of the standard K-Means algorithm. The
results showed that the proposed technique performed better in terms of prediction. This
concept offers an improved way of predicting results using data and may find applications
in a variety of fields like business, medical care, and finance. Because it integrates the
positive aspects of clustering and classification techniques, the proposed method provides
more exact result prediction than standard clustering methods alone.

4.4.7. K-Medoid

K-Medoid has been investigated from several perspectives including initialization
processes, distance metrics, optimization approaches, evaluation measurements, etc. Parti-
tion around medoids (PAM) was created in 1987 by Kaufman and Rousseuw [83]. PAM, as
opposed to K-Means, depicts a cluster by its medoid, indicating the structure that occurs
most centrally situated inside the cluster. Medoids can be noisier and more outlier-resistant
than center points. It was created to overcome the flaws of the K-Means algorithm. It
selects K medoids randomly or by a heuristic approach and data are assigned to a cluster
using a distance metric. The data point inside every cluster is chosen with the smallest
dissimilarity as the subsequent medoid, substituting the prior medoid. The delegated and
update stages are repeated until a stopping requirement is reached. This might be a set
number of repeats, medoid location convergence, or a decrease in total dissimilarity [28].
When the algorithm convergence occurs, the resultant clusters are made up of data points
that have been allocated to their corresponding medoids. Throughout each cluster, the
medoids reflect the most prominent or significant areas.

Tagaram attributes clustering as an unsupervised method of learning which enables
us to split data into groups [84]. Velmurugan et al. described clustering as an unsupervised
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learning process [85]. According to these studies, the K-Medoids approach is more resilient
than K-Means clustering when it comes to noise and outliers, although it is only suitable
for the smallest datasets.

4.4.8. Combining K-Medoids Clustering and Naïve Bayes Classification

After the data items have been classified into clusters utilizing K-Medoids clustering,
Naive Bayes (NB) classification is performed to allocate labels to the clusters [86]. This
integrated approach produces better results. An NB classifier is built using the retrieved
features and the matching labeled classes. The NB method is based on the assumption of
feature isolation and predicts the conditional probability of every attribute given the class
labeling. To identify fresh, previously unknown data points, a trained NB classifier is used
for classification. The most possible class label is determined using the retrieved charac-
teristics from each data point and the learned distributions of probability [87]. Relevant
metrics are used for assessing the combined clustering and classification outcomes like
performance, precision measure, recall, and F1 score. The performance of the approach is
analyzed along with any required modifications or enhancements.

4.4.9. Partitioning around Medoids and Its Variants

The partitioning around medoids [88] is composed of two algorithms: BUILD to select
a starting point for clustering and SWAP to enhance the clustering at a local optimum
(locating the optimal global value of the K-Medoids issue is regrettably NP-hard, as demon-
strated by Kariv and Hakimi [89]). The techniques need a dissimilarity metric (which can
be determined using Kaufman or Rousseeuw’s regular DAISY, which needs O(n2) memory
and usually O(n2d) time to determine, but possibly much more for prohibitive distances
like earth mover’s distance, also referred to as Wasserstein metric). In numerous situations,
calculating the distance matrix has become a bottleneck [90].

The BUILD technique, introduced by Z. Li, G. Wang, and G. He, identifies an initial
collection of medoids and gives a solid initial point for the remaining iterative phases of
PAM [91]. Initially, the total variance of the data item to all presently selected medoids is
calculated. The medoid linked with the lowest overall dissimilarity value is considered.
The data point with the lowest overall dissimilarity is chosen as the subsequent medoid
after considering the variance for all data points. The BUILD method iteratively examines
every data point’s dissimilarity to the present set of medoids and chooses the data point
with the lowest overall variance as the subsequent medoid. This procedure guarantees that
the first medoids are selected based on their capacity to accurately reflect the data. After
selecting the first medoids using the BUILD method, PAM goes through the allocation and
update processes to repeatedly modify the medoids, thus improving the clustering result.

The SWAP optimization approach is used in PAM to enhance the clustering approach
by iteratively exchanging a medoid against a non-medoid, indicating and analyzing the
resultant dissimilarity. The SWAP method, developed by H. Song and J.-G. Lee, tries to
identify superior medoid allocations that minimize overall dissimilarity across clusters [92].
Begin using the initial collection of medoids acquired via the BUILD initialization process.
Utilizing the dissimilarity metric, often the distance between the data point and the medoid,
every data point is allocated to the closest medoid. Iteration over all medoids is carried
out to investigate possible swaps and assess their influence on the clustering approach.
The swap operation and assessment procedures are continued until no additional swaps
reduce overall dissimilarity. The approach has reached convergence at this stage, so the
final collection of medoids reflects a better clustering result [93].

4.4.10. Clustering Large Applications

Clustering large applications (CLARA) is a clustering algorithm designed specifi-
cally for handling large datasets. It integrates the K-Medoids clustering approach with a
sampling-based mechanism to successfully cluster large datasets. CLARA is a clustering
technique optimized for huge datasets. It is a K-Medoids clustering method modification
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that overcomes the scalability concerns associated with classic K-Medoids techniques.
CLARA splits the dataset into numerous independent samples and uses K-Medoids cluster-
ing to produce representative medoids for every single sample. S. Renjith and A. Sreekumar
provide the CLARA method, which first generates a large number of samples at random
from the initial set of data. The quantity and amount of samples are governed by the
computing resources provided [94]. To choose a collection of medoids, the K-Medoids
technique is run on every single sample. This is accomplished by modifying the medoids
iteratively in order to minimize the overall dissimilarity and distance between the medoids
and the data points inside each sample.

The medoids collected from the samples are examined for quality. This is accomplished
by determining the mean variance or distance between each medoid and the data points in
the total dataset. According to their assessment ratings, the most effective medoids from
the samples are chosen. These medoids reflect the clusters’ final collection of relevant data
points. On the basis of a distance measure of your choice, each data point in the dataset is
allocated to the closest medoid. Every point of data is assigned to a cluster that includes
its closest medoid. Relevant metrics are used to assess the clustering results, like cluster
purity, silhouette coefficient, or various domain-specific indicators. The clusters and the
clustering method’s patterns or discoveries are analyzed. CLARA overcomes the limits of
K-Medoids approaches in big dataset management by employing random collection and
medoid selections from numerous samples [95]. CLARA has the ability to deliver scalable
and effective clustering techniques for applications with enormous volumes of data.

4.4.11. Clustering Large Applications Based on Randomized Search

R. T. Ng and Jiawei Han proposed the clustering large applications based on the ran-
domized search (CLARANS) technique. CLARANS explores the solution domain through
a randomized search using various combinations of medoids [95]. CLARANS starts by
picking K medoids arbitrarily from the dataset. For every iteration of CLARANS, a neigh-
bor medoid is chosen arbitrarily for every current medoid. The number of neighbors to
take into account is a customized parameter that governs the search’s precision. CLARANS
conducts a local search by exchanging the present medoid for the neighbor medoid and
assessing the goal function (such as total dissimilarity) for the resulting medoid set. The
goal is to enhance or optimize the clustering approach by lowering total dissimilarity
and another criterion. If the desired function value changes or meets a preset threshold,
CLARANS approves the updated medoid set. If a substitute medoid set is approved, it
becomes the present medoids’ updated set; alternatively, the swap is denied, while the
existing medoids stay unaltered. CLARANS iterates through neighbor research, local
search, and accept or reject processes a predetermined number of times. When the required
number of iterations is achieved, the algorithm terminates. As the ultimate clustering
approach, CLARANS delivers the most effective medoid set discovered over the rounds.
The number of iterations and the greatest number of neighbors are searched to determine
the level of accuracy of the result.

Instead of examining all potential swaps, CLARANS employs a randomized search.
It selects an arbitrary combination of a non-medoid item and a medoid item, determines
when this enhances the present loss, and subsequently greedily conducts the swap. Relating
the FastPAM1 notion to CLARANS’ arbitrary exploration technique, just the non-medoid
item is chosen at random, and all medoids are examined for switching at a cost comparable
to searching at one medoid [96]. This implies that we may either investigate K times the
number of vertices of the graph or minimize the number of samples that are required by a
factor of K. The second option is selected to achieve results comparable to the distinctive
CLARANS in terms of the number of edges examined; however, because the edges selected
require exactly the same non-medoids, a small decrease is anticipated in quality, which can
be easily compensated for by increasing the non-medoids subsampling rate. The consumer
may easily alter the balance between calculation time and exploration by changing the
sub-sampling rate option.
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CLARINS is a clustering technique that is optimized for handling huge datasets. To
discover the best medoids and clustering solution, it employs a randomized search tech-
nique. Wei et al. discovered that genetic approaches worked only for short datasets, small
K, and well-separated symmetric clusters and that CLARANS was typically superior [97].
The CLARANS method views the searching space as a high-dimensional hypergraph, with
each edge representing the swapping of a medoid or a non-medoid. The technique may
be used to effectively investigate the K edges relating to all medoids at the same time; this
enables us to investigate a bigger portion of the search area in the same amount of time,
although we estimate the savings to be rather minimal in comparison to the gains obtained
in PAM.

