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Abstract: With a view of the post-COVID-19 world and probable future pandemics, this paper
presents an Internet of Things (IoT)-based automated healthcare diagnosis model that employs a
mixed approach using data augmentation, transfer learning, and deep learning techniques and
does not require physical interaction between the patient and physician. Through a user-friendly
graphic user interface and availability of suitable computing power on smart devices, the embedded
artificial intelligence allows the proposed model to be effectively used by a layperson without the
need for a dental expert by indicating any issues with the teeth and subsequent treatment options.
The proposed method involves multiple processes, including data acquisition using IoT devices, data
preprocessing, deep learning-based feature extraction, and classification through an unsupervised
neural network. The dataset contains multiple periapical X-rays of five different types of lesions
obtained through an IoT device mounted within the mouth guard. A pretrained AlexNet, a fast GPU
implementation of a convolutional neural network (CNN), is fine-tuned using data augmentation
and transfer learning and employed to extract the suitable feature set. The data augmentation avoids
overtraining, whereas accuracy is improved by transfer learning. Later, support vector machine
(SVM) and the K-nearest neighbors (KNN) classifiers are trained for lesion classification. It was found
that the proposed automated model based on the AlexNet extraction mechanism followed by the
SVM classifier achieved an accuracy of 98%, showing the effectiveness of the presented approach.

Keywords: teeth lesion detection; IoT enabled framework; transfer learning; automated detection
model; AlexNet

1. Introduction

Dental diseases such as periodontal disease, dental caries, and fluorosis affect a large
population worldwide. However, their prevalence varies among different geographical
distributions. Based on the research conducted by World Health Organization, dental
diseases affect 621 million children, and almost 2.40 billion adults are affected by dental
caries [1]. Furthermore, results obtained from the National Health and nutrition examina-
tion survey show that almost 41% of children between the age of 2–11, 42% of adolescents
from 6–19 years of age, and 90% of adults over the age of 20 are affected by dental caries [2].
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Periapical radiographs, a kind of intraoral radiograph, are widely used in endodontics.
Periapical diseases are substantially inflammatory lesions that lead to dental caries causing
detrimental injury to the teeth. These diseases are classified as apical cysts, abscesses,
and granulomas affecting the dental pulp protected by enamel, cementum, and dentin. If
left untreated, chronic damage to the pulp chamber can lead to inflammation, eventually
turning into pulp necrosis and periradicular pathosis. Scenarios triggering periapical
radiolucency include trauma, tooth wear, or caries. However, it is possible to prevent
their spread through non-surgical endodontic treatment. Most periapical lesions heal
through meticulous nonsurgical endodontic treatments. A timeframe of 6 to 12 months
is required for assessing the healing potential, after which root canal treatment should
be considered [3,4]. Additionally, complete healing of the lesion might take up to four
years if not diagnosed in time. This requires frequent visits and interactions with the
dentist and associated staff, which has become difficult in the post-COVID-19 environment.
Postponing treatment can increase the risk of tooth fracture [5]. Therefore, it is essential
to diagnose teeth lesions in a timely way through routine oral examination of the teeth
and gums as well as the soft tissues in and around the mouth. Conventional periapical
radiographs are obtained by exposing X-ray radiation that is then processed chemically to
produce images. This film-based conventional method has certain drawbacks, and digital
radiography has been introduced to overcome these drawbacks. This process involves
acquiring images digitally which are then manipulated using a computer. There are several
ways of obtaining such images, including intraoral sensors, charge-coupled devices, and
scanning of radiographs [6]. Due to the emergence and spread of low-cost connectivity
in underdeveloped and developing countries, the Internet of Things (IoT) has enabled
dental services to be more broadly leveraged, providing better dental health in developing
countries and decreasing the overall demand for dental care. Looking at the successful
adoption of the IoT in different sectors [7,8], it can serve as an attractive area of adoption in
dentistry. IoT-enabled devices can obtain information, including pathological parameters,
to predict oral health and make decisions regarding the treatment of the disease at earlier
stages. With the growth in IoT-based healthcare services, it has become possible to achieve
significant enhancement in dental healthcare, including early detection and prediction [9].

Recent advancements in the microcontroller-based wearable and implantable smart
electronic devices has given rise to touchless technologies, which are gaining momentum
and are regarded as the future of medical science. Such wearables are data transmission
devices worn on the human body, such as the eyes, ears, knees, feet, fingers, and hands.
These devices can detect, process, analyze, receive, and transmit related vital body signals
and information such as the pulse rate, heart rate, body temperature, and other ambient
data which do not require human intervention and may allow immediate biofeedback to
the wearer [10,11]. They are an essential part of an IoT scenario in which they allow the
exchange of high-quality data through the global internet via processor and relay agents to
the operator, data collector, company, and/or manufacturer.

