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Abstract: The demand for cloud computing has drastically increased recently, but this paradigm

has several issues due to its inherent complications, such as non-reliability, latency, lesser mobility

support, and location-aware services. Fog computing can resolve these issues to some extent, yet it

is still in its infancy. Despite several existing works, these works lack fault-tolerant fog computing,

which necessitates further research. Fault tolerance enables the performing and provisioning of

services despite failures and maintains anti-fragility and resiliency. Fog computing is highly diverse

in terms of failures as compared to cloud computing and requires wide research and investigation.

From this perspective, this study primarily focuses on the provision of uninterrupted services through

fog computing. A framework has been designed to provide uninterrupted services while maintaining

resiliency. The geographical information system (GIS) services have been deployed as a test bed

which requires high computation, requires intensive resources in terms of CPU and memory, and

requires low latency. Keeping different types of failures at different levels and their impacts on

service failure and greater response time in mind, the framework was made anti-fragile and resilient

at different levels. Experimental results indicate that during service interruption, the user state

remains unaffected.

Keywords: fault tolerance; fog computing; cloud computing; geographical information systems;

fragility resilience

1. Introduction

Cloud computing (CC) has earned excellent admiration and popularity over the past
few years for processing and storing big data. It follows a pay-as-you-go model which
renders services and resources on request over the Internet. CC is fabricated in advanced
data centers with interrelated servers and can host a vast number of applications. The
data centers are based on virtualized computing resources which are delivered to the user
in the form of virtual machines (VMs). Mobility, scalability, and reduced usage costs are
its prominent benefits. However, CC is prone to failure due to factors such as unreliable
software/hardware, natural adversities, and human-made faults [1]. To overcome the
shortcomings associated with CC, fog computing (FC) has received huge attention. FC has
a distributed infrastructure in which cloud services are delivered and extended near the
edge of the network [2].
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FC is a virtualized platform that has been proposed to provide computing at edge
devices that can deliver new applications and services for future applications [3]. Future
Internet is dependent on improved quality of service (QoS) and quality of experience
(QoE), which can be achieved through orchestrated services by reducing latency with high
mobility, improved scalability, and real-time execution. The centralized architecture of the
cloud and the stochastic nature of the Internet are barriers in way of delivering real-time
services in the Internet of things (IoT). As a result, FC is brought into consideration as an
intermediate layer between IoT and cloud for better provision of services [4].

In the FC paradigm, multiple fog nodes participate as clusters to perform processing.
The user is one or two hops away from the fog node through a wireless connection, and
the cloud is at a multi-hop distance. This distance produces higher latency in CC as
compared to FC, and the cloud is unable to provide real-time interaction [5]. FC provides
client data offloading efficiently in the minimum time by the seamless fusion of cloud and
edge resources. It delivers better networking, storage, and management between edge
and cloud. The CC architecture is centralized infrastructure, and FC is a decentralized
infrastructure through a wireless connection. Therefore, the rate of failure is higher in FC
as compared to CC. In contrast to the FC, CC offers QoS and fault tolerance, but due to its
context-unawareness, it suffers latency while deploying services with high computational
requirements [6]. Technical differences between CC and FC are shown in Table 1.

Table 1. Limitations of CC and FC.

Features Fog Cloud

Management Distributed Centralized

Computation device Any device with computation power Powerful server system

Nature of failure Highly Diverse Predictable

Distance from user Close Far

Network latency Low High

Node Mobility High Very low

No of intermediate hops One/Few Multiple

Application type Latency-Aware Non-latency aware

Real-time application handling Achievable Difficult

Participating nodes Constantly dynamic Variable

Storage capacity Low High

The term “anti-fragile” is fundamentally different from resilience, which is explained
as “the ability to recover from loss or harm within the minimum possible time”, and
anti-fragility is to prevent the harm from happening in advance. Anti-fragile and resilient
systems learn from failures to handle issues. Systems respond by a better approach in
response to failures and improve operations concerning time. Resilience is to keep the
system working and responding even in the presence of the fault and try to recover
in the minimum possible time. Its main purpose is to maximize system availability by
minimizing downtime.

In geographical information systems (GIS), a vast amount of geospatial data is re-
trieved, stored, and analyzed from multiple sources for end-users [7]. FC has become an
emerging solution that can handle increased throughput while providing the low-power
node and reducing latency at the client layer near the edges of numerous geospatial sys-
tems. FC utilizes less transmission power and less storage as compared to the cloud for
indelible analysis of data [8]. Various emerging applications are based on CC-based frame-
works, such as healthcare, watershed management, land use, coastal, marine, and urban
planning. This framework has the capability of analyzing and integrating heterogeneous
thematic layers for analyzing and creating alternate scenarios for geospatial data for several
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functions, such as over-relay analysis, statistical computing, data visualization, and query
formation [8]. In a traditional CC-based GIS framework, geospatial data are processed and
analyzed by the cloud, which requires high Internet bandwidth and extensive processing
time. FC resolves this problem with the provision of local computation proximate to the
client near the edge [9].

Smart applications—smart healthcare, smart homes, smart grids, environmental mon-
itoring, etc.—are widely involved in today’s daily life. These applications require low
latency, real-time processing, location-based services, and local storage. CC-based frame-
works produce delay, bandwidth overhead, network congestion, and poor QoS. In FC,
edge devices are distributed, latency-sensitive, and location-aware, and they have real-time
service requirements. GIS is becoming popular and gaining a vibrant role in the provision
of these applications in daily life. GIS requires reduced latency, real-time processing, and
increased throughput while processing huge amounts of geospatial data and requires
local storage.

