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Prediction of β‑Thalassemia carriers 
using complete blood count 
features
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β‑Thalassemia is one of the dangerous causes of the high mortality rate in the Mediterranean 
countries. Substantial resources are required to save a β‑Thalassemia carriers’ life and early detection 
of thalassemia patients can help appropriate treatment to increase the carrier’s life expectancy. 
Being a genetic disease, it can not be prevented however the analysis of several indicators in parents’ 
blood can be used to detect disorders causing Thalassemia. Laboratory tests for Thalassemia are 
time‑consuming and expensive like high‑performance liquid chromatography, Complete Blood 
Count (CBC) with peripheral smear, genetic test, etc. Red blood indices from CBC can be used with 
machine learning models for the same task. Despite the available approaches for Thalassemia 
carriers from CBC data, gaps exist between the desired and achieved accuracy. Moreover, the data 
imbalance problem is studied well which makes the models less generalizable. This study proposes a 
highly accurate approach for β‑Thalassemia detection using red blood indices from CBC augmented 
by supervised machine learning. In view of the fact that all the features do not carry predictive 
information regarding the target variable, this study employs a unified framework of two features 
selection techniques including Principal Component Analysis (PCA) and Singular Vector Decomposition 
(SVD). The data imbalance between β‑Thalassemia carrier and non‑carriers is handled by Synthetic 
Minority Oversampling Technique (SMOTE) and Adaptive Synthetic (ADASYN). Extensive experiments 
are performed using many state‑of‑the‑art machine learning models and deep learning models. 
Experimental results indicate the superiority of the proposed approach over existing approaches with 
an accuracy score of 0.96.

Thalassemia is a hereditary genetic disorder that occurs due to mutations in the DeoxyriboNucleic Acid (DNA) 
of cells induced by insufficient production of Hemoglobin (Hb) in the body. Hb is a protein that allows Red 
Blood Cells (RBCs) to carry oxygen. The deficiency of Hb lowers the survival rate of RBCs resulting in a smaller 
number of RBCs flowing through the bloodstream leading to a limited supply of oxygen in the body which can 
be life-threatening. Two protein chains, α , and β , are required to synthesize Hb. RBCs will not be able to carry 
oxygen efficiently if either of the aforementioned protein chains is insufficient. The α-Thalassemia caused by less 
production of α-protein chain, and β-Thalassemia caused by the absence or limited synthesis of β-protein chain, 
are the two forms of thalassemia  disorder1. Symptoms of thalassemia range from mild to severe anemia which 
can cause organ damage and even death.

As of today, many countries are dealing with the growing rate of thalassemia, which has significantly increased 
disability and mortality worldwide. The β-Thalassemia is the most prevalent type of thalassemia which is com-
mon among the people of Mediterranean countries, hence also called ‘Mediterranean Anaemia’. Pakistan is one 
of the Mediterranean countries in which every year, approximately 5000–9000 children are diagnosed with β
-Thalassemia disorder along with an estimated 5–7% carrier rate among the total  populous2. According to the 
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Thalassemia Federation of Pakistan, 25,000 children have been diagnosed with β-Thalassemia disorder, however, 
the actual figure is likely to be significantly higher, as many are living in areas where they do not have access to 
any thalassemia  facility3. The Health Informatics (HI) integrates information technology to analyze and organ-
ize medical records efficiently. In recent years, the significance of HIs has increased due to the requirement for 
effective and secure management of medical  records4. This resulted in an immense volume of medical data being 
analyzed using a variety of data mining techniques to acquire useful insights that can be utilized in the develop-
ment of efficient systems to assist in the early diagnosis of genetic disorders like thalassemia.

Data mining has been extensively utilized in the medical field for the prognosis of available medical records. It 
involves the discovery of useful information from big data efficiently and cost-effectively. Data mining techniques 
are employed to process a large volume of raw data to discover useful knowledge. This procedure of uncovering 
novel patterns involves a series of steps, from data preprocessing to the prediction of future  outcomes5. Therefore, 
data mining techniques can be effective in the development of a detection system that can help healthcare profes-
sionals in the prediction and early detection of β-Thalassemia. The carriers of β-Thalassemia do not show any 
symptoms of the disease and can be diagnosed by Complete Blood Count (CBC) test, high-performance liquid 
chromatography, or genetic test. CBC results contain several indicators that can be utilized to identify thalassemia 
carriers. Several approaches have been presented lately to detect thalassemia  carriers6–8, however, such approaches 
are limited by the use of imbalanced datasets, lower classification accuracy, and less generalizability of models.