Table 3 provides a comprehensive overview of different clustering techniques and
their applications

Table 3. Different clustering techniques and their applications.

Technique Advantages Limitations Applications

Hierarchical clustering [29,32]

• It is not necessary to
determine the no.
of clusters.

• Retrieves the hierarchical
relationships that exist
between clusters.

• It allows for the rapid and
easy identification of noisy
dataset and outliers.

• Large datasets are
substantially more costly.

• It responds to original
conditions and may be
challenging to manage data
with several properties.

• It is difficult to determine
the optimal no. of clusters
for analysis.

• Consumer segmentation
and market analysis.

• Pattern and
image recognition.

• Text mining and
document clustering.

Density-based Clustering [46]

• It is capable of detecting any
type of cluster.

• Robustness to noise
and outliers.

• It is capable of managing a
wide variety of
cluster densities.

• Suitable for datasets with a
biased or
uneven distribution

• Sensitive to parameter
selection, such as density
and distance criterion.

• Difficulty in effectively
handling
high-dimensional datasets.

• Scalability issues arise with
large datasets because of
density calculations.

• Identifying clusters with a
little varying density
is difficult.

• When handling varied
densities of data,
performance degrades.

• Recognition of items and
image segmentation.

• Analysis of credit card
transactions and
fraud detection.

• Detecting anomalies and
identifying outliers in
many disciplines.

Grid-based clustering [58]

• Scalable and efficient for
large datasets.

• Simple and easy
to implement.

• Capable of dealing with
data of varying density.

• Creates a grid structure to
help you detect spatial
patterns and
visualize groupings.

• Lower complexity in
contrast to
distance-based approaches.

• Changes in grid size and
resolution can have an
impact on clustering results.

• Difficulty managing clusters
spanning many grid cells.

• Grid orientation and data
dispersion sensitivities.

• Capability to manage
groups of irregular forms
is limited.

• Incapability to capture
complex cluster interactions
with enough flexibility.

• In computer vision and
image processing, cluster
analysis is used.

• Fraud and outlier detection
in massive datasets.

• Detecting and analyzing
network intrusions.

• Clustering is used in
exploring data, analysis,
and mining.
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Table 3. Cont.

Technique Advantages Limitations Applications

Partition-based clustering [15]

• Partitioning methods are
frequently computationally
effective and scalable, which
makes them appropriate for
huge datasets.

• They can work with a
variety of data formats,
including numerical and
categorical properties.

• Partition clustering allows
for simple interpretations
because every point of data
corresponds to just one
cluster.

• Partition clustering
approaches, such as
k-means, have received
substantial research and
widespread use, with
widely recognized
algorithms along with
evaluation criteria.

• Partition clustering
techniques often converge
rapidly, making them
computationally efficient.

• It is sensitive to starting
points, resulting in varied
results with different
starting positions.

• The user must define the
number of clusters ahead of
time, which might be
difficult if the ideal number
is unknown.

• Partition clustering
techniques imply spherical
and similar-sized clusters,
restricting their usefulness
for complicated and
non-linear cluster forms.

• These methods are
susceptible to outliers that
can have a major impact on
the creation of clusters.

• Customer Segmentation
in Marketing

• Image Compression and
Segmentation in
Computer Vision

• Market Basket Analysis
in Retail

• Document Clustering in
Text Mining

4.5. Comparison of Clustering Algorithms

Note that in Table 4, there is a comparison of different algorithms with respect to
the following:

i. Complexity: Indicates the technique’s computational complexity, where n is the no.
of data points, k is the no. of clusters, I is the no. of iterations, and d is the data’s
dimension.

ii. Cluster Shape: Specifies the types of cluster forms that may be handled by the
clustering technique.

iii. Dataset Size: Specifies whether the technique is appropriate for large-scale, small-
scale, or both datasets.

iv. Accuracy/Performance (Final Results): Specifies the technique’s overall accuracy/
performance in terms of the final clustering outcomes.

4.6. Hyperparameter Tuning in Clustering Algorithms

The importance of hyper-parameters in the context of Artificial Intelligence (AI) al-
gorithms cannot be overemphasized. The course of algorithms can be directed by these
seemingly harmless parameters to either outstanding performance or abject failure. In keep-
ing with this crucial idea, this study launches a focused investigation of hyper-parameter
optimization, a crucial subject that supports the effectiveness of AI systems. In addition,
the mathematical formalization of hyperparameter optimization (HPO) is fundamentally
a black-box optimization, frequently in a higher-dimensional space, so it is preferable to
outsource this to suitable algorithms and machines to boost productivity and guarantee
reproducibility [98].
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Table 4. Comparison of different clustering algorithms with respect to accuracy and their limitations.

Algorithm Complexity Cluster Accuracy
(Final Result) Dataset Size Limitations

K-mean [15] O(n ∗ k ∗ I ∗ d) Spherical Moderate Large or Small
Sensitive to initial centroid
selection, assumes equal-sized
and density clusters

K-Mean++ [77] O(n ∗ k ∗ I ∗ d) Spherical Moderate Large or Small
Sensitive to initial centroid
selection, improves
initialization over K-means

K-Mean* [81] O(n ∗ k ∗ I ∗ d) Spherical High Large or Small Robust to initial centroid
selection, enhances K-means

Combining
K-medoid
and NB [87]

O(n ∗ k ∗ I ∗ d) Arbitrary High Small Computationally expensive for
large datasets

K-Medoid [28] O(k ∗ I ∗ n2) Arbitrary, varying Moderate Small Computationally exhaustive for
large datasets

CLARA [94] O(s ∗ k ∗ I ∗ d) Spherical, Fuzzy Moderate Large Computationally expensive,
limited to small datasets

CLARANS [96] O(n ∗ k ∗ I ∗ d) Spherical, Fuzzy Moderate Large or Small Computationally expensive,
randomization improves results

PAM [90] O(k ∗ I ∗ n2) Arbitrary, Varying High Small Computationally expensive for
large datasets

Minmax K-Mean [80] O(n ∗ k ∗ I ∗ d) Spherical High Large or Small Sensitive to outliers,
non-linear scaling

Agglomerative
Hierarchical [34] O(n3 ∗ d) Arbitrary Moderate Small Computationally expensive for

large datasets

Divisive
Hierarchical [32] O(n3 ∗ d) Arbitrary Moderate Small Computationally expensive for

large datasets

BIRCH
Hierarchical [37] O(n ∗ I ∗ d) Balanced Moderate Large Sensitive to initial

cluster centers

CURE
Hierarchical [39] O(n ∗ I ∗ d) Arbitrary Moderate Large Sensitivity to order of

data points

CHAMELEON
Hierarchical [29] O(n ∗ I ∗ d) Network Moderate Large Sensitive to initial clusters,

lacks robustness

DBSCAN [47] O(n2 ∗ d) Arbitrary High Large or Small Sensitive to density and
distance parameters

DENCLUE [52] O(n3 ∗ d) Fuzzy High Large or Small Computationally expensive for
large datasets

OPTICS [55] O(n2 ∗ d) Arbitrary, Varying High Large or Small Sensitive to density and
distance parameters

STING grid [59] O(n ∗ I ∗ d) Arbitrary Moderate Large Sensitive to grid size, assumes
grid structure

CLIQUE [61] O(n(d+1) ∗ (m +
logn))

Network, Arbitrary High Small Sensitive to density, parameter
tuning required

Fuzzy C-Mean [70] O(n ∗ I ∗ c ∗ d) Fuzzy Moderate Large Sensitive to initial cluster
centers

While the fundamental algorithms and architectures receive a lot of attention, hyper-
parameters frequently go unnoticed in the process of fine-tuning these models for the best
results. Therefore, a complete viewpoint is required, emphasizing the potential conse-
quences of ignoring hyper-parameter tweaking. It is necessary to pre-specify an additional
hyperparameter, which controls the size of the localization, in order to obtain improved
clustering performance in particular applications [99]. There are many challenges in tuning
hyperparameters for clustering algorithms, and these difficulties become more pronounced
when we look at the particular methods discussed above.
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• Algorithm Complexity: The search for optimal settings is difficult and time-consuming
since many clustering algorithms, including K-means variants, hierarchical approaches,
and density-based methods, contain sophisticated parameter interactions.