The fault tolerance (FT) aspect of CC has been investigated widely, but FT in terms of
resiliency and anti-fragility in service delivery in FC is still in its infancy; both need to be
studied and investigated in FC [5]. There are many research issues and challenges associated
with FC that require extensive research, such as scheduling, resource allocation, fog-based
microservices, security, resiliency, privacy, and FT. There is a need for the incorporation of
resiliency and anti-fragility in FC for ensuring uninterrupted services. Both currently need
to be studied and investigated in FC [5]. GIS has been deployed as an application platform
to utilize its services regardless of its FT aspect. This gave us the motivation for designing
an FT framework in FC for the provision of GIS services to the user in an anti-fragile and
resilient manner.

The anti-fragility and resilience in the designed framework have been incorporated for
uninterrupted service delivery. This framework has been designed for a 3-layer architecture
of FC. Peering fog nodes at the fog layer have been deployed to maintain resiliency. VMs
are running in both of these nodes, and VMs are running Q-GIS service containers. The
containers are provisioning services in a resilient manner. We have deployed this framework
in a real environment as a test bed. The anti-fragility and resiliency are maintained at four
different levels: container level, VM level, node level, and site level. Results prove that in
case of failure at any of these levels, it would not interrupt the user.

The rest of the paper is organized as follows. The literature related to the current
study is presented in Section 2. The proposed framework and its working are explained
in Section 3. Section 4 presents the results and discussions, and the study is concluded in
Section 5.

2. Literature Review

Several novel services have emerged and become an essential part of human life
over the past decade, including smartphone technology, location-based services, smart
health services, etc. To provide such services, a larger ICT setup is required that acts as a
backbone. Geographically located huge ICT infrastructures are now in place with better
and stable technology solutions to serve uninterrupted services. Huge ICT infrastructures
have different dependencies in terms of physical resources and technological resources
with respect to sustainability and stability. Different approaches are used in this regard,
including proactive approach, self-healing, failure prediction, preemptive migration, etc.

The proactive approach, also called failure avoidance, monitors system behavior by
applying multiple techniques. Failure prediction is mostly achieved through statistical
modeling. The main techniques in this approach are prediction, monitoring, and realloca-
tion of system resources [10]. Self-healing is the ability of a system to recover from faults
by applying specific recovery procedures. A self-healing FT system depends upon various
fault aspects, such as duration, location, and intensity [11].

In preemptive migration, the task is migrated or offloaded from a suspicious node
to some other node. Pre-fault indicators are used to predict the chance of occurrence of
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a fault on a specific node and timeframe. In many reviews and surveys regarding FT in
CC software rejuvenation have been mentioned as proactive FT techniques [11–14]. In the
software rejuvenation process, periodic backups of a system are taken. Rejuvenation is
categorized as full rejuvenation and partial rejuvenation, depending on the components of
the cloud environment [11]. The authors of [15–17] have discussed software rejuvenation
techniques to avoid outage of cloud services. Figure 1 shows the classification of fault-
tolerant techniques.

Figure 1. Fault tolerant approaches.

SHelp was introduced as a proactive FT framework using self-healing [18]. The authors
later improved the work by introducing rescue points named ASSURE [19]. PFHC was
introduced as a proactive FT framework by combining multiple proactive techniques for
high-performance computing (HPC) [20]. WSRC was introduced for a cloud VM machine
manager (VMM) using a software rejuvenation technique in variable time [21]. SRFSC was
introduced using the software rejuvenation technique [22]. FTDG was proposed for stream
computing as an FT scheduling framework [23].

Reactive FT techniques are applied after the occurrence of the fault. They do not pose
any system overhead, as the system behavior is not monitored continuously. Multiple
reactive approaches have been discussed in CC in the FT management scenario. In check-
point/restart policies, the system state is saved on periodic intervals which may be from
60 s to 1024 s. If a fault occurs in a system, the system is restored from the previously known
state [24]. The system starts from the last known state rather than from the beginning [11].
These stats are suitable for long-running jobs [10]. When some resource/node is failed, the
job is migrated to another node. It is unlike preemptive migration, as the migration takes
place after the occurrence of the failure. This approach is applied after a certain number of
attempts of restart policy [11]. It is commonly used as a reactive technique in the CC FT
paradigm [13]. HAProxy is one such example that uses job migration [12].

In replication, the task is replicated on several instances of VMs synchronously or
asynchronously [25]. In this FT mechanism, at least one replica is placed in some other
cluster to minimize the application failure [24]. Two types of failures have been widely
discussed in the literature, active replication and passive replication [11]. BlobCR was
introduced as a two-way checkpoint restart mechanism for infrastructure as a service (IaaS)
for clouds using snapshots [26]. Later, this work was improved by using live incremental
snapshotting [27].