As a result, effective biomedical monitoring systems can be designed for medical
diagnosis, physiological and psychological health monitoring, and evaluation through
continuous measurement of critical biomarkers from various human body parts. A possible
range of wearable devices in the form of basic clothing, common accessories, attachments,
and body implants is shown in Figure 1.

The information available from these sensors can be transmitted through modern
communication links, as shown in Figure 2, for intelligent processing and storage in an
IoT environment. The IoT infrastructure makes possible the monitoring and recording of
real-time temporal characteristics of chronic/acute patients, allowing for both immediate
diagnosis and further research around finding and tracking disease trends.
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Figure 1. Wearable healthcare devices.

Figure 2. IoT communication infrastructure.

Wearable technology is expanding into newer applications, and has gained signif-
icant space in consumer electronics through smartwatches, activity trackers, advanced
e-textiles, healthcare products, navigation systems, and geofencing applications. Within
the healthcare domain, parameters such as blood pressure, exercise time, steps walked/ran,
running speed, calories burned, heart rate, body temperature, pulse rate, seizures, physical
stress/strain, and level of certain body chemicals can be measured and used to evaluate
users’ health. The issue of power sourcing for wearables has been suitably addressed by
various methods as well. Smart wristbands can be used to generate their own electrical
signals through thermoelectric generation technology (TEG) [12]. Power can be generated
using the temperature differential between human skin and the environmental temperature.
These implants have been used to monitor the diet and nutrition content of meals, and play
a great role in improving diet plans, leading to a more healthy and fit life [13]. These devices
collect information about salt, glucose, and even alcohol consumption, can share these data
with other smart devices that a person uses, and are capable of updating physicians about
diet routines and health conditions.

Additionally, IoT infrastructure allows monitoring and recording of the real-time
temporal characteristics of chronic/acute patients for immediate diagnosis and tracing of
disease trends. For diagnosing dental caries, digital radiographs are employed by dentists to
assess and evaluate the extent of caries and to determine the need for treatment. Among the
common intraoral types of radiographs (periapical, bitewing, and panoramic), periapical ra-
diographs are the more common, as they provide localized information related to the length
and adequacy of caries and periodontal ligament space [14]. Furthermore, challenges faced
in interpreting conventional radiographs create the potential for inconsistencies among
dentists due to a number of factors, including contrast variation, magnification, and lack of
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experience. Nevertheless, due to the clinical reliability of periapical radiographs these have
become a popular choice for diagnosing dental caries. Additionally, the above-mentioned
challenges pave the way for utilizing automated solutions for improving diagnosis and
standardization of care.

Recently, deep learning-based techniques have demonstrated excellent performance in
computer vision, including object detection, tracking, and recognition, improving the ability
to build software for automated analysis and evaluation of images. Different deep learning
techniques have demonstrated the potential for automated identification of radiological and
pathological features. Furthermore, different image processing and recognition procedures
have been adopted for medical segmentation, with high accuracy and efficiency observed
in the classification of different diseases using deep learning-based models, including cystic
lesions [15], skin cancer [16], COVID-19 [17], and thoracic diseases [18], demonstrating
improved accuracy and efficiency.

On the contrary, few studies have been observed based on deep learning, specifi-
cally deep convolutional neural networks (CNNs), in the dental field, limiting research
investigating the diagnosis and detection of dental caries. Additionally, limited attempts
at automatic dental radiograph analysis using deep learning have been observed from
previous studies [19–21]. Other than this, variable accuracy is observed in the methods
currently utilized, highlighting the need for further research in this field. Approaches
involving CNN and transfer learning have been used in dental diseases based on dental
X-rays [22,23].

However, due to ease of classification, most approaches consider specific issues such as
periodontitis, periapical lesions, and dental caries. Other teeth lesions, such as endo-perio
and perio-endo lesions, are more challenging to diagnose due to their closely matching
attributes. Therefore, they have been grouped into five significant lesions: primary en-
dodontic with or without secondary periodontal involvement, primary periodontal with or
without secondary endodontic involvement, and true combined lesion [24,25].

There are several limitations and challenges in the existing approaches. First, most of
the work relies on traditional machine learning techniques, which may not be effective in
detecting complex lesions due to the closely matching attributes of dental lesions, making
them difficult to diagnose using traditional methods. Second, data insufficiency is a
common challenge, as there may not be enough data available to train accurate models.