• Cluster Size and Shape: The dataset’s cluster distribution, size, and shape can have
a significant impact on how well the clustering algorithms function. With datasets
that depart from these assumptions, algorithms like K-means, which assume spherical
clusters and equal-sized densities, may have trouble.

• Sensitivity to Initializations: Several algorithms are sensitive to the initial placement of
cluster centroids, including K-means and its variants (K-Means++ and K-Means*). Sub-
optimal or even premature convergence to local optima might result from poor initiation.

• Computationally Expensive: For large datasets, some methods, such as density-based
approaches (OPTICS, DBSCAN) and hierarchical approaches (Agglomerative Hierarchi-
cal, Divisive Hierarchical), may be computationally expensive. Such situations necessitate
careful consideration of computational resources when tuning hyperparameters.

• Accuracy and computational cost trade-offs: The efficiency of clustering algorithms is
sometimes sacrificed for accuracy. More precise algorithms could be computationally
taxing, restricting their application to bigger datasets.

Recent studies have explored cutting-edge methods for hyper-parameter optimization,
realizing how important it is to improve the efficiency of AI algorithms. The work of Calik
et al., which uses regression surrogates based on deep learning to precisely characterize
microwave transistors, is a noteworthy example [100]. This work not only demonstrates
the effectiveness of cutting-edge methods but also emphasizes the necessity of precise
hyper-parameter settings for accurate characterization outcomes. Karaman et al. take a
particularly perceptive step when they promote the use of the artificial bee colony (ABC)
algorithm for hyperparameter optimization. This project, aimed at real-time autonomous
polyp identification of colorectal cancer (CRC), emphasizes the need for context-aware
and specialized hyper-parameter settings. The idea that no algorithm, no matter how
sophisticated, can thrive in the absence of painstakingly calibrated hyper-parameters is
reinforced when this study is compared to the larger AI landscape [101]. A. Thielmann
et al. examine the use of coherence, which measures the semantic consistency of a docu-
ment’s words, to improve the document clustering process of hyperparameter optimization.
Traditionally, hyperparameter optimization entails fine-tuning algorithmic parameters to
produce optimum results. The authors suggest a novel method for optimizing hyperpa-
rameters that incorporates coherence metrics [102], investigating novel strategies to handle
hyperparameter adjustment in clustering algorithms in light of the aforementioned difficulties.

• Sensitivity Analysis: By methodically assessing how each unique hyperparameter
affects clustering results, sensitivity analysis identifies the most important factors and
successfully directs the tuning process.

• Metaheuristic algorithms: To efficiently search the hyperparameter space and identify
optimal or nearly optimal configurations, strategies like genetic algorithms and particle
swarm optimization can be used.

• Multi-objective Optimization: By simultaneously taking into account several goals,
such as accuracy and computational efficiency, solutions can be found that strike a
balance between these competing purposes.

• Transfer Learning: Accelerating the tuning process and enhancing the robustness of
clustering algorithms can be accomplished by utilizing pre-tuned hyperparameters
from comparable datasets or jobs.

• Automated Hyperparameter Tuning: Automated Machine Learning (AutoML) plat-
forms can be used to speed up the process of hyperparameter tuning by using meta-
learning and optimization algorithms to iteratively look for acceptable configurations.

It is clear that hyperparameters are important in deciding how well they work. Despite
the complexity of these algorithms, poor hyperparameter selection might produce subpar
outcomes. To address the difficulties posed by hyperparameter tuning, new strategies are
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emerging. These include sensitivity analysis, metaheuristic algorithms, multi-objective
optimization, transfer learning, and automated tuning. It is crucial to take the time and
effort necessary to choose hyperparameters that are in line with the characteristics of the
dataset and the needs of the algorithm if one is to derive meaningful insights from the data
and obtain accurate clustering results.

4.7. Evaluation Measures in Clustering

Clustering evaluation measures assess the quality of clustering results by comparing
the obtained clusters with known ground truth or by analyzing the internal structure of the
clusters. Here are some commonly used evaluation measures in clustering.

4.7.1. Entropy

When ground truth labels are accessible, entropy-based methods like normalized
mutual information and adjusted mutual information are extensively used strategies for
assessing clustering performances. These metrics evaluate the exchange of data between
anticipated clusters and genuine labeling of classes while accounting for the distribution
of classes and cluster purity. They give an empirical assessment of the coherence be-
tween clustering and real labeling of classes, taking into consideration class and cluster
distribution [103]. Figure 8 shows the impact of the number of clusters on entropy.

Figure 8. Entropy with respect to the number of clusters.

4.7.2. F Measure

The F measure is a popular clustering assessment metric that examines the precision
and recall of clustering algorithms. To assess clustering efficiency, it delivers a single
number that integrates these two criteria [104]. The F measure is used as an assessment
metric in clustering, as follows.
Precision
Precision in the framework of clustering evaluation relates to the integrity of the clusters. It
is the percentage of data points in a cluster that actually correspond to that group, without
taking into account points from other clusters [105]. It evaluates how effectively a cluster
depicts a certain group or notion.
Recall
The thoroughness of the clusters is referred to as recall in clustering evaluation. The
percentage of data points from a certain class that are successfully allocated to the relevant
cluster is measured by recall [105]. It evaluates the extent to which a cluster collects all of
the data points in a particular class.
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Harmonic Mean
Employing the harmonic mean, the F measure integrates accuracy and recall into one value.

HM = 2× (Precision× Recall)
(Precision + Recall)

(1)

The above equation is used to calculate the harmonic mean [106]. The F measure, by
employing the harmonic mean, strikes a compromise between precision and recall, giving
equal weight to both measurements.
Cluster-level F Measure
The F measure is determined at the cluster level in the clustering assessment. Every cluster
is treated as a separate class, and actual class names are not necessary. The accuracy and
recall for every cluster are calculated using the combination of data points allocated to that
cluster and data points allocated to other clusters. Figure 9 shows how F measure varies
with respect to the number of clusters.

Figure 9. F measure vs. the number of clusters.

4.7.3. Rand Index

The Rand index is a popular clustering assessment metric that compares the similarity
of two data divisions, like clustering results and actual class labels. It gives a quantifiable
measure of the coherence between anticipated and true clusters, independent of the uti-
lized clustering technique [107]. The Rand index is employed as an assessment metric
in clustering as follows. Rand index against different numbers of clusters is shown in
Figure 10.

Figure 10. Number of clusters and Rand index.

4.7.4. Silhouette Coefficient

The Silhouette coefficient is a frequently used clustering assessment metric that eval-
uates the accuracy of clustering findings by measuring data point cohesiveness and sep-
aration inside and across clusters. It returns a single result for the complete clustering
solution, showing how successfully the data items have been allocated to the appropriate
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clusters [108]. The Silhouette coefficient is employed as an assessment metric in clustering
as follows.
Cohesion
The degree to which data points inside a cluster are related is referred to as cohesion. It
computes the mean distance between two data points inside the identical cluster. Lower
cohesiveness means that the data items in a cluster are more densely packed and closer
together [109].
Separation
The separation of the clusters relates to how different they are from one another. It calculates
the mean distance between a data item and other data points in the same cluster. Higher
separation suggests that the clusters are properly separated and distinctive. Silhouette
coefficient index against different numbers of clusters is illustrated in Figure 11.

Figure 11. Silhouette coefficient index.

4.7.5. Dunn Index

The Dunn index is a clustering assessment metric that assesses cluster compression
and separation based on inter-clustering and intra-clustering distances. It returns a single
number indicating the level of accuracy of clustering findings. The Dunn index seeks to
maximize the ratio of inter-clustering distance to intra-clustering separation [110]. The
Dunn index is employed as an assessment metric in clustering as follows.
Inter-Cluster Distance
The variation and distance between various clusters are measured by inter-cluster dis-
tance. It indicates the distance or dispersion between clusters, demonstrating how distinct
they are from one another. A greater inter-clustering distance indicates higher cluster
separation [111].
Intra-Cluster Distance
The similarity and distance between data items inside the identical cluster are measured by
intra-cluster distance. It denotes cluster compaction or cohesiveness, showing how closely
data points are clustered inside each cluster. A lower intra-cluster distance indicates higher
cluster cohesiveness [111].
Dunn Index Calculation
The Dunn index is determined by dividing the shortest inter-cluster distance by the shortest
intra-cluster distance. The smallest distance across the two data points from distinct clusters
is used to determine the inter-cluster distance. The greatest distance between the two data
points inside the same cluster is determined as the intra-cluster distance. The Dunn index
seeks to maximize this ratio, with a greater value indicating an improved clustering pattern.
The impact of the number of clusters on the Dunn index is shown in Figure 12.
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Figure 12. Impact of the number of clusters on Dunn index.