BFTCloud framework was proposed for FT management in CC based on the replication
technique [28] and was extended with minor modifications by [29]. The AASIF framework
was proposed in CC based on the FIFO approach by serving nodes [30]. CAMAS was



Sensors 2022, 22, 8778 5 of 23

proposed for Amazon Cloud for FT management based on five checkpoints and migration
techniques [31]. FTM was proposed for FT management for the IaaS cloud in which the
FT service is supposed to be delivered by a third party for users as fault tolerance as a
service (FTaaS) [24]. An FT framework was proposed for reliable cloud application services
based on reactive FT mechanism [32]. FLBAFTM was proposed for FT management in
the cloud for minimizing the probability of system failure by implementing reactive FT
techniques [33].

Resilient methods combinations of proactive and reactive fault-tolerant methods with
the ability to learn from the environment. Reactive methods take corrective measures
after a fault occurs [18,19,24], and proactive methods try to maintain the resiliency of
the service and offer better responsiveness [34]. Previous research has mostly focused
on proactive and reactive FT mechanisms [32,33], but lately, resilient methods have been
introduced as emerging FT solutions [10]. These methods have mainly been categorized
into two categories. Machine learning provides a smart way to ensure FT and can be
extended to CC and FG paradigms. The triangle approach, distributed dynamic queue,
unified reinforcement learning (URL), ordinal sharing learning (OSL), and Markov decision
process are some examples [10]. The failure induction technique is to manually insert the
failure into the system to observe the system outage.

Researchers [29,35,36] have focused on fault tolerance in architecture-specific solutions
in enterprise cloud infrastructures. The authors offered modular solutions in [37], which
are based on combinations of distinguishable activities such as replication, detection, and
recovery. The Spine-leaf FC Network has been proposed for the scalability of IoT data
centers by controlling congestion [38].

Some studies have focused on scheduling for work offloading in neighboring nodes
of FC [39]. Vehicular ad hoc networking based on software-defined networking in FC has
been discussed [40]. Smart transportation based on vehicular ad hoc networks in FC has
been proposed [41]. IoT-enabled healthcare systems have been provisioned by CC services
for data analysis, scalability, and reliability. The data collected by sensors are transmitted
for processing through multi-hop distance. This results in delay and adversely affects the
processes/services which are latency sensitive; therefore, a fog based healthcare solution
has been proposed [42]. Delay, privacy, and all these points urge towards offloading
application segments to edge nodes/fog nodes which are located nearer to the edge/user
devices [43]. Table 2 summarizes the related work in FT in CC.
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Table 2. Analytical summary of the literature review.

Ref.

Approaches Applications

Fault-Tolerance

Failure
Induction

Anti-Fragility
Smart
City

Smart
Health

Smart
Traffic

Vehicular
Adhoc
Networks

Proactive Technique Reactive
Technique

Resiliency
Redundancy Replication Prediction Migration

Other
infrastructure

[44] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

[19] ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘

[18] ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Cloud
computing

[24] ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

[12] ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

[35] ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

[37] ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

[1] ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✘

[12] ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

[45] ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘

[46] ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✘

Fog
computing

[5] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✘

[40] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔

[41] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

[47] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔

[48] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘

[49] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
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3. Materials and Methods

The emergence of IoT has caused massive data explosions due to the interconnection of
multiple ubiquitous devices, and these data cause network congestion. Cloud computing
is becoming insufficient to fulfill the requirements for real-time, mobility-aware, geo-
distributed, and latency-sensitive applications. In some situations, it is not suitable to send
all data to the cloud for processing and storage to avoid bandwidth overhead. To overcome
this situation, the FC has been introduced to process the data near the user. FT ensures
the system’s availability in case of any failure. These failures may be hardware, software,
network, or system failures.

In this work, a framework has been designed and deployed as a testbed with the
incorporation of antifragility and resilience to guarantee service delivery. The quantum
GIS (QGIS) is deployed as a service to be delivered through this framework. The primary
objective of this framework is to monitor the status of the service and nodes on which it is
deployed, and it should always be available to users. Any type of failure will not affect the
service delivery to the user. The resilience in the proposed framework is maintained at four
different levels: container level, VM level, fog node level, and site level.

3.1. Framework Methodology

Figure 2 illustrates the complete mechanism of the proposed framework. At the edge
layer, the user requests a GIS service. This service is redirected to the first available fog
node. The fog node routes the request to the main manager node (VM) which is responsible
for maintaining the anti-fragility and resilience of the system. It redirects the request to the
service host provider, which is running with a QGIS service in a Docker container. The
processing of the fog node ensures the immediate response to a service request from the
edge in the minimum time. Each of the fog nodes is running four VMs under a hypervisor.
The manager in the fog node redirects the service request to the first available node (VM). If
this node fails, the manager immediately routes the service request to the second available
node (VM) in the minimum time. If this node fails or becomes overloaded, the manager
redirects the service available to the third available node.

Figure 2. Workflow of the proposed framework.
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In the same way, if this node goes down or becomes overloaded, the manager im-
mediately routes the service request to the fourth available node. Due to some reason, if
this node becomes unavailable or gets over-occupied, the service will be automatically
redirected to the second available fog node in a minimum time without affecting the user’s
state while maintaining antifragility and resilience. This redirection would be seamless for
the user. The fog node also has a manager node, which is responsible for forwarding the
service request to the first available node, which is the VM running with QGIS service in the
Docker container. As for fog node 1, if this serving node becomes inaccessible, the service
will be automatically routed to the second available node. If this node becomes overloaded,
the service will be redirected automatically to the third available node. If this node becomes
unreachable due to any reason, the request will be routed to the last available node in fog
node 2. If the last node (VM) becomes inaccessible or goes down or becomes over-occupied,
the service will be redirected in minimum time to the core layer without interrupting the
user state. In the core, we are running two instances with a QGIS service. The first available
instance will entertain the service request. If this instance becomes unavailable or gets out
of reach, the second instance will finally fulfill the user’s request without affecting the user.