Keeping in view the limitations of previous studies, the present study aims to predict
five types of endo-perio and perio-endo lesions in periapical radiographs by adopting a hy-
brid approach using transfer learning and a fine-tuning method after acquiring radiographs
from a wearable device through an IoT infrastructure. Additionally, the presented work
compares the diagnosis efficacy of different machine learning-based techniques, including
support vector machine (SVM) and K-nearest neighbors (KNN), on features extracted using
a pretrained AlexNet. Finally, the objective is to evaluate the efficacy of CNN algorithms
and transfer learning to detect and classify dental caries in periapical radiographs and to
overcome data insufficiency using data augmentation techniques. The main contributions
of this research include:

• Effective detection and classification of dental caries in periapical radiographs by lever-
aging deep learning techniques such as transfer learning and image augmentation;

• Integrating IoT technology through an IoT-enabled device to capture tooth lesions
from radiographs, allowing for remote monitoring and management of dental health,
which is significant in situations where in-person visits to dental clinics might be
limited.

The rest of the paper is structured in five sections, with Section 2 presenting a literature
review on wearables in the healthcare sector and machine, deep, and transfer learning
concepts and techniques used for diagnosis of teeth lesions in dental X-rays, Section 3
explaining the methodology of the proposed framework, Section 4 discussing the results
and providing a comparative analysis, and Section 5 concluding the paper.
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2. Related Work

Recently, new technologies have been evolving rapidly, and the need for these tech-
nologies has increased due to the COVID-19 pandemic. The IoT, specifically the Internet of
Dental Things (IoDT), is a novel strategy that aids in managing and preventing dental caries
as well as periodontal and other disorders [9,26]. Diagnostic screening and visualization
incur significant costs, as dental diseases are very common. With the development of the
Internet of Things (IoT), internet-based systems have shown great potential in healthcare,
particularly dental healthcare. Smart dental IoT-based systems based on intelligent hard-
ware and deep learning can allow for better identification and monitoring, improving the
preventive care process.

Over the past decade, various retention and restoration methods have been proposed
for detecting dental caries. However, there remains room for improvement in diagnosing
dental caries due to various teeth morphologies and restoration shapes [27]. Furthermore,
detecting lesions in their earlier stages is challenging using these methods. The final diag-
nosis ultimately depends on empirical evidence, even though different dental radiographs
(periapical, panoramic, and bitewing) are widely used. A range of options are available to
detect dental lesions, including real-time ultrasound imaging [28], contrast media, Papan-
icolaou smears, and cone beam computed tomography (CBCT), with the latter showing
the highest discriminatory ability. However, it is limited in general dental practice due to
its cost and high radiation dose [29]. Panoramic radiographs allow all teeth to be assessed
simultaneously; however, these methods have proven to be less accurate due to limited
datasets. Therefore, using other imaging systems, such as periapical radiographs, which is
the current standard of endodontic radiography, can enhance the chance of more accurate
preoperative diagnosis.

Regardless of their discriminatory ability, the reliability of the radiographs depends
on different factors, including the examiner’s reliability and experience. To overcome
this, automated systems for dental radiographs using machine learning and deep learning
techniques have demonstrated high performance. Patil and fellow authors [30] proposed
an attractive model for caries detection that detects dental cavities using MPCA-based
feature extraction and an NN classifier trained using an adaptive DA algorithm to classify
extracted features. Nonlinear programming optimization is used to maximize the distance
between the feature output. This approach performs better than methods such as PCA,
LDA, MPCA, and ICA, reaching 95% accuracy on three developed test cases. In addition,
the proposed model works better than machine learning techniques such as KNN, SVM,
and Naıve Bayes for dental lesion detection.

Kühnisch et al. proposed a deep learning approach using a convolutional neural
network (CNN) trained using image augmentation and transfer learning to detect, catego-
rize, and compare the diagnostic performance. The dataset comprised 2417 anonymized
photographs of permanent teeth with 1317 occlusal and 1100 smooth surfaces. The im-
ages were organized into three main categorie: non-cavitated caries lesion, caries-free,
and caries-related cavitation. The proposed model was able to classify caries in 92.5% of
all images and 93.3% of all tooth surfaces, achieving an accuracy of 90.6% for caries-free
surfaces, 85.2% for non-cavitated caries lesions, and 79.5% for cavitated caries lesions [19].

Privado et al. [31] reviewed different studies investigating caries detection using neural
networks with different dental images. Various neural networks for detection and diagnosis
of dental caries were discussed, and a database was constructed containing each neural
network’s parameters. In 2019, Casalegno et al. [32] presented a deep learning model for
the automatic detection and localization of dental lesions in near-infrared TI images based
on a convolutional neural network (CNN). Their dataset consisted of 217 grayscale images
of upper and lower molars and premolars obtained using the DIAGNOcam system. Over
185 training samples were used to train the model. The model’s performance was tested
based on pixel segmentation into classes and binary labeling of the region of interest. In
addition, the model was tested using Monte Carlo cross-validation. However, the proposed
model showed physically unrealistic labeling artifacts, especially in underexposed and
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overexposed regions. Geetha et al. [33] proposed a dental lesion classification model based
on an Artificial Neural Network (ANN) and performed ten-fold cross-validation, achieving
an accuracy of 97.1%.