4.7.6. Davies–Bouldin Index

The Davies–Bouldin index is a clustering assessment metric that measures the accuracy
of clustering findings based on intra-cluster and inter-cluster disparities. It returns a single
result that evaluates clustering efficiency by taking into account both cluster compactness
and cluster separation [112]. The more effective the clustering solution, the smaller the
Davies–Bouldin index. The Davies–Bouldin index is employed as an assessment metric in
clustering as follows.
Intra-Cluster Dispersion
Intra-cluster dispersion quantifies the distribution or scattering of data points inside each
cluster. It measures cluster compaction and tightness, reflecting how tightly data points
are packed inside each cluster. Lower intra-cluster dispersion means stronger cluster
cohesiveness [113].
Inter-Cluster Separation
The variation or distance between various clusters is measured by inter-cluster dispersion.
It measures the gap or distance of clusters to determine how distinct they are from one
another. Greater inter-cluster dispersion means stronger cluster separation [113]. The
Davies–Bouldin index against different numbers of clusters is given in Figure 13.

Figure 13. DB index vs. the number of clusters.

4.7.7. Calinski–Harabasz Index

This index calculates the ratio of variation between clusters to variation within clusters.
It measures cluster cohesiveness and segregation, with greater values representing more
accurate clustering. This index is very helpful when analyzing clustering techniques
with predetermined cluster numbers [114]. The Calinski–Harabasz index is calculated by
dividing the between-cluster variance by the within-cluster variance and multiplying the
result by the ratio of (N − K) to (K− 1), in which N is the overall number of data points
and K is the total number of clusters. This scaling element takes into consideration the
number of clusters and the extent of the dataset when calculating the index. Figure 14
shows the Calinski–Harabasz index.
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Figure 14. Calinski–Harabasz index.

4.7.8. Fowlkes–Mallows Index

It is a statistic used to compare the similarity of two clusters. It estimates the consensus
between groups derived from two independent clustering findings, taking both the true
positive and true negative allocations into consideration [115]. The formula of FMI is

FMI =
√
(Precision ∗ Recall) (2)

The FMI scales from 0 to 1, with 1 indicating total concurrence between clustering and
0 indicating no consensus beyond probability.

4.7.9. Hubert’s Gamma Statistic

It is an assessment metric for determining the degree of coherence or connection
between two distinct clusterings. It considers combinations of data points that appear in
identical or distinct clusters in both clusters, offering a measure of coherence that goes
beyond probability. It is computed using two elements: P and Q. P is the number of
consistent pairings that have data points in an identical cluster in both clusterings or within
distinct clusters in both clusterings. Q is the number of inconsistent pairings that have data
points in the identical cluster within one clustering but in distinct clusters in another, or
vice versa [116]. Table 5 shows the evaluation measures used in clustering along with their
pros and cons.

4.8. Applications of Clustering

Clustering is an important process in data mining and artificial intelligence that in-
volves grouping comparable objects or data items together based on their intrinsic features.
Clustering has achieved tremendous progress in various fields of health, bioinformatics,
social networking, etc. Figure 15 depicts the many fields where clustering may be applied.

4.8.1. Image Segmentation

Image segmentation is a common use for clustering algorithms such as K-Medoid and
other clustering approaches. Picture segmentation is the process of dividing a picture into
distinct parts or segments according to criteria like color similarity, appearance, intensity,
or geographical closeness. Clustering techniques may be used to group together similar
pixels as well as to distinguish various regions or objects in a picture [70]. Below is how
clustering is used to segment images.
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Table 5. Evaluation measures in clustering.

Metric Calculation Method Interpretation Pros Cons

Rand Index [107] (TP+TN)
(TP+FP+FN+TN)

Consensus between two
clustering’s

Takes into account both
positive and negative
conditions.

Sensitive to the amount of
clusters and combinations
of data points.

Fowlkes–Mallows
Index [115]

√
(Precision× Recall)

Similarities of two
clusterings

Takes into account real
positive and true negative
decisions.

Does not consider cluster
formation or general
structure.

Silhouette
Coefficient [108,109]

(B−A)
max(A,B)

Cluster density and
segregation

Retrieves cluster
coherence as well as
dissociation.

Distance-based clustering
is the only option.

Davies–Bouldin
Index [112,113]

(Ri+Rj)
d(Ci,Cj)

The average extent of
similarities between
clusters.

Assesses cluster
dispersion and
compactness.

Relies on convex and
isotropic clusters.

Calinski–Harabasz
Index [114]

Between-Clusters Dispersion
Within-Clusters Dispersion ×
((N−K)
(K−1)

Cluster segregation and
compactness.

Modifies for the total
number of clusters and the
extent of the dataset.

Considers that clusters are
spherical and of identical
size.

Dunn Index [110,111] min(d(Ci,Cj))
max(dia(Ck))

Cluster dispersion and
density.

Measurement that is easy
to understand.

Susceptible to noise and
outliers.

F-measure [104] 2× (Precision×Recall)
(Precision+Recall)

Recall as well as precision
must be balanced.

Specifies a single metric
that takes recall as well as
precision into account.

It is determined by the
threshold and similarity
metric used.

Entropy [103] ∑(p× logo f (p))
In clustering assignments,
the degree of chaos or
ambiguity.

Keeps cluster variety and
heterogeneity.

Dataset probabilities must
be estimated.

Hubert’s Gamma
Statistic [116,117]

(P−Q)
(P+Q)

There is a connection
between two clusterings.

Allows for agreement in
ways other than chance.

Sensitivity to the amount
of clusters and repetitions
of data points.

Figure 15. Applications of clustering in different domains.

Color-Based Segmentation
Color information from each pixel is utilized as a feature for clustering in color-based
picture segmentation. Clusters are formed from pixels having similar color values. By
considering pixel colors as feature vectors and grouping them into K groups, K-Means
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and K-Medoid clustering may be used. Each cluster in the graphic indicates a section or
area [118].
Feature Extraction
Color is not the only characteristic that can be taken from a picture; texture, intensity, and
edge information may all be recovered. These properties, in conjunction with pixel color
values, can be utilized to generate high-dimensional feature vectors. Clustering methods,
such as K-Means, may then be applied to these feature vectors to group together similar
pixels or areas [119].
Iterative Optimization
The K-Means and K-Medoid methods optimize the cluster centroids repeatedly in order to
minimize the distance between each pixel and its assigned centroid. Within each cluster, this
optimization procedure seeks the optimum representation of the color or feature distribution.
Post-Processing
Post-processing methods can be used to improve the segmentation results after clustering.
Methods such as region merging and splitting, border smoothing, and noise reduction may
be used to increase the accuracy and cohesiveness of the segmented areas.

Image segmentation utilizing clustering techniques such as K-Means may be used in a
variety of disciplines such as computer vision, healthcare imaging, object recognition, and
analysis of images. It allows for activities including object detection, picture comprehension,
image modification, and automatic image-based measurements [120].

4.8.2. Anomaly Detection

Anomaly detection is an important use of clustering techniques that entails recognizing
and reporting data points and instances that differ substantially from the usual situation. In
clustering, anomaly detection is recognizing datasets or instances which differ considerably
from the regular patterns or behavior of a dataset. Clustering methods may be used to find
anomalies by taking into account data points that are not associated with any cluster or are
positioned distant from the cluster’s centroids [121]. Anomaly detection in clustering is
the recognition of datasets or instances that deviate significantly from the usual patterns or
behavior of a dataset. Clustering algorithms may be used to detect anomalies by considering
data points that are not related to any cluster or are located far from the cluster’s centroids.
The following is an example of how clustering may be used to detect anomalies.

Clustering is useful for detecting anomalies in a variety of disciplines, like identifying
fraud, detection of network intrusions, tracking systems, identifying outliers in data from
sensors, and finding anomalies for medical care or financial tasks [122]. Anomalies can
be found by comparing them with typical patterns in the data using clustering methods,
allowing for early detection of anomalous or suspicious cases. In general, using the
technique of clustering in the detection of anomalies allows for the recognition of outliers
and odd cases, offering significant insights and assisting in the early identification of
unusual circumstances across several domains.

4.8.3. Document Clustering

Document clustering is a popular use of clustering techniques that includes organizing
an enormous number of documents into useful categories based on textual similarities. It is
frequently utilized in a variety of fields including retrieving data, text mining, and han-
dling documents [123]. Identical texts could be clustered together by applying techniques
for clustering to documents, allowing for optimal textual data organization, navigating,
and evaluation.