3.2. Components of ARSDFC Framework

The proposed framework is based on 3 layers and includes major components, includ-
ing the service request (SR), service redirector (SRd), host selector (HS), virtual machine
monitor (VMM), virtualized host (VH), and service selector (SS). Figure 2 illustrates the
interactions among these components. Before going into their details, we briefly discuss
these components. SR is initiated at the edge layer by the user to SRd. SRd first calculates
the state Si (i = 1 to m, where m is the total number of sites) of all sites and then redirects
it towards the first available site at the fog layer. The SRd forwards SRn to the core layer
in case of the unavailability of sites at the fog layer. HS is the selector residing in Si and
estimates the state lj (j = 1 to n, where n is total number of VHs) of VHs and forwards
SR to the best available VH. SS running inside the VH estimates the state pk (k = 1 to q,
where q is the total number of service containers (SC)) and assigns the available SC to SR.

3.2.1. Service Request

The user initiates SR for QGIS hypertext transfer protocol (HTTP) service using
transmission control protocol/Internet protocol (TCP/IP) or user datagram protocol (UDP)
connection through his web browser. The data is transferred in the form of plain text
between the user and the web browser. When a user requests an HTTP service through
a TCP/IP connection, the session is established at the transport layer between the client
and the web server when it replies to the user’s request. UDP is ideal for latency-sensitive
applications such as online gaming and video streaming. The SR is established through
TCP/IP via Ethernet switch or UDP via any wireless access point. The number of service
requests is denoted by SRn.

3.2.2. Service Redirector

SRd receives SRn and calculates the most suitable Si using a round Robin domain
name system (RR-DNS) in time tr, where tr (r = 1 to w, where w is the time of last SR) is
the arrival time of SR. If a server providing service goes down, it redirects the SR to other
available servers after calculation SRd assigns SRn to Si. SRd assigns SR per site as follows.

Si =
SRn

S− 1
(1)

In case of failure of sites at the fog layer, SR would be directed towards the core layer.
SRd is defined as

SRd =
SRn

S
(2)
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3.2.3. Virtual Machine Monitor

Every Si is running with a hypervisor which is called a virtual machine monitor
(VMM). A VMM is an emulator which shares the host’s resources such as CPU and
memory across multiple VMs as the guest operating system. There are two types of
hypervisor: bare metal, which runs directly on the hardware, and hosted hypervisor, which
runs as a software layer on the OS. Hyper-V is a virtualization product by Microsoft which
is provided as an optional feature in Windows server 2016. It is responsible for creating
and managing VMs across the system. The bare-metal Hyper-V is deployed at each site.
The Hyper-V is not FT itself, and it only hosts the guest VMs. The failover cluster for the
Hyper-V has been configured to maintain the anti-fragility at the fog layer. Active directory
services are configured, which authenticates the user and prevents unauthorized access to
network resources. This means if the host site is down due to any reason, it would not affect
the serving VMs at this site. Control of VMs in the failed sites will be shifted to another site,
without affecting the VM’s state. The site residing in the failover uses a heartbeat of 5 s,
which is defined under IEEE standard 1278. Sites in the fail-over cluster use the periodic
signal of 5 s to synchronize with each other to show their normal operation. However, if a
site does not respond within 5 s, the cluster assumes that the site has failed and shifts the
control to other sites without interrupting the serving VMs in the failed site. This heartbeat
rate has been denoted as ts, where ts = 5 s.

3.2.4. Host Selector

The host selector is the managing node, which monitors the state of the VMs deployed
in the cluster and schedules the SR to the most suitable VH running inside the cluster.
Traditional scheduling algorithms do not consider the timeline and mobility of the appli-
cation while managing its resource allocation. User location should be monitored before
applying resource allocation in FC for the avoidance of facing minimum delay in service
delivery [50]. The scheduling decision in FC directly influences the data transmission over
the network. A modified weighted round Robin has been implemented. We considered
processor and memory status for placement of SR to the appropriate VH. There is one
managing node Mn at each site Si, where i = 1 to m, which is defined as

Mn = Σn
l=1VHj ∗

S

S− 1
∗ 2 (3)

where Σn
l=1VHj is the total number of virtual machines at each site Si and S is the total

number of sites. The Mn is responsible for the assignment of service to VH. It receives the
SR and estimates the state of the VH by checking the threshold µij for memory and CPU.
The value of threshold µij is between 0 and 1, and we have fixed it to 0.5.

µij =
µi + µj

2
(4)

The threshold for memory is represented by µi and for CPU µj. To check the state of
resources of VH before the assignment of the SR, the value of this threshold Ti is calculated
by the equation below.