Duong et al. formulated a computational algorithm to automate and recognize carious
lesions on tooth occlusal surfaces using smartphone images. The images were evaluated
for caries diagnosis using International Caries Detection and Assessment System (ICDAS)
II codes. Support vector machine (SVM) was used for classification; the proposed model
was able to diagnose caries with a highest accuracy of 92.37%. Schwendicke and Paris
discussed the cost-effectiveness of using artificial intelligence in caries detection. It was
found that in most cases using AI is more effective and cost-efficient [34]. Gracia Cantu
proposes a model involving training a CNN; the model was validated and tested on 3686
collected bitewing radiographs. However, this research involved proximal caries lesions
on permanent teeth. To measure cost-effectiveness, a Markov simulation model was used.
Several studies have used AI, more specifically, deep learning techniques, to analyze dental
images. These studies have mainly focused on developing and evaluating models that are
more accurate and efficient [20].

A deep convolutional neural network to detect caries lesions in near-infrared light
transillumination images was proposed by Schwendicke and Rossi. The model involves
two CNNs, namely, Resnet 18 and Resnext50, which were pre-trained on the ImageNet
dataset. The dataset was processed digitally before being fed into the CNN. Ten-fold
cross-validation was used to validate the model, which was optimized with respect to
recall, F1 score, and precision. The model obtained an accuracy of 0.73 (0.67/0.80) using
Resnet18 and an accuracy of 0.74 (0.66/0.82) using Resnext50, with a mean 95% confidence
interval (CI). However, there are certain limitations of deep neural networks. One is that
they are opaque prediction models and have a complex and nonlinear structure that makes
it difficult to make decisions based on their results. Furthermore, limited augmentation and
optimization processes are performed, and higher accuracies can be achieved by combining
this approach with a larger dataset and in different settings with different diagnostic
standards [21].

Another interesting model was formulated by Saleh et al. [35], combining a deep
convolutional neural network (CNN) and optical coherence tomography (OCT) imaging
modality to classify human oral tissues for earlier detection of dental caries. The CNN
utilized two convolutional and pooling layers for feature extraction, and used the probabil-
ities of the SoftMax classification layer to classify each patch. The sensitivity and specificity
for oral tissues were found to be 98% and 100%, respectively. Thus, this model can help to
classify oral tissues with various densities for earlier dental caries detection [10].

Prajapati and Nagaraj [22] proposed a model that combines a deep convolutional
neural network (CNN) and optical coherence tomography (OCT) imaging modality to
classify human oral tissues for earlier detection of dental caries. Their CNN utilized two
convolutional and pooling layers for feature extraction and used the probabilities of the
SoftMax classification layer to classify each patch. The sensitivity and specificity for the oral
tissues were found to be 98% and 100%, respectively. Thus, this model can help to classify
oral tissues with various densities for earlier dental caries detection. An automatic lesion
detection model to analyze and locate lesions in panoramic radiographs using different
image processing techniques was proposed by Bridal et al. in [36]. Their system was
capable of root localization, tooth segmentation, jaw separation, and detection of periapical
lesions. First, the input image is enhanced by observing the smooth variations between
intensities of neighboring pixels, then a Gaussian filter is used to smooth the photos. The
jaws are separated by feeding discrete wavelet transformation into polynomial regression,
then tooth segmentation and apex localization are performed. Their model achieved a
specificity and specificity of 89% and 70%, respectively.

Ghaedi et al. [37] proposed a method for examining dental caries in which dental caries
are examined using optical images and the histogram equalization method. Segmentation is
achieved in two steps; first, the circular Hough transform and region growth is used to the
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segment the tooth surface. Second, the morphology method is applied to identify unstable
regions within the tooth boundaries; the authors extracted 77 features from these unstable
regions when using a suitable window size. Feature space is reduced using a heuristic
approach based on the information gain ratio method. Gawad et al. [38] formulated a
caries status detection and classification model based on a low-powered and less hazardous
635 nm He-Ne laser–tissue interaction mechanism to characterize human teeth into regular,
moderate, and severe caries degree status.

Similarly, another study provided a framework for diagnosing periodontal, periapical,
and dental caries using the CNN and transfer learning approaches [23]. This method
employed a CNN consisting of five convolution layers, four fully connected layers, and two
max-pooling layers. The transfer learning technique was used in two different ways. First,
a pre-trained VGG16 (a CNN model used for classification and detection) was combined
with another CNN trained earlier. Eight convolutions, four zero padding, five max pooling,
and eight fully connected layers were used. Second, the pretrained VGG16 model was
fine-tuned using a dataset and the results were analyzed based on accuracy.