Document clustering has various advantages. To begin with, it facilitates retrieving
data by grouping papers into clusters, enabling users to rapidly identify relevant materials
within specified subjects or themes. It also supports topic modeling, in which clusters
indicate unique subjects or themes contained in the document disposal, allowing for a more
in-depth analysis of the basic material [124]. The partition clustering technique is widely
used in document clustering. It entails grouping comparable publications together based on
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their content, allowing for effective textual information organization and retrieval. The K-
Medoid approach in document clustering generates typical documents called medoids that
act as cluster centroids. Document clustering provides a systematic and understandable
organization of textual material by utilizing the K-Medoid clustering method. It enables
users to browse and extract insights from vast document repositories more rapidly, allowing
for greater efficiency in document management, exploration, and analysis [125].

In the end, document clustering is an effective method for organizing and analyzing
vast amounts of textual information. It increases retrieval of data, allows for topic modeling,
assists in text categorization, increases handling of documents, and helps in intellectual
acquisition. Document clustering enables academics, analysts, and companies to derive
relevant insights from massive volumes of textual data by employing clustering techniques.

4.8.4. Social Network Analysis

It is a study of the interactions and patterns that exist inside social networks. The
algorithms for clustering are important in social network research because they reveal
community frameworks as well as recognize groupings of persons or companies that
have similar connection patterns. By utilizing clustering algorithms for social network
information, useful knowledge of the network’s factors, behavior, and influence may be
gleaned [126]. Community identification is an important use of clustering in social network
analysis. The goal of community discovery is to find groupings of units in a network
that are strongly linked internally and have less connection between them. Clustering
techniques, like modularity-based approaches or hierarchical-based clustering, may be
utilized to divide the network into coherent groups. Users or institutions inside the same
cluster have greater connections and relations, whereas these clusters indicate subgroups
and regions within the social network [127].

There are various practical uses for social network clustering. It is employed in
systems for recommendations to determine groups of people that share similar tastes
or interests, allowing for personalized suggestions. Clustering is additionally utilized
in specific advertising, where it aids in the identification of certain customer segments
and groups for customized marketing efforts. Furthermore, clustering algorithms help
in finding groups of individuals addressing similar themes or engaging in comparable
behaviors in the area of internet-based social media analysis [128].

In general, clustering algorithms are important in social network research because
they reveal community frameworks, discover groups of people who have comparable
connection patterns, and provide information about social interactions, influence, and
behavior. Researchers and statisticians can obtain a better knowledge of social networks,
targeted specific groups, and examine the development of network frameworks throughout
the years by using clustering techniques.

4.8.5. Traffic Analysis

In analyzing traffic, clustering is commonly utilized to obtain information about
traffic flow patterns and optimize traffic control systems. Techniques of clustering may
extract significant information from data about traffic, resulting in enhanced flow of traffic,
congestion management, and transportation strategy [129].

Traffic stream segmentation is one use of clustering in analyzing traffic. Clustering
techniques may classify comparable traffic circulation patterns based on parameters like
speed, weight, or kind of vehicle. This aids in the identification of various traffic circum-
stances, like congested sections, open-ended zones, or repeated patterns at specified times
of the week. Transportation agencies can design tailored strategies for controlling and
optimizing traffic in various regions of the highway network by categorizing traffic flows
[130]. Clustering techniques may also be used to investigate traffic behavior and traffic pat-
terns. Transportation managers can acquire data on demand for travel, origin–destination
trends, and commuting behavior by grouping comparable trip trajectories or traffic patterns.
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These data may be used to build infrastructure, optimize public transit, and develop traffic
control techniques.

Clustering is a useful approach in traffic analysis because it provides useful informa-
tion for the flow of traffic categorization and analyzing journey patterns. Traffic authorities
and academics may make educated judgments to boost traffic control, decrease congestion,
upgrade the infrastructure for transport, and develop more effective and environmentally
friendly modes of transportation by employing clustering algorithms [131].

4.8.6. Customer Segmentation

Customer segmentation is a critical use of clustering techniques in advertising and
customer analytics. Companies may use clustering algorithms to divide consumers into
various categories on the basis of their similarities, allowing for personalized marketing
tactics and focused customer interaction [132].

Clustering techniques are effective tools for customer segmentation because they en-
able firms to analyze multiple consumer variables and uncover patterns and similarities in
the information being analyzed. Businesses may customize promotions, product sugges-
tions, and pricing approaches for every category by categorizing consumers depending
on demographics, buying behavior, and inclinations. This improves consumer happiness,
retention, and the effectiveness of targeted marketing and loyalty programs. Customer
segmentation using clustering also gives valuable information for market analysis and
product creation, allowing companies to recognize market preferences, find niche mar-
kets, and supply customized solutions [133]. In general, clustering algorithms support
customer-centered strategies, maximize the use of resources, and promote business success
in cutthroat marketplaces.

4.8.7. Healthcare

Clustering algorithms are useful in healthcare because they provide information
about patient groups, illness trends, and medication results. Healthcare practitioners
may efficiently analyze and categorize information about patients by using clustering
algorithms, resulting in more effective decision making, personalized treatment strategies,
and improved medical service. Patient categorization is an important use of clustering in
medical applications [134]. Clustering techniques can classify patients depending on their
medical records, indications, genetic identities, or therapy effects. This enables healthcare
practitioners to identify discrete patient groupings with comparable features, allowing for
more targeted treatments and surgeries. Clustering techniques are also used to analyze
disease patterns and detect outbreaks. Furthermore, clustering algorithms may be used to
allocate and optimize healthcare resources. Clustering techniques can also help discover
trends in healthcare utilization, allowing for the detection of locations where medical care
could be deficient or overburdened [135].

In general, clustering techniques have enormous possibilities in healthcare, since they
will drive advances in patient categorization, analysis of illness patterns, and resource
optimization. By utilizing these methodologies, healthcare practitioners may improve
personalized treatment and manage illnesses plans and resource allocation, which will
eventually contribute to enhanced patient results and the provision of healthcare.

4.8.8. Bioinformatics

Clustering is important in bioinformatics because it contributes to many parts of
biological information processing, such as analyzing gene expression and the sequencing
of protein clustering. Scholars can find hidden patterns, establish functional linkages,
and obtain an understanding of complicated biological processes by applying clustering
techniques to biological information [136].

Gene expression evaluation is a key use of clustering in bioinformatics. Clustering
techniques are employed to classify genes that have identical expression characteristics
among samples and situations. Another key use in bio-informatics is sequenced protein
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grouping. Clustering methods are used to classify proteins that have identical sequences
and frameworks, hence assisting in protein categorization, functional annotations, and
protein-related analyses [136].

In conclusion, clustering techniques have shown to be essential in bio-informatics,
allowing analyses of gene expression and sequenced protein clustering. Scholars can reveal
patterns, establish links, and gain an understanding of complicated biological processes by
clustering biological information. Clustering approaches have considerably increased our
knowledge of genes, proteins, and their roles, eventually leading to the improvement of
biological studies and scientific discoveries.

4.8.9. Climate Science

Clustering is useful in climate science, as it has the critical capacity to detect basic
patterns in complicated climatic datasets. Clustering algorithms are used by climate
scientists to classify geographically connected locations with comparable climatic features.
Clustering aids in detecting unique zones of climate, trends of temperature variations,
and various weather-related phenomena by studying numerous climatic variables such as
humidity, temperature, rainfall, and wind patterns. For example, clustering can assist in
distinguishing dry, semi-arid, and humid zones by grouping locations that have comparable
rainfall patterns [137]. Also, weather conditions are the key factor in agricultural production.
As climate change is the primary factor, both components are internally tied to one another
in many ways [138,139]. These data are critical for agricultural preparation, handling
water resources, as well as disaster preparation. Furthermore, clustering approaches aid
in the detection of climatic anomalies that can have a significant impact on worldwide
precipitation patterns and regional climate variables.

Depending on the particular purposes and qualities of the data being analyzed, mul-
tiple clustering approaches might be applied. K-means clustering is frequently used in
climate data analysis to detect different trends. For example, it may be used to combine
locations with comparable patterns of precipitation and temperature, assisting in the delin-
eation of climatic zones. Identifying the hierarchy of climatic trends is aided by hierarchical
clustering. It aids in the identification of nested climatic areas based on several factors,
which is useful for biological and environmental investigations [140,141].

4.8.10. Criminal Profiling

Criminal profiling, also known as behavioral profiling, is an important analytical
strategy used to develop cognitive and demographic profiles of unidentified offenders
determined by their actions, behaviors, or trends in criminal conduct [142]. Clustering
techniques have a major positive impact on criminal profiling, a key component of security
agencies. This procedure entails developing criminal profiles based on previous crime
information and patterns. Clustering is critical in combining together crime occurrences
with similar features, assisting detectives in comprehending modus operandi, locating
probable criminals, and forecasting future criminal behavior [143].