Ti = −muij (5)

where Ti is the threshold of a VH for SR assignment, and the sum of states of all VHs is
defined as

VL =

n

∑
l=1

lj (6)

where j defines the number of VHs at one site, and the load per VH is calculated as

LPVH =
VL

lj
∗ Ti (7)
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VL is the sum of all states of VH, lj is the state of an individual VH, and Mn assigns the
SR to VH only if

LPVH < Ti (8)

The Mn present at Si checks the condition for SR assignment for all VHs running
inside it. The VH that fulfills this condition starts delivering services to the user. If all VHs
in one site fail to fulfill this condition, SR is redirected towards SRd. This SRd will calculate
the next Si through Equation (1).

The Mn running in the next Si will select the VH fulfilling the condition defined in
Equation (8). If all VHs running inside this site fail to fulfill this condition, defined in
Equation (8), SR would be directed towards SRd.

3.2.5. Service Selector

SS is running inside each VH, where it monitors and manages the state pk (k = 1 to
q where q is the total number of containers) of the SCs running inside it. It calculates the
state pk and assigns SR to it. The status of the SC is represented by θ, where the value of θ

is (0 vs. 1). The number of states of SC is denoted by q. SR assignment to VH is defined as.

SSC =

q

∑
k=1

pk (9)

SSC is the sum of states of pk, and n is the total number of SCs. SR to an SC would be
assigned as follows

SPC =
SSC

n
∗ θ (10)

where SPC is the service per container. If SPC = 1, then service would be assigned;
otherwise, SPC would be redirected towards HS.

3.3. Algorithm

In this section, Algorithm 1 is discussed in detail. The service request SR is initiated
by the user using TCP/IP or UDP through any web browser. SR is redirected to the first
available site Si at the fog layer at line number 3 using Equation (1). SRd receives SRn and
calculates the most suitable Si using a round Robin domain name system (RR-DNS) in time
tr, where tr (r = 1 to w, where w is the time of last SR 263) is the arrival time of SR. If
a server providing service goes down, it redirects the SR to other available servers after
calculation SRd assigns SRn to Si. If the fog layer is unavailable or down, the service is
redirected towards the core layer at line 5 using Equation (2).

The host selector is the managing node, which monitors the state of the VMs deployed
in the cluster and schedules the SR to the most suitable VH running inside the cluster.
Traditional scheduling algorithms do not consider the timeline and mobility of the appli-
cation while managing its resource allocation. User location should be monitored before
applying resource allocation in FC for the avoidance of facing minimum delay in service
delivery. The scheduling decision in FC directly influences the data transmission over
the network. A modified, weighted round Robin has been implemented. We considered
processor and memory status for placement of SR to the appropriate VH. There is one
managing node Mn at each site Si, where i = 1 to m. Each site contains the managing node
Mn. This managing node was calculated using Equation (3), which selects the first available
virtual host VH by calculating the load per virtual host LPVH for memory and CPU using
Equation (7) and comparing it to the threshold Ti, whose value should be between 0 and 1
using Equation (9). SR is assigned to VH only if the condition is fulfilled in Equation (9).
Service selector SS is running inside each VH, which monitors the state of service container
SC using Equation (10), which is 0 or 1. If this is true, the service is assigned to the user;
otherwise, it is redirected toward the next VH.
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Algorithm 1 Anti-fragile and resilient service delivery in fog computing.

Initialization: SR←− −1

1: for Si from 1 to n do
2: if true then
3: Calculate using Equation (1);
4: else
5: Calculate using Equation (2);
6: for VHj from 1 to n do
7: if true then
8: Calculate Mn using Equation (3);
9: Calculate VL using Equation (6);

10: Calculate LPVH using Equation (7);
11: if Equation (9) true then
12: for SSC k from 1 to q do
13: Calculate using Equation (10);
14: if Equation (10) true then
15: Return true;
16: end if
17: end for
18: end if
19: end if
20: end for
21: end if
22: end for

3.4. Experimental Setup

The design of ASRDFC comprises three layers: core, fog, and edge layer. Each layer
further comprises two layers: the hardware layer and the software layer.

3.4.1. Core Layer

The core layer is based on cloud infrastructure which is deployed at the data center
(DC). The infrastructure includes computing, storage, and network devices that are required
to run cloud applications and services.

The hardware layer provides the physical infrastructure. Physical infrastructure
includes the hardware required for running the cloud. Two Dell power edge R710 server
machines are deployed as cloud servers. The Dell power edge R710 machine is a powerful
server with good features incorporated, including high memory capacity, high CPU speed,
substantial storage, and enhanced network I/Os. It contains multiple generations of Intel
Xeon Quad-core processors with 2.26 GHz speed along with DDR3 RAM, which facilitates
higher bandwidth and better power consumption. The 32 GB RAM for fog servers was
deployed to enhance service delivery and availability. Each server has 1 terabyte (TB) of
storage. The servers are operating with a redundant array of independent disk (RAID)
configurations. The Huawei Quidway 7706 core switches were deployed for the network.
These switches provide GBit/s access to wireless and wired network devices throughout
the network. The details of hardware deployed in the framework are provided in Table 3.
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Table 3. Hardware used for the proposed framework.