Table 1 summarizes the related research performed by different authors for the de-
tection of teeth lesions using deep learning approaches. Although several studies have
incorporated artificial intelligence, and more specifically deep learning techniques, for
dental lesion detection, there remains room for further improvement in analyzing and
classifying dental caries.

Table 1. Review of the research works discussed in this section.

Reference Methodology Task Journal

Kühnisch et al. [19] CNN, data augmentation , trans-
fer learning Classification Journal of Dental Research

Duong et al. [20]
International Caries Detection
and Assessment System (ICDAS)
II, SVM

Classification Health Informatics Journal

Schwendicke & Paris [39] Resnet18, Resnext50 Classification Journal of Dentistry

Gawad et al. [38] 2-D Hilbert Transform, Inspec-
tion Algorithm Classification Lasers in Dental Science

Geetha et al. [33] ANN, 10-fold cross-validation Classification Health Information Science
and Systems

Patil et al. [30] MPCA based Feature Extraction,
NN Classifier Classification Health Informatics Journal

Casalengo et al. [32] CNN trained on a semantic seg-
mentation task Classification Journal of Dental Research

Salehi et al. [35] CNN with Optical Coherence To-
mography (OCT) Classification Lasers in Dentistry

Kim et al. [40] High Frequency Ultrasound
Imaging (HFUS) Classification Journal of Dental Research

Lee et al. [2] CNN Classification Journal of Dentistry

Srivastava et al. [41] FCNN (Deep Fully Connected,
Convolutional Neural Network) Segmentation NIPS 2017 workshop on Ma-

chine Learning for Health

Prajapati & Nagaraj [22] CNN Classification
5th International Symposium
on Computational and Busi-
ness Intelligence

3. Methods and Materials

Figure 3 illustrates the proposed system for automatic dental lesion detection. The au-
tomatic classification of teeth lesions is divided into five steps: (1) IoT-enabled data retrieval
and dataset preparation (2) data augmentation; (3) feature extraction; (4) classification; and
(5) improved accuracy and detection.
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Figure 3. The architecture of the proposed framework.

3.1. Materials
3.1.1. IoT to Enable Data Retrieval

The Internet of things (IoT) is a collection of physical objects which enable collection
and exchange of information over the network. IoT devices allow gathering real-time data
from sensors to allow better decision-making [42]. The IoT-enabled dental film utilized
in the present work involves a circuit board with a proximity sensor to ensure that the
film is placed securely on the patient’s teeth, another sensor to measure the rotation of
the head in order to acquire a proper angle, and a WiFi module for data transmission.
The IoT-enabled dental film is placed on the extension cone parallel (XCP) device to take
periapical radiographs of the posterior teeth [43]. The placement for periapical radiographs
and the regions captured is illustrated below in Figure 4. The face of the dental film is
positioned perpendicular to the interdental space between the teeth. The film is guided
towards the midline, the patient bites into the bite block, and then the X-ray is taken [44].

Figure 4. IoT-enabled dental film placement for periapical radiographs.

After acquiring the radiographs, the WiFi module (ESP8266) mounted inside the cir-
cuit transmits the images automatically to the laptop/smartphone for further analysis.
This module is specifically designed for IoT for wireless connectivity [45]. The proposed
system can help to reduce the proximal surface overlap in periapical radiography [46].
Experimentation was carried out at a dental institute in Rawalpindi, Pakistan, and 534 pe-
riapical radiographs labeled by experienced clinicians were collected. Figure 5 below
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depicts the process of wireless radiograph transmission from IoT-enabled dental film to a
laptop/tablet/smartphone screen or any smart device through WiFi.

Figure 5. Wireless radiograph transmission.

3.1.2. Data Preparation

The periapical radiograph dataset is divided into two sets for training and testing,
containing 453 and 81 images, respectively. The data division ratio is shown below in
Figure 6.

Figure 6. Traing and test dataset ratio.

Radiographs captured and transmitted through IoT-enabled devices were labeled for
their classes by experts. The class distribution for the training and test datasets is shown in
Table 2.

Table 2. Periapical radiographs dataset.

Lesion Type Images

Primary Endo with Secondary Perio 122

Primary Endodontic Lesion 124

Primary Perio with Secondary Endo 39

Primary Periodontal Lesion 118

True Combined Lesions 131

Total radiographs 534
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3.2. Methods
3.2.1. Data Augmentation

Considering the relatively small size of the dataset, different data augmentation
techniques were employed prior to training and evaluation of the different deep learning
architectures’ performance. Data augmentation is a common preprocessing technique that
is employed before feeding the data samples to the neural network for training. It entails
creating artificial data from known data. This helps to mitigate the problem of overtraining
and the adverse impact of class imbalance, leading to improved model accuracy. Figure 7
depicts how the augmented image datastore was used to transform the training data for
each epoch. During this process, one randomly augmented version of each image was used
during each training epoch.