The K-means method is a popular clustering method in the identification of criminals.
K-means split criminal episodes into unique clusters, each of which represents a particular
sort of crime trend. Police departments can gain insights into the similarities and variations
between criminal activities by analyzing these clusters. These data not only aid in the
creation of criminal profiles but also direct the use of resources and intervention techniques.
Moreover, density-based clustering, namely the DBSCAN technique, can help with criminal
profiling. DBSCAN finds criminal incidence clusters based on density within a specified
geographic area. This method assists in identifying criminal hotspots and trends that may
not be as obvious using other methods [144,145].

In general, clustering algorithms provide a data-driven and methodical method for
criminal profiling. These approaches enable law enforcement organizations to better
comprehend criminal behavior, establish accurate criminal identities, and execute efficient
crime prevention or investigative tactics by finding hidden links and combining comparable
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instances. Clustering techniques such as K-means and DBSCAN aid in the collection of
significant insights from past crime data, hence helping to build precise and efficient
criminal profiles. In addition, these profiles enable law enforcement organizations to make
more informed judgments, distribute resources more effectively, and improve public safety
precautions [146–148].

In conclusion, clustering in climate research enables scientists to decipher the compli-
cated interaction of climatic factors, allowing for precise climate categorization, identifying
anomalies, and ecological evaluations. These findings are critical for comprehending our
planet’s climate change, adopting informed policy choices, and promoting environmentally
friendly practices.

Table 6 shows that the above distribution is a generalization that might change based
on individual use cases and the standard of the dataset utilized in each area. Furthermore,
the ranks (high, medium, low) supplied are relative and reflect the normal predominance
of each clustering approach within a certain application area.

Table 6. Overview of the clustering techniques and their application in different domains.

Applications of Clustering Hierarchical Method Density-Based
Clustering Grid-Based Clustering Partition-Based

Clustering

Anomaly detection Medium Low Low High

Customer Segmentation High High Low High

Bioinformatics High High Low Low

Healthcare Medium Low Low High

Traffic Analysis Low Low Medium High

Social Network Analysis Low Medium Low High

Document Clustering Medium Low Low High

Image Segmentation Low Low Medium High

Climate Science High Low Medium High

Criminal Profiling Medium High Low High

5. Discussions

The term “cluster analysis” refers to a group of methods for finding patterns in
datasets. Hierarchical clustering, density-based clustering, grid-based clustering, and
partition-based clustering are four such methods. While beneficial for detecting outliers
and revealing hierarchical linkages, hierarchical clustering is less suited to handling huge
datasets. Although density-based clustering is sensitive to parameters and scalability,
it is resilient to noise and outliers, making it useful for real-world applications. Large
datasets can be handled effectively by grid-based clustering, but complicated clusters
provide a challenge. While fast and understandable, partition-based clustering, like k-
means, presupposes spherical clusters and calls for predetermined cluster numbers. Each
method has its own advantages and disadvantages, making it appropriate for various tasks
including fraud detection, image processing, and market analysis. Determining the best
approach depends on the data’s properties and the analysis’s objectives.

In the field of cluster analysis, choosing the right method is essential for obtaining
precise and insightful findings. The broad range of clustering algorithms covered above
offers a range of complexity, cluster kinds, and performance traits, each suited to certain
datasets and analytical objectives. These techniques display a variety of behaviors depend-
ing on the size of the dataset, from the exhaustive K-medoid and hierarchical approaches
to the sensitive yet efficient K-means variations. K-Medoid and PAM excel at managing
random and variable clusters, whereas K-means variations like K-Means++ and K-Mean*
improve centroid initialization. However, computational complexity limits the use of
hierarchical approaches like agglomerative and divisive hierarchy to smaller datasets and
parameter adjustment. The necessity for a complete viewpoint that recognizes the effects
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of ignoring hyperparameter tuning within the larger context of AI models is highlighted.
The pre-specification of additional hyperparameters may be necessary for some appli-
cations in order to obtain better clustering performance. The difficulties of fine-tuning
hyperparameters for clustering algorithms are explored in the paper. When taking into
account the algorithm’s complexity, sensitivity to data cluster features, computational costs,
and the trade-off between accuracy and computational cost, these difficulties are made
more difficult, also highlighting many cutting-edge hyperparameter tuning techniques.
These include the use of metaheuristic algorithms, multi-objective optimization, transfer
learning, and automated hyperparameter tweaking through AutoML platforms, as well
as sensitivity analysis, which systematically assesses each hyperparameter’s impact on
clustering outcomes. The authors stress that the quality of clustering results is substantially
influenced by the effective selection of hyperparameters, which is in line with the dataset’s
features and the algorithm’s requirements. Finally, clustering approaches provide effective
tools for organizing and extracting insights from big and complicated datasets. The most
appropriate clustering method is determined by the data properties and the application’s
unique needs. It is critical to assess the quality of clustering findings in order to assure the
validity and use of the produced clusters. Continued study and advancement in cluster-
ing algorithms and evaluation approaches will improve data mining’s ability to provide
meaningful and actionable insights for decision making in a variety of disciplines.

Bias may have been introduced by the criteria used to choose the studies for evaluation.
Papers with null or less significant findings were omitted, resulting in an unbalanced depic-
tion of algorithm performance, whereas papers reporting major advancements or unique
adaptations of existing algorithms may be more likely to be included. The findings of this
study offer a thorough grasp of the advantages and disadvantages of different clustering
techniques. This knowledge has applications in algorithm selection, data preparation,
and outlier management, as well as regulatory compliance and data privacy policy issues.
Furthermore, the future research directions suggested here have the potential to expand
cluster analysis, enabling more precise, effective, and understandable clustering solutions
for a variety of applications.

6. Conclusions and Future Directions

Unprecedented amounts of data are present in both the commercial and scientific
worlds today. Organizations have resorted to data mining, a powerful approach that
makes it easier to extract important insights from large and diverse datasets, to navigate
this data-rich world efficiently. Data mining involves a wide range of procedures and
approaches, such as association rule mining, clustering, classification, and outlier detection.
Clustering is a fundamental data mining method that plays an important role in organizing
and retrieving meaningful information from enormous datasets. Different clustering
algorithms, such as partition-based, hierarchical, grid-based, and density-based techniques,
have emerged, each with its own set of pros and cons. The use of a clustering technique is
determined by the nature of the data, the intended cluster structure, and the application
domain. The partition clustering technique is a popular clustering algorithm that seeks
representative items (medoids) to serve as cluster centers. K-Medoid clustering is more
resilient to outliers than K-Means clustering.

Other clustering algorithms, such as grid clustering, density-based clustering, and
hierarchical clustering, offer alternate options for diverse contexts in addition to partition
clustering. Each method has its own set of assumptions and properties that make it ideal
for different sorts of data and cluster configurations. A detailed review of the data and
the specific aims of the investigation should guide the choice of clustering method. The
use of partition clustering assures that the cluster centers align with actual data points,
which makes it appropriate for applications requiring interpretability and comprehensi-
bility. Clustering has been used effectively in a variety of disciplines, including anomaly
detection, picture segmentation, customer segmentation, and many more. Furthermore,
evaluating clustering results is critical for determining the quality and usefulness of clus-
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tering algorithms. Various assessment metrics, including entropy, Rand Index, DB Index,
and F-measure, can be used to assess the resemblance of clustering findings to ground
truth or the internal cohesion and separation of clusters. It is critical to choose appropriate
assessment measures that match the analyses.

Finally, clustering approaches provide effective tools for organizing and extracting
insights from big and complicated datasets. The most appropriate clustering method is
determined by the data properties and the application’s unique needs. It is critical to assess
the quality of clustering findings in order to assure the validity and use of the produced
clusters. Continued study and advancement in clustering algorithms and evaluation
approaches will improve data mining’s ability to provide meaningful and actionable
insights for decision making in a variety of disciplines.

In conclusion, data mining is a powerful technique that allows organizations to extract
important insights from big and diverse datasets. It includes a diverse set of approaches
and techniques like clustering, classification, association rule mining, and outlier iden-
tification. Clustering, in particular, is critical in organizing data items into meaningful
groupings, allowing for effective data visualization and information extraction. Different
clustering methods, such as partitioned clustering and density-based clustering, have been
introduced and used in a variety of fields, like finance, advertising, and medical services.
These methods provide several techniques for dealing with data characteristics and cluster
formations, allowing organizations to customize the process of clustering.