The current study proposes an approach to obtain high accuracy by resolving the data imbalance problem 
and increasing the efficacy of the feature selection approach. In summary, it makes the following contributions

• This study investigates the usefulness of data mining approaches in the accurate and robust screening of β
-Thalassemia carriers and non-carriers based on several features from CBC.

• The dataset imbalance problem is resolved using two sampling approaches including Synthetic Minority 
Oversampling Technique (SMOTE) and Adaptive Synthetic (ADASYN).

• A unified framework of two feature reduction techniques including Principal Component Analysis (PCA) 
and Singular Value Decomposition (SVD) is proposed to acquire an optimum feature set for the training of 
classifiers.

• Extensive experiments are performed to evaluate the performance of the proposed approach using Decision 
Tree (DT), Gradient Boosting Machine (GBM), AdaBoost (ADA), Support Vector Classifier (SVC), Random 
Forest (RF), Extra Tree Classifier (ETC), and Logistic Regression (LR). In addition, deep learning models are 
also deployed including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional 
Neural Network (CNN), and an ensemble called CNN-LSTM.

• Performance analysis is carried out with deep learning models and existing state-of-the-art approaches in 
terms of accuracy, precision, recall, and F1 score.

The rest of this paper is structured as follows. The following section covers the research papers related to the 
current study. “Materials and methods” are given in the third section. The fourth section provides “Experimental 
results” and in the end, the study is concluded.

Related work
The manual approach for the diagnosis of β-Thalassemia carriers from patients’ data is time-consuming and 
costly. This urges for an expert predictive system that is capable of diagnosing β-Thalassemia carriers in less time 
and cost. Several pieces of research have proposed the use of machine learning and deep learning techniques to 
assist healthcare professionals to make informed decisions with less  delay9. In this regard, we discuss the primary 
research in the literature which addresses the diagnosis of β-Thalassemia carriers using a variety of machine 
learning and deep learning models.

Sadiq et al.8 designed an aggregated classifier SGR-VC for the classification of β-Thalassemia carriers and 
non-carriers. The proposed classifier is an ensemble of SVC, GBM, and RF which is trained and evaluated on the 
CBC data of 5066 patients from Punjab Thalassaemia Prevention Programme, Pakistan (PTPP). The author opted 
for a simple CBC test of red blood cells to classify thalassemia carriers. The authors compared the performance 
of the proposed SGR-VC with SVC, GBM, and RF individually. Experimental results revealed that the suggested 
model with 93% accuracy was more efficient for the classification of β-Thalassemia carriers and non-carriers.

Egejuru et al.10 employed a manual questionnaire type model to estimate the danger of thalassemia in differ-
ent age groups. Simple questions were selected and speeches and discussions were organized with related medi-
cal experts and the public. Multilayer Perceptron (MLP) was used to process the computational data. Results 
of the conferences were comparatively studied with actual lab results. Some environmental factors like living 
conditions, marital status, gender, death, and birth rate of 51 patients were also studied, in addition to medical 
variables like the size of spleen physiology and appearance of urine, diabatic grade, etc. Results show that 43% 
are patients with no disease, 31% are at high risk, 16% are at moderate risk and 11% are with the least risk factor.

Noferest et al.11 screened the iron-deficient anemic patients from β-Thalassemia minor by employing the 
data mining technique. The analysis was done by using the simple lab sampling of the CBC test. The CBC test 
was performed because it is cheap and consumes less time as compared to the other expensive and time tak-
ing tests. The data set was collected from Dr. Haidari’s laboratory situated in Zahedan city, Iran. The authors 
used several machine learning models like DT, naïve Bayes, bagging, SVC, and ADA for the experiments. The 
performance comparison of different models suggests that DT, naïve Bayes, ADA, SVC, and bagging obtained 
96%, 76.6%, 80.2%, 95.5%, and 96.6% accuracy, respectively. The author concluded that the bagging classifier 
performed better.
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Masala et al.12 designed a new model based on the radial basis function for the screening of normal persons 
from α and β-Thalassemia carriers. The dataset contains the records for 304 patients which is used with Probalis-
tic Neural Network (PNN), k Nearest Neighbor (k-NN), and the Radial Basis Function (RBF). The classification 
is performed in two steps where in the first step, β-Thalassemia carriers are differentiated using the RBF and 
classified all the patients with 100% accuracy. In the second step, classification is performed by PNN and KNN 
with accuracy scores of 93% and 91%, respectively. Results showed that the RBF model was best due to its speed 
and efficiency. Barnhart-Magen et al.12 analyzed the patients suffering from thalassemia minor disease using a 
new screening method. The authors generated 1500 neural networks for the determination of sequences in the 
data sets. Every patient’s HB level, Mean Corpuscular Volume (MCV), Red cell Distribution Width (RDW), 
number of erythrocytes and platelets, and Mean Corpuscular Hemoglobin (MCH) tests were taken and analyzed 
for the screening. Experiments are performed using all three features separately. Results using three features 
show better performance.