Figure 7. Data augmentation workflow.

The training dataset was augmented using an augmentation technique defined through
suitable function classes, such as RandXReflection and RandYReflection, in Matlab. In
addition to applying the data augmentation techniques, images input to Alexnet were
resized and converted to color from grayscale. Using the data augmentation techniques,
the number of training images was increased from 453 to 1359. Using RandYReflection,
each image was reflected horizontally as shown in Figure 8.

Figure 8. Original image and horizontally random reflected image.

Figure 9 shows the RandXReflection-generated vertical reflection of each image. The
images were augmented during training and were not saved in memory, and when the
network parameters were trained, the augmented images were automatically discarded.

3.2.2. Feature Extraction (Pre-Trained AlexNet)

A pre-trained AlexNet was used in the framework for feature extraction. This network
comprises a large network structure with 60 million parameters and 650,000 neurons.
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Several improvements have been made to train the parameters [47]. One of the most
significant improvements is the activation function. These functions provide nonlinearity
within the neural network. One of the activation functions that helps in avoiding gradient
vanishing problems is the rectified linear unit (ReLU) function. The calculation process of
the ReLU function is

ReLU(x) = max(x, o). (1)

Figure 9. Original image and random vertically reflected image.

Furthermore, the ReLU function tends to converge faster than other activation func-
tions in deep networks. A dropout layer is employed to avoid overfitting by forcing neurons
to cooperate with others, resulting in improved generalization. The fully connected layers
within the network are used for classification. The activation function utilized with the final
layer was the softmax function, which constrains the output to a range of (0,1). Equation (2)
below expresses the softmax function:

so f tmax(x) =
exp(xi)

∑n
j=1 exp(xj)

. (2)

The AlexNet model used in this study was made up of 25 layers, containing one
input layer, five convolution layers, seven ReLU layers, two normalization layers, three
max-pooling layers, and three fully connected layers.

3.2.3. AlexNet Fine-Tuning Using Transfer Learning

The periapical radiographs dataset contained only a few hundred samples, which is
insufficient to train a deep network of large volume such as AlexNet. Therefore, transfer
learning was employed to make the network more suitable for feature selection and reduce
the time required for classification. The entire structure of the network was divided into two
parts: pretrained networks and transferred networks. The last three layers of the AlexNet
were replaced: a fully connected layer with 1000 neurons to receive the extracted features
and map them to output categories, another SoftMax layer, and a classification layer to
output the classes; the rest of the model was preserved. The network parameters were
already pretrained on ImageNet, making the extracted features effective for classification.

Transfer learning is a process that involves taking a pretrained network, modifying it,
and retraining it on new data. This technique requires little data and computational time,
as shown in Figure 10.
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Figure 10. Effort vs. flexibility for transfer learning.

Transfer learning is an effective and convenient method for training deep neural
networks even when the system lacks sufficient labeled samples. Furthermore, transfer
learning can be implemented using ordinary personal computers, making it more suitable
for training networks with computational resource constraints. The workflow of transfer
learning is shown in Figure 11.

Figure 11. Workflow of the transfer learning approach.

The learning rate was fixed at 0.0001 and the momentum value was kept the same
as in the pretrained AlexNet, i.e., 0.9. The mini-batch size was set to 8 and the number
of epochs was kept at 100. Using an NVIDIA graphics card (GeForce 930MX), the total
training time was computed at around 50 min and 51 s, as depicted in Figure 12.

Figure 12. Training process of the model.

3.2.4. Classification

Using the fine-tuned AlexNet, 4096 features were extracted from each periapical
radiograph. The extracted features were then used to train two classifiers: support vector
machine (SVM) and K-nearest neighbors (KNN). SVM allows for solving classification and
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regression-related problems by utilizing multi-dimensional hyperplanes to separate the
data with more significant gaps between them, while KNN is a supervised data classifier
based on lazy learning. It allows for storing data classes and classifying unseen data based
on feature similarities from the known classes. Additionally, different functions can be
used for feature comparisons, such as Manhattan, Euclidean, and Minkowski. Finally, the
anonymous data are classified according to the nearest neighbor, with K being the number
of neighbors.

3.2.5. Performance Evaluation Metrics

The performance of the proposed approach was evaluated using accuracy for five
classes by dividing the number of correct predictions by the total number of test X-rays.
Equation (3) was used to evaluate accuracy [48]:

Accuracy =
TP + TN

TP + TN + FP + FN
. (3)

Accuracy is an important evaluation indicator in neural network models. To calculate
the accuracy, the concepts of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) are introduced [49].