In the future, data mining and clustering research must concentrate on enhancing the
accuracy and efficiency of clustering algorithms. This involves investigating the application
of modern technologies such as artificial intelligence and neural networks in clustering, as
well as improving the flexibility and productivity of clustering algorithms for analyzing
data in real time. Furthermore, the assessment of clustering findings should be developed
further to verify the accuracy and use of the produced clusters. To further analyze the
quality and usefulness of clustering algorithms in various situations, new assessment
metrics and approaches might be investigated. In addition, clustering’s applicability goes
beyond traditional domains, so there is a need to investigate novel fields where clustering
might bring significant insights. For example, anomaly detection and picture segmentation
are two particular applications mentioned in the literature, although clustering is likely to
be useful in many other fields.
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37. Lorbeer, B.; Kosareva, A.; Deva, B.; Softić, D.; Ruppel, P.; Küpper, A. Variations on the clustering algorithm BIRCH. Big Data Res.
2018, 11, 44–53. [CrossRef]

38. Le Quy Nhon, V.; Anh, D.T. A BIRCH-based clustering method for large time series databases. In Proceedings of the New
Frontiers in Applied Data Mining: PAKDD 2011 International Workshops, Shenzhen, China, 24–27 May 2011; Revised Selected
Papers 15; Springer: Berlin/Heidelberg, Germany, 2012; pp. 148–159.

39. Guha, S.; Rastogi, R.; Shim, K. CURE: An efficient clustering algorithm for large databases. ACM Sigmod Rec. 1998, 27, 73–84.
[CrossRef]

40. Kalnis, P.; Mamoulis, N.; Bakiras, S. On discovering moving clusters in spatio-temporal data. In Proceedings of the Advances
in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005, Angra dos Reis, Brazil, 22–24 August 2005;
Proceedings 9; Springer: Berlin/Heidelberg, Germany, 2005; pp. 364–381.

41. Safdari-Vaighani, A.; Salehpour, P.; Feizi-Derakhshi, M.R. Detecting Non-Spherical Clusters Using Modified CURE Algorithm. In
Proceedings of the 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), IEEE, Mashhad, Iran,
28–29 October 2021; pp. 369–373.

42. Guha, S.; Rastogi, R.; Shim, K. ROCK: A robust clustering algorithm for categorical attributes. Inf. Syst. 2000, 25, 345–366.
[CrossRef]

43. Almeida, J.; Barbosa, L.; Pais, A.; Formosinho, S. Improving hierarchical cluster analysis: A new method with outlier detection
and automatic clustering. Chemom. Intell. Lab. Syst. 2007, 87, 208–217. [CrossRef]

44. Guo, D.; Zhao, J.; Liu, J. Research and application of improved CHAMELEON algorithm based on condensed hierarchical
clustering method. In Proceedings of the 2019 8th International Conference on Networks, Communication and Computing,
Luoyang, China, 13–15 December 2019; pp. 14–18.

45. Kriegel, H.P.; Kröger, P.; Sander, J.; Zimek, A. Density-based clustering. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011,
1, 231–240. [CrossRef]

46. Wang, J.; Zhu, C.; Zhou, Y.; Zhu, X.; Wang, Y.; Zhang, W. From partition-based clustering to density-based clustering: Fast find
clusters with diverse shapes and densities in spatial databases. IEEE Access 2017, 6, 1718–1729. [CrossRef]

47. Khan, K.; Rehman, S.U.; Aziz, K.; Fong, S.; Sarasvady, S. DBSCAN: Past, present and future. In Proceedings of the Fifth
International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014). IEEE, Bangalore,
India, 17–19 February 2014; pp. 232–238.

48. Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. Density-based clustering in spatial databases: The algorithm gdbscan and its applications.
Data Min. Knowl. Discov. 1998, 2, 169–194. [CrossRef]

49. Campello, R.J.; Moulavi, D.; Sander, J. Density-based clustering based on hierarchical density estimates. In Proceedings of
the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, Australia, 14–17 April 2013; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 160–172.

50. Gialampoukidis, I.; Vrochidis, S.; Kompatsiaris, I. A hybrid framework for news clustering based on the DBSCAN-Martingale
and LDA. In Proceedings of the International Conference on Machine Learning and Data Mining in Pattern Recognition, New
York, NY, USA, 16–21 July 2016; Springer: Cham, Switzerland, 2016; pp. 170–184.

51. Su, S.; Xiao, L.; Zhang, Z.; Gu, F.; Ruan, L.; Li, S.; He, Z.; Huo, Z.; Yan, B.; Wang, H.; et al. N2DLOF: A new local density-based
outlier detection approach for scattered data. In Proceedings of the 2017 IEEE 19th International Conference on High Performance
Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), IEEE, Bangkok, Thailand, 18–20 December 2017; pp. 458–465.

52. Rehioui, H.; Idrissi, A.; Abourezq, M.; Zegrari, F. DENCLUE-IM: A new approach for big data clustering. Procedia Comput. Sci.
2016, 83, 560–567. [CrossRef]

53. Idrissi, A.; Rehioui, H.; Laghrissi, A.; Retal, S. An improvement of DENCLUE algorithm for the data clustering. In Proceedings of
the 2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA), IEEE, Marrakech,
Morocco, 21–23 December 2015; pp. 1–6.

54. Yu, X.G.; Jian, Y. A new clustering algorithm based on KNN and DENCLUE. In Proceedings of the 2005 International Conference
on Machine Learning and Cybernetics, IEEE, Guangzhou, China, 18–21 August 2005; Volume 4, pp. 2033–2038.

55. Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. ACM Sigmod
Rec. 1999, 28, 49–60. [CrossRef]

56. Deng, Z.; Hu, Y.; Zhu, M.; Huang, X.; Du, B. A scalable and fast OPTICS for clustering trajectory big data. Clust. Comput. 2015,
18, 549–562. [CrossRef]

57. Zhao, Y.; Cao, J.; Zhang, C.; Zhang, S. Enhancing grid-density based clustering for high dimensional data. J. Syst. Softw. 2011,
84, 1524–1539. [CrossRef]

58. Qiu, B.Z.; Li, X.L.; Shen, J.Y. Grid-based clustering algorithm based on intersecting partition and density estimation. In
Proceedings of the Emerging Technologies in Knowledge Discovery and Data Mining: PAKDD 2007 International Workshops
Nanjing, China, 22–25 May 2007; Revised Selected Papers 11; Springer: Berlin/Heidelberg, Germany, 2007; pp. 368–377.

http://dx.doi.org/10.1016/j.physa.2021.126433
http://dx.doi.org/10.1145/235968.233324
http://dx.doi.org/10.1016/j.bdr.2017.09.002
http://dx.doi.org/10.1145/276305.276312
http://dx.doi.org/10.1016/S0306-4379(00)00022-3
http://dx.doi.org/10.1016/j.chemolab.2007.01.005
http://dx.doi.org/10.1002/widm.30
http://dx.doi.org/10.1109/ACCESS.2017.2780109
http://dx.doi.org/10.1023/A:1009745219419
http://dx.doi.org/10.1016/j.procs.2016.04.265
http://dx.doi.org/10.1145/304181.304187
http://dx.doi.org/10.1007/s10586-014-0413-9
http://dx.doi.org/10.1016/j.jss.2011.02.047


Symmetry 2023, 15, 1679 41 of 44

59. Bureva, V.; Sotirova, E.; Popov, S.; Mavrov, D.; Traneva, V. Generalized net of cluster analysis process using STING: A statistical
information grid approach to spatial data mining. In Proceedings of the Flexible Query Answering Systems: 12th International
Conference, FQAS 2017, London, UK, 21–22 June 2017, Proceedings 12; Berlin/Heidelberg, Springer: 2017; pp. 239–248.

60. Lu, Y.; Sun, Y.; Xu, G.; Liu, G. A grid-based clustering algorithm for high-dimensional data streams. In Proceedings of
the Advanced Data Mining and Applications: First International Conference, ADMA 2005, Wuhan, China, 22–24 July 2005.
Proceedings 1; Springer: Berlin/Heidelberg, Germany, 2005; pp. 824–831.

61. Forster, A.; Murphy, A.L. CLIQUE: Role-free clustering with Q-learning for wireless sensor networks. In Proceedings of the
2009 29th IEEE International Conference on Distributed Computing Systems, IEEE, Montreal, QC, Canada, 22–26 June 2009;
pp. 441–449.

62. Agrawal, R.; Gehrke, J.; Gunopulos, D.; Raghavan, P. Automatic subspace clustering of high dimensional data. Data Min. Knowl.
Discov. 2005, 11, 5–33. [CrossRef]

63. Boonchoo, T.; Ao, X.; Liu, Y.; Zhao, W.; Zhuang, F.; He, Q. Grid-based DBSCAN: Indexing and inference. Pattern Recognit. 2019,
90, 271–284. [CrossRef]

64. Kellner, D.; Klappstein, J.; Dietmayer, K. Grid-based DBSCAN for clustering extended objects in radar data. In Proceedings of the
2012 IEEE Intelligent Vehicles Symposium, IEEE, Madrid, Spain, 3–7 June 2012; pp. 365–370.