Layer Item Model Specification

Fog layer

Server Machines 2 Dell Power Edge R710 Intel Xeon 5600

Processor Quad Core 2.26 GHz

Hard Disk SATA ITB

RAM DDR3 32 GB

Server Machine Dell Power Edge 2900 16 GB RAM, 500 GB Storage

Network I/O Gigabit Ethernet 2 Interfaces

Network Switch 2 Huawei S5700 Layer 3-switch 48 port

Network Firewall NSA4600 Dell Sonic Wall IPS 2.0 Gbps, Anti-Malware Inspection Through-
put 1.1 Gbps 2 GB Ram, 1 GB RAM, MIPS 64
Octeon processor

Core Switch Quidway 7706 Huawei

Core layer Server Machines Dell Power Edge R710 Intel Xeon 5600

Edge layer Laptop, Cell Phones Dell latitude 3450, iPhone,
Android Phone

Latest

The software layer is responsible for the virtualization of the hardware and provision
of the applications and services by the cloud. A list of software components used in this
framework is provided in Table 4.

• Linux/Ubuntu was deployed as an OS for managing the hardware and the software.
Ubuntu was chosen because it is an open-source OS, and it provides a high level of
security as compared to other operating systems.

• The spike version of OpenStack has been deployed as a cloud operating system to
manage and control computing, storage, and network resources for the cloud.

• The kernel-based virtual machine (KVM) has been used as the hypervisor for the
cloud. KVM is an open-source hypervisor and allows the running of multiple isolated
instances of the OS, which are called virtual machines. KVM has efficient support
for hardware, security, scheduling, scalability, and live migration, which makes it
preferable as compared to other hypervisors.

• This OpenStack is deployed along with Nova, JSON, and Neutron APIs for computing,
storage, and network resource management.

• Two virtual instances were created as part of the proposed framework.

Framework architecture in the core layer contains a RAID. The RAID has been config-
ured on both servers of the Dell power edge R710 using a RAID controller. Ubuntu OS has
been installed as the serving host OS on these servers. The spike version has been used
for the deployment of OpenStack. Nova, Neutron, and JSON APIs have been configured
for managing computing, storage, and network resources. KVM has been used as the
hypervisor for virtualization. Two instances of computing have been configured for VMs.
Ubuntu has been deployed on both of these VMs. Docker Engine 16.1 has been configured
for the management of Docker containers on these VMs. The image of the QGIS application
was created to convert it into a Docker container. These containers have been deployed on
the VMs. The VMs have been assigned IP addresses from the 10.1.2.0/24 subnet. Containers
use the bridged IPs of their native VMs. The complete architecture at the core layer is
shown in Figure 3. Openstack is running at the core layer with KVM. Each instance inside
KVM is running service containers. The core is connected through an Ethernet switch to
the router along the firewall. The core layer is working upon the fog layer as a backup.
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Figure 3. Architecture of core layer.

Table 4. Software used for the proposed framework.

Layer Item Description

Fog layer

Fog nodes OS Windows Server 2016

Cluster Hypervisor

Virtualization VM, Containers

VM OS Ubuntu 14.04

Containers Docker 16.1

Service QGIS

VM Converter MVMC (Microsoft Virtual Machine Converter)

Zabbix Server(SNMP) Zabbix Server, Zabbix Client

WinSCP File Transfers using SSH

Core layer

Putty SSh, Telnet Client

OS Ubuntu 14.04

Cloud Application Open Stack spike

Hypervisor KVM

Qemu Virtual Machine Conveter

Edge layer

OS Windows 10, Android 9.0, iOS 12.3.1

Browser Edge, Internet Explorer, Safari, Mozilla Firefox

Connection Wireless

3.4.2. Fog Layer

The fog layer is responsible for the aggregation of the cloud services near the user. It
is an extension of the cloud, which brings the processing of the core nearer to the user. The
servers operating at this layer are called fog nodes/fog servers.

For the hardware layer, two Dell power edge R710 server machines are deployed as fog
nodes, which are the same as cloud machines. The server contains an Intel Xeon quad-core
processor with 32 GB of DDR3 RAM, and each server has 1 TB of storage using RAID
configuration. Additionally, two networks’ I/Os are used to communicate with different
networks. Furthermore, Huawei S5700 network switches are deployed for connectivity to
the core and LAN. These switches provide GBit/s access to wireless and wired network
devices connected throughout the network. For malware and intrusion detection, NSA
4600 Dell Sonic Wall is used to prohibit unauthorized access to our network. The detail of
hardware deployed at the fog layer is shown in Table 3.
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Fog nodes are virtualized devices running with multiple instances of VMs under a
hypervisor. The tenant application processes are virtualized. They are isolated by fog
software infrastructure and communicate with the help of an API. The details of the
software deployed at the fog layer are provided in Table 4.

• Windows server 2016 is deployed on fog nodes due to enhanced security, affordable
storage, improved intrusion detection, and virtualization protection.

• Clusters of fog nodes are configured with the help of Hyper-V.
• Ten instances of VMs in the Hyper-V cluster were created, and the Ubuntu OS has

been deployed on each of these VMs. Linux/Ubuntu is utilized as it is an open-source
OS with enhanced security and portability.

• Containers provide the abstraction of the applications which are running in an en-
vironment. Containers provide the virtualization of the OS. OS processes and their
dependencies are isolated in OS virtualization, and these are managed by the OS
kernel. Some examples of containers are LXC, BSD jails, Docker, Solaris Zones, and
LXD. Docker 16.1’s container is deployed for our service. The software that hosts
these containers is called Docker Engine, and the 12.1 version is used for the pro-
posed framework.