3.2.6. Error Analysis

In order to calculate the error between the predicted labels and the predicted value
from the network, the Huber loss function [50] was used. The Adam optimizer was applied
after the error was calculated to update the network biases and weights in each layer. The
Hubert loss function leads to robust training and has proven to be effective in tracking
outliers. It is defined as

fhuber =
∫ a2

2

σ

(
|a| − 1

2

)
a > σ, a < σ, (4)

where σ is the threshold.

4. Experiments, Results, and Discussions
4.1. Settings

The proposed method was implemented using Matlab R2017a with an i5-4770 CPU
and NVIDIA GeForce 930MX graphics card. The trained structure can run on any personal
computer with Matlab. Additionally, 80% of the dataset was used for training, and the rest
was used for testing. The details of the dataset after augmentation are listed in Table 3.

Table 3. Training and testing data et of periapical X-rays.

Lesion Type Training Data Test Data

Primary Endo with Secondary Perio 104 18

Primary Endodontic Lesion 105 19

Primary Perio with Secondary Endo 33 06

Primary Periodontal Lesion 100 18

True Combined Lesions 111 20

Total radiographs 453 81

Total X-rays after data augmentation 1359
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4.2. Experiments
4.2.1. First Set of Experiments

The features were extracted using the pretrained Alexnet and the extracted features
were used to train SVM and KNN classifiers. Feature extraction using the pretrained
deep convolution neural network was effortless and quick. A suitable function from the
statistic and machine learning toolbox was used to train the multi-class SVM. Similarly,
an appropriate function from the statistic and machine learning toolbox was used to train
the KNN on the features extracted from the training data. The confusion matrix function
was used to show the confusion matrix for the predictions of both classifiers. The SVM
classifier performed better than the KNN for this set of experiments. The classification
accuracy achieved by the two classifiers is shown in Figure 13.

4.2.2. Second Set of Experiments

In the second set of experiments, the pretrained Alexnet network was fine-tuned with
the augmented data. This retrained network was then used to classify the test examples
using the softmax function and the same retrained model was used for feature extraction.
The ReLU layer (21st layer) of the retrained model was used to output the extracted
features. The SVM and KNN were then retrained on these extracted features by changing
the activation function.

Figure 13. Confusion matrices for first set of experiments.

The classification accuracy in Figure 14 shows that the SVM trained on the features
extracted by the retrained network fine-tuned on augmented data performed better than
the other two classifiers, i.e., the KNN classifier and the retrained (softmax classifier).
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Figure 14. Results for the second set of experiments.

The classification of test data by the retrained model misclassified two examples. It
wrongly predicted a primary endo lesion instead of a primary perio with secondary endo
lesion and a primary periodontal lesion for a primary endo lesion, as shown in Figure 14a.
The next figure shows the confusion matrix of the SVM trained on features extracted by
the retrained model, demonstrating that the trained SVM is unable to classify one test
example. The KNN classifier trained on the features extracted by the retrained model
wrongly classified four test examples, as shown in Figure 14c.

4.3. Fine-Tuned AlexNet without Data Augmentation

The pretrained network (AlexNet) was fine-tuned using the training data without
augmentation and its performance was compared against the AlexNet trained with data
augmentation in order to establish the efficacy of the former in classifying test images using
the softmax function. The training set was kept at 453 training examples and the network’s
performance versus the amount of data provided for training was computed. It can be
observed that the performance of the pretrained Alexnet deteriorated without the data
augmentation approach.

A total of 81 test examples were passed through the retrained model for classification,
and 35 examples were misclassified by the retrained network. The same test data were
presented to the SVM and KNN classifiers trained on this retrained AlexNet model. The
results show that lower accuracy was achieved by the classifiers when data augmentation
was not performed. The classification accuracy depicted in Table 4 indicates that the SVM
trained on features extracted by the retrained model fine-tuned with the augmented data
performed better than the other classifiers. Additionally, Table 5 shows the precision,
recall, and f1-score achieved using the proposed classifier. Figure 15 shows the accuracy of
classifiers for different scenarios.
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Table 4. Accuracy Results for Classifiers.

Classifier
Accuracy (%)

With Data Augmentation Without Data Augmentation

SVM 98 75

KNN 97 56

Retrained 95 69

Table 5. Precision, recall, and F1 score results for classifiers.