65. Nazeer, K.A.; Kumar, S.M.; Sebastian, M. Enhancing the k-means clustering algorithm by using a O (n logn) heuristic method
for finding better initial centroids. In Proceedings of the 2011 Second International Conference on Emerging Applications of
Information Technology, IEEE, Kolkata, India, 19–20 February 2011; pp. 261–264.

66. Na, S.; Xumin, L.; Yong, G. Research on k-means clustering algorithm: An improved k-means clustering algorithm. In Proceedings
of the 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, IEEE, Jian, China,
2–4 April 2010; pp. 63–67.

67. Ren, S.; Fan, A. K-means clustering algorithm based on coefficient of variation. In Proceedings of the 2011 4th International
Congress on Image and Signal Processing, IEEE, Shanghai, China, 15–17 October 2011; Volume 4, pp. 2076–2079.

68. Lin, K.; Li, X.; Zhang, Z.; Chen, J. A K-means clustering with optimized initial center based on Hadoop platform. In Proceedings
of the 2014 9th International Conference on Computer Science & Education, IEEE, Vancouver, BC, Canada, 22–24 August 2014;
pp. 263–266.

69. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm, Computers & Geosciences. Volume 1984, 10, 2–3.
70. Lei, T.; Jia, X.; Zhang, Y.; Liu, S.; Meng, H.; Nandi, A.K. Superpixel-based fast fuzzy C-means clustering for color image

segmentation. IEEE Trans. Fuzzy Syst. 2018, 27, 1753–1766. [CrossRef]
71. Velmurugan, T. Performance based analysis between k-Means and Fuzzy C-Means clustering algorithms for connection oriented

telecommunication data. Appl. Soft Comput. 2014, 19, 134–146.
72. Banerjee, S.; Choudhary, A.; Pal, S. Empirical evaluation of k-means, bisecting k-means, fuzzy c-means and genetic k-means

clustering algorithms. In Proceedings of the 2015 IEEE International WIE Conference on Electrical and Computer Engineering
(WIECON-ECE), IEEE, Dhaka, Bangladesh, 19–20 December 2015; pp. 168–172.

73. Kannan, S.; Ramathilagam, S.; Sathya, A. Robust fuzzy C-means in classifying breast tissue regions. In Proceedings of the 2009
International Conference on Advances in Recent Technologies in Communication and Computing, IEEE, Kottayam, India, 27–28
October 2009; pp. 543–545.

74. Van Lung, H.; Kim, J.M. A generalized spatial fuzzy c-means algorithm for medical image segmentation. In Proceedings of the
2009 IEEE International Conference on Fuzzy Systems, IEEE, Jeju, Republic of Korea, 20–24 August 2009; pp. 409–414.

75. Zhou, H.; Schaefer, G.; Sadka, A.H.; Celebi, M.E. Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy
images. IEEE J. Sel. Top. Signal Process. 2009, 3, 26–34. [CrossRef]

76. Agarwal, S.; Yadav, S.; Singh, K. Notice of Violation of IEEE Publication Principles: K-means versus k-means++ clustering
technique. In Proceedings of the 2012 Students Conference on Engineering and Systems, IEEE, Allahabad, India, 16–18 March
2012; pp. 1–6.

77. Aggarwal, S.; Singh, P. Cuckoo, Bat and Krill Herd based k-means++ clustering algorithms. Clust. Comput. 2019, 22, 14169–14180.
[CrossRef]

78. Gao, M.; Pan, S.; Chen, S.; Li, Y.; Pan, N.; Pan, D.; Shen, X. Identification method of electrical load for electrical appliances based
on K-Means++ and GCN. IEEE Access 2021, 9, 27026–27037. [CrossRef]

79. Zhang, M.; Duan, K.-F. Improved research to K-means initial cluster centers. In Proceedings of the 2015 Ninth International
Conference on Frontier of Computer Science and Technology, IEEE, Dalian, China, 26–28 August 2015; pp. 349–353.

80. Tzortzis, G.; Likas, A. The MinMax k-Means clustering algorithm. Pattern Recognit. 2014, 47, 2505–2516. [CrossRef]
81. Hung, M.C.; Wu, J.; Chang, J.H.; Yang, D.L. An Efficient k-Means Clustering Algorithm Using Simple Partitioning. J. Inf. Sci. Eng.

2005, 21, 1157–1177.
82. Bansal, A.; Sharma, M.; Goel, S. Improved k-mean clustering algorithm for prediction analysis using classification technique in

data mining. Int. J. Comput. Appl. 2017, 157, 0975–8887. [CrossRef]
83. Swarndeep Saket, J.; Pandya, S. An overview of partitioning algorithms in clustering techniques. Int. J. Adv. Res. Comput. Eng.

Technol. (IJARCET) 2016, 5, 1943–1946.

http://dx.doi.org/10.1007/s10618-005-1396-1
http://dx.doi.org/10.1016/j.patcog.2019.01.034
http://dx.doi.org/10.1109/TFUZZ.2018.2889018
http://dx.doi.org/10.1109/JSTSP.2008.2010631
http://dx.doi.org/10.1007/s10586-018-2262-4
http://dx.doi.org/10.1109/ACCESS.2021.3057722
http://dx.doi.org/10.1016/j.patcog.2014.01.015
http://dx.doi.org/10.5120/ijca2017912719


Symmetry 2023, 15, 1679 42 of 44

84. Madhulatha, T.S. Comparison between k-means and k-medoids clustering algorithms. In Proceedings of the International
Conference on Advances in Computing and Information Technology, Chennai, India, 15–17 July 2011; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 472–481.

85. Surya, P.; Laurence Aroquiaraj, I. Performance analysis of K-means and K-medoid clustering algorithms using agriculture dataset.
J. Emerg. Technol. Innov. Res. (JETIR) 2019, 6, 539–545.

86. Chitrakar, R.; Huang, C. Anomaly based intrusion detection using hybrid learning approach of combining k-medoids clustering
and naive bayes classification. In Proceedings of the 2012 8th International Conference on Wireless Communications, Networking
and Mobile Computing, IEEE, Shanghai, China, 21–23 September 2012; pp. 1–5.

87. Zhang, H.; Cheng, N.; Zhang, Y.; Li, Z. Label flipping attacks against Naive Bayes on spam filtering systems. Appl. Intell. 2021,
51, 4503–4514. [CrossRef]

88. Rdusseeun, L.; Kaufman, P. Clustering by means of medoids. In Proceedings of the Statistical Data Analysis Based on the L1
Norm Conference, Neuchatel, Switzerland, 31 August–4 September 1987; Volume 31.

89. Kariv, O.; Hakimi, S.L. An algorithmic approach to network location problems. I: The p-centers. SIAM J. Appl. Math. 1979,
37, 513–538. [CrossRef]

90. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA,
2009.

91. Li, Z.; Wang, G.; He, G. Milling tool wear state recognition based on partitioning around medoids (PAM) clustering. Int. J. Adv.
Manuf. Technol. 2017, 88, 1203–1213. [CrossRef]

92. Song, H.; Lee, J.G.; Han, W.S. PAMAE: Parallel k-medoids clustering with high accuracy and efficiency. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, alifax, NS, Canada, 13–17 August 2017;
pp. 1087–1096.

93. Yin, J.; Zhou, D.; Xie, Q.Q. A clustering algorithm for time series data. In Proceedings of the 2006 Seventh International Conference
on Parallel and Distributed Computing, Applications and Technologies (PDCAT’06). IEEE, Taipei, China, 4–7 December 2006;
pp. 119–122.

94. Renjith, S.; Sreekumar, A.; Jathavedan, M. Performance evaluation of clustering algorithms for varying cardinality and dimen-
sionality of data sets. Mater. Today Proc. 2020, 27, 627–633. [CrossRef]

95. Ng, R.T.; Han, J. CLARANS: A method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 2002,
14, 1003–1016. [CrossRef]

96. Schubert, E.; Rousseeuw, P.J. Fast and eager k-medoids clustering: O (k) runtime improvement of the PAM, CLARA, and
CLARANS algorithms. Inf. Syst. 2021, 101, 101804. [CrossRef]

97. Wei, C.P.; Lee, Y.H.; Hsu, C.M. Empirical comparison of fast clustering algorithms for large data sets. In Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, IEEE, Maui, HI, USA, 7 January 2000; pp. 1–10.

98. Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.L.; et al.
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 2023, 13, e1484. [CrossRef]

99. Liu, X. Hyperparameter-free localized simple multiple kernel K-means with global optimum. IEEE Trans. Pattern Anal. Mach.
Intell. 2023, 45, 8566–8576. [CrossRef]
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