• QGIS is a free and open-source program for using GIS functions. It can be installed on
multiple platforms. GIS applications allow for dealing with spatial information. We
converted it into a Docker image to be deployed as a container across the platform.

• Microsoft virtual machine converter (MVMC) is a tool supported by Microsoft for
the conversion of VMware virtual machines into Hyper-V virtual machines. Initially,
the framework in the VMware environment is used but later migrated to the Hyper-
V platform.

• WinSCP is a free FTP and SFTP client for Windows to copy files between the host and
remote system using a GUI.

• Putty terminal SSH client for windows is used to support SSH, SCP, Telnet, rsocket,
and rlogin connections. Additionally, this program is used to connect with VMs
deployed across the framework.

• Zabbix is an an-open source monitoring solution for networks, applications, and
services. It offers reports and visualization of data stored across the network. Its
reports, statistics, and configuration parameters are available through a web-based
interface. The Zabbix server is deployed for framework monitoring and the Zabbix
agent for QGIS service analysis on the client side.

As for the cloud infrastructure, the framework architecture in the fog layer uses two
Dell power edge R710 machines as fog servers. RAID has been configured on both of these
servers with 1 TB of storage on both server machines. Windows Server 2016 has been
deployed as the host OS on both of these servers. Hyper-V has been configured on each
of these machines. Hyper-V Failover Cluster has been configured for these servers. One
server has been assigned an IP address from the 10.1.10.0/24 subnet. Additionally, another
server has been assigned an IP address from the 172.16.221.0/24 subnet. These subnets
have been configured in different virtual local area networks (VLAN). Eight VMs have been
configured with four VMs on each of these server machines. Docker Engine 16.1 has been
configured on each of these VMs, and the QGIS service is converted into a Docker container.
Additionally, this Docker container has been deployed on each of the VMs instances. These
containers use a bridge IP network with their VMs. The complete architecture has been
shown in Figure 4.
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Figure 4. Architecture of fog layer.

3.4.3. Edge Layer

The edge can be the users or any devices—cell phones, laptops, tabs, etc., which utilize
the services from the fog layer. The details of hardware and software are mentioned in
Tables 3 and 4, respectively.

In the hardware layer, the service can be accessed using any laptop, iPhone, or Android
phone with wireless or wired Internet connectivity. For the software layer, the service can
be accessed over Wireless-LAN and LAN using any browser—i.e., Internet Explorer, Edge,
Mozilla Firefox, Safari, and Google Chrome access the service over HTTP.

The service has been tested over wireless LAN using TP-Link and Microtik (MT)
wireless routers and wired connection via network switches on different browsers, such
as Mozilla Firefox, Google Chrome, Edge, Internet Explorer, and Safari. Figure 5 shows
the complete architecture of service requests at the edge layer. The user initiates service
requests at the edge layer, which is routed to the fog layer by an Ethernet switch/wireless
router. The fog layer is an intermediate layer between the edge and core layer.

Figure 5. Architecture of edge layer.
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3.4.4. Framework Architecture

The designed system is used to deliver the services to the user in an anti-fragile and
resilient manner, so that if there is any type of failure in the system at any level, it should
keep performing and delivering the services to the user without any interruption. The
failures may be hardware, software, and network failures; and an anti-fragile resilient
framework was designed to tackle these issues. The framework has been designed for FC
consisting of three layers, including the core, fog, and edge layers. The proposed framework
maintains anti-fragility and resiliency at four different levels: the SC level, VH level, node
level, and site level. Figure 6 shows the detailed physical and internal architecture of the
proposed framework.

Figure 6. Architecture of the anti-fragile and resilient framework.

3.4.5. Network Setup

For connecting the 3-layered architecture of the framework, the network is divided
into different subnets residing in different VLANs. Cloud servers have been assigned IP
addresses from the 10.1.8.0/24 subnet. Instances lying in the KVM use the IP address from
the subnet of their native compute nodes. Docker containers residing in these instances
use bridged IPs within the instances. One fog node has been assigned the IP address from
the 10.1.10.0/24 subnet, and the other fog node has been assigned an IP address from the
172.16.221.0/24 subnet. The VMs residing in the fog nodes use the IP addresses from the
subnets of their respective fog nodes. Docker containers within these VMs communicate
with each other using bridge IPs. Cloud servers are connected with Quidway 7706 Huawei
core switch through NSA 4600 Dell Sonic Firewall. This firewall has been implemented
to stop intrusion, invasion, malicious access, and unauthorized access to the network.
The fog nodes are connected with LAN and core through Huawei S5700 switches. These
switches are layer-3 48 ports switches. They have the capability to operate at both layers,
i.e., layer 2 (data link layer) and layer 3 (network layer). A round Robin domain name
system (RR-DNS) has been set up for load balancing, load distribution, and fault tolerance
for managing the user requests for service. The DNS server has been configured in the
active directory domain controller. The server is deployed on a Dell Power Edge 2950
server machine with Windows Server 2016, 16 GB RAM, and 500 GB storage. The request
is initiated by the user at the edge through a wireless or wired network connection. The
generated request is routed to the first available fog node. This node will redirect the user’s
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request for service to the main managing node (VM) running with the Docker container
QGIS service. In case of failure of both fog nodes, the request would be fulfilled by the core.

4. Results and Discussions

In the present work, different types of tests were conducted to prove that the proposed
framework is resilient, i.e., continuous rendering of service, even if there is any type of
failure or delay at any level.