Precision Recall F1 Score

Primary Endo with Secondary Perio 0.761 0.888 0.819

Primary Endodontic Lesion 0.619 0.684 0.649

Primary Perio with secondary Endo 1.0 0.5 0.666

Primary Periodontal Lesion 0.687 0.611 0.646

Trued Combined Lesions 0.9 0.9 0.9

Macro avg 0.793 0.716 0.736

Weighted avg 0.757 0.751 0.748

The IoDT has great potential in opening up new horizons in the dental field. The
proposed work incorporates a IoT-based dental film to capture and transfer X-rays auto-
matically to ensure that radiographs can be analyzed effectively. The fine-tuned AlexNet
was trained using periapical radiographs belonging to different classes. The minimum
batch size was set to 8 to avoid low memory issues. The minimum learning rate was set to
0.0001 to mimic a slow learning pace, allowing newly added layers to catch up to existing
layers. To show the efficacy of the proposed approach, it was compared with several
state-of-the-art methods, as shown in Table 4. The results show that the SVM trained on
features extracted by the retrained model fine-tuned with the augmented data performs
better compared to other classifiers. Furthermore, the loss ratio is small even when using a
smaller dataset. These good results are achieved through transfer learning. Testing was
carried out using 81 images, and confusion matrices were produced for the different sets of
experiments.

Furthermore, other advanced deep learning-based methods can be tried for periapical
radiographs. More robust data augmentation could be applied to further enhance the
dataset to achieve improved results. The model can perform multi-class classification on
periapical radiographs. However, other intraoral radiographs could be used to further
validate the efficacy of the proposed model. The future management of dental caries will
be based on three factors: early disease detection, assessment of risks, and prevention.
The aim of this study is to provide affordable alternatives for patients that can be used
effectively at the community level.
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Figure 15. Percentage accuracy of all classifiers.

4.4. Performance Analysis Using State-of-the-Art Approaches

To corroborate the efficacy of the proposed approach, a performance appraisal was
carried out with other state-of-the-art approaches; the results are provided in Table 6. The
proposed method achieves an accuracy of 98% using data augmentation and 75% without
data augmentation. These results confirm the superior performance of the proposed
approach over recent approaches used for diagnosis of teeth lesions.

Table 6. Performance comparison with state-of-the art models.

Author, Year Methodology Accuracy (%)

Kühnisch et al., 2021 [19] CNN, Image augmenta-
tion, Transfer Learning 90.6%

Duong et al., 2021 [20] ICDAS II, SVM 92.37%

Schwendicke & Paris, 2020 [39] Resnet18, Resnext50 94%

Geetha et al., 2020 [33] ANN, 10-fold cross-
validation 97.1%

Proposed approach CNN, transfer learning,
deep training 98%

4.5. Strengths and Limitations of the Proposed Approach

The proposed approach has several strengths and limitations that are worth consider-
ing when evaluating the real-time deployment of the proposed system.

The proposed approach utilizes deep learning-based techniques such as data augmen-
tation and transfer learning, which are more effective in detecting complex dental lesions.
Furthermore, more accurate and reliable data collection can be ensured by integrating
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IoT-enabled devices. The need for expert involvement is significantly reduced, making the
system more accessible to patients.

However, there are certain limitations to the proposed approach. First, it requires
access to periapical radiographs, which might not be readily available due to privacy
concerns. Second, the accuracy of the proposed system relies on the accuracy of the IoT-
enabled device used for data collection. This can be influenced by different factors, such
as device calibration and lighting conditions. Third, the proposed model may not be as
effective in detecting other types of periapical lesions, as the model was specifically trained
on periapical radiographs. Lastly, there may be scalability issues in resource-constrained
environments, which may have a negative impact on the performance of the proposed
model.

Keeping in view these limitations, several factors could influence the real-world de-
ployment of the proposed system. These include the availability of periapical radiographs
in dental clinics where the system is to be deployed, the cost and accessibility of IoT-enabled
devices, the availability of computational resources, and regulatory ethical considerations
related to the use of patient data for model training and testing.

5. Conclusions and Future Work

This work has presented an endo perio lesion detection system using the transfer
learning and data augmentation approach involving multiple processes without involving
an expert dentist. The proposed technique utilizes data acquisition using an IoT-enabled
mouth guard; the data are preprocessed and used to extract suitable features with a pre-
trained AlexNet CNN through an augmentation approach. We additionally investigated
the utilization of transfer learning in dental lesion recognition based on intraoral radio-
graphs. CNNS trained using transfer learning require a lower amount of data compared
to CNNs trained from scratch. The proposed model utilizes a pretrained AlexNet, and
fine-tuned classification was performed using the SVM classifier to recognize five classes
using 453 images, then tested on 81 images. The performance of the proposed method was
evaluated against other conventional classifiers and achieved 98% accuracy, demonstrating
the effectiveness of our approach. The proposed model can be applied in daily clinical
diagnosis to help dentists make decisions to improve patient care.

Even though the model provides encouraging results, it could be further improved by
utilizing more robust data augmentation techniques and more the resource-hungry deep
learning methods at the cost of computing resources. Additionally, the use of dental cone
beam computed tomography images, bitewing radiographs, and panoramic X-ray images
could be considered in future work. Moreover, the design and development of a dashboard
in the form of a smartphone application to allow the user to obtain intelligent feedback and
track dental health issues could be undertaken as well.
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