4.1. Antifragility and Resiliency at the Container Level

Figure 7 shows the anti-fragile and resilient behavior of services via containers. The
QGIS was converted to a container image and hosted in a virtual machine with a dedicated
network interface and port-forwarding mechanism in the host Linux machine. Therefore,
two containers were deployed on one virtual machine to support each other. The proposed
framework keeps an eye on the performance and availability of the containers in a virtual
machine, and the above test only presents the availability of the container. The vertical
graph shows the availability of the service and the horizontal values show the service status
concerning time. Graphs show that as soon as the first container goes down or does not
accept the incoming requests, the framework shifts all incoming requests to the second
container by keeping the service status up seamlessly to the user. It happens at the same
time and in the same fraction of seconds in time.

(a)

(b)

Figure 7. Antifragility and resiliency at the container level. (a) Container 1 HTTP requests, and

(b) Container 2 HTTP request.

4.2. Antifragility and Resiliency at VM Level

The second test depicts the availability of virtual machines. Each virtual machine
contains two containers, and when both containers are down or one virtual machine is
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down, incoming requests are shifted to other virtual machines in the same fog node. Time
is represented on the x-axis, and service response with respect to time is represented on the
y-axis. Figure 8 shows that when one virtual machine is powered off or turned down due
to any known or unknown reasons, requests are shifted to other machines within no time,
maintaining its antifragility and resiliency.

(a)

(b)

Figure 8. Antifragility and resiliency at VM level, (a) Virtual machine 1 status, and (b) Virtual machine

2 status.

4.3. Antifragility and Resiliency at Fog Node Level

Figure 9 presents the antifragility and resiliency of two peer fog nodes that are de-
ployed in close proximity to the user. If one fog node goes down and becomes offline due
to any reason, the incoming requests will be routed to its closely deployed fog node within
no time to provide uninterrupted service to the users. In Figure 9, the time of receipt of
service requests, the number of requests, and bandwidth consumed by the particular node
are monitored, and it was observed that when fog node one is down due to any reason,
incoming requests are shifted to fog node two within 1 s while keeping the user state intact.
The test was repeated by turning down the fog node two, and as soon as node two was
powered off, user requests were shifted back to fog node one in 1 s. There was a difference
of 1 s, which is seamless to the user.
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(a)

(b)

Figure 9. Antifragility and resiliency at the fog node level, (a) Fog node 1, and (b) Fog node 2.

4.4. Requests Redirection at Serving Nodes

Figure 10 presents the shifting of requests from one serving node to another during
downtime. The horizontal axis presents time, and the vertical axis presents the number of
requests. It is clearly visible from the graphs that when Fog Node 1 is down, all requests are
routed to fog node 2, and it takes 1 s to move to its peering node. One second is seamless
for the user, and the service is shifted to its new node in one second. In a case when both
fog node 2 and fog node 2 are down, the request has to shift to its core site that, as the graph
shows, and it takes 2 s to completely shift to a new site. In the provision of services such as
HTTP requests, a 2 s delay is almost unnoticeable, and the user’s session is kept intact.

4.5. Request Redirection Due to Overloading Nodes

Figure 11 shows the total usage of CPU, memory, and IO operations. Containers use
the resources of virtual machines, and when they are occupied by more than 50%, requests
are planned to be directed to other resources. The same has been shown in the graphs as
well. Upon reaching the threshold of 50% at CPU or memory, requests are shifted to the
prioritized neighbor fog node. The framework keeps checking the states of all participant
machines, and when resources are normalized, the incoming requests are shifted to its
prioritized serving nodes.
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Figure 10. Request direction at serving nodes.

(a)

(b)

Figure 11. CPU, memory, and IO utilization at (a) Fog node 1 and (b) Fog node 2.
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5. Conclusions and Future Work

Fog computing is becoming more popular and a necessity in the coming days due to
its distributed and efficient nature in accomplishing requests. It also helps to reduce the
latency by reducing the large incurring cost and difficulty of deployment. Fog nodes and
edge computing are integral parts of providing edge processing to users. Driverless cars,
telesurgery, proactive surveillance, and proactive geofencing rely on fog technology. To
provide such delicate error-free and hassle-free services to users, this work has proposed a
framework at multiple fog nodes and a core platform to provide anti-fragile and resilient
services to users connected at fog nodes. This framework has provided anti-fragile and
resilient services by keeping the nodes up and directing the required services to its peer
nodes and vice versa. The results showed a maximum of 1 s delay (unnoticeable) when a
service is shifted to the core platform. No delay was recorded when the service was shifted
to other containers in the same site by maintaining the user’s state as well. Finally, the
guidelines for future work were proposed. The present technology is guided toward future
directions for fog computing. One of the major issues is service-level agreements that have
not been finalized yet. The services are inclining towards their maximum availability, and
cloud services have achieved five-nines of 99.999%. Fog nodes have to remain available
with consistent service availability. Cloudlets are becoming popular in fog computing as
nodes. Availability, scalability, mobility, fault tolerance, QoS, bandwidth management, and
artificial-intelligence-capable fog nodes are inevitable in the future. The fog has nodes that
are additional middleware to access the services, algorithms, and intelligence required at
fog nodes, which can decide to furnish the requests locally instead of communicating with
the core platform.
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