Amendolia et al.13 conducted a study to classify Thalassemia patients using Pattern Recognition (PR) tech-
niques. The author used two layer-based classifiers composed of SVM and k-NN and compare their results with 
the MLP classifier. The first layer of two layer-based classifier works to classify Thalassemia patients and healthy 
patients while the other layers classify the patients from the first layer into two types of thalassemia. The author 
only used the features that are relevant to the classification which include RCB, Ht, MCV, and HB without 
normalization. The results of this study showed that the MLP classifier performed better than the two-layer 
classifiers.  Similarly14 used two methods for the diagnosis of thalassemia trait and normal ones. Through genetic 
programming, the author used a DT and neural network to classify thalassemia patients. Multiple regression 
analysis was used to check the values of the coefficients for the various DTs used in the classification. Results 
show a 90% accuracy using the MLP with two hidden layers.

The authors use NB, DT, and MLP for the screening of various groups of thalassemia disorders in Ref.15. Data 
was collected by the characterization of CBC and the type and level of the hemoglobin. Out of various attributes 
of the CBC test, only MCV and levels of hemoglobin are selected for the analysis of the data. HPLC was used 
to analyze the different forms of hemoglobin. An accuracy of 94% is obtained using the NB while 92.5% with 
the MLP. A comparative analysis of discussed research works are provided in Table 1 which shows that lots of 
researchers have done work on β-Thalassemia predictions but still accuracy and efficiency a gap to work in this 
domain. The imbalanced dataset is a problem in base  work8 that causes the model to over-fitting towards the 
majority class data and we work on this problem to achieve significant results.

Materials and methods
This section discusses the dataset utilized in this study in addition to a detailed overview of the techniques 
employed for β-Thalassemia carriers classification using supervised machine learning. All methods were carried 
out in accordance with relevant guidelines and regulations.

Dataset description. The dataset used in this research is collected from the database of  PTPP8. PTPP is an 
institute of the Punjab Government of Pakistan that takes measures toward a Thalassemia-free country. The pri-
mary goal of PTPP is the cascade screening of β-Thalassemia carriers. In cascade screening whenever a patient 
with β-Thalassemia is diagnosed the complete screening of both parents’ families is performed. Given the fact 
that thalassemia is an inherited disorder, cascade screening encounters a considerable number of β-Thalassemia 
carriers. PTPP performs more than 300,000 tests every year. The records of 5066 individuals from 1000 families 

Table 1.  Summary of related work.

References Overview Models Conclusion

8
Ensemble of best-performing machine learning classifiers 
under the majority voting criteria is proposed for a robust 
screening of β-Thalassemia carriers and non-carriers

SVM, GBM, and RF Proposed SGR-VC yielded 93% accuracy on the test set

10 Investigated the risk of β-Thalassemia disorder in every age 
group by employing a manual questionnaire type model MLP Detection of β-Thalassemia disorder can be enhanced by 

incorporating Multilayer Perceptron (MLP)

11 Diagnosis of iron-deficient anemic patients from β-Thalassemia 
minor by utilizing a variety of data mining techniques DT, NB, Bagging, SVM, and ADA Bagging classifier performed efficiently in the diagnosis of iron-

deficit patients

12 Screening of non-carriers from α−Thalassemia and β-Thalas-
semia carriers using a bi-layered Radial Basis Function (RBF) PNN, k-NN, and RBF RBF performed well in the detection of non-carriers

12

Categorization of β-Thalassemia minor carriers by generat-
ing 1500 neural networks in the MATLAB. A two-fold study 
involving six features in the first phase and only three features 
in the second phase

Neural Networks
Proposed approach worked better with less and more 
significant features as compared to all features involved in 
experiments

13
Compared the performance of a two-layered machine learning 
model involving SVM and k-NN for first and second layer 
respectively, with MLP

MLP, SVM layered with k-NN MLP performed comparatively better as compared to the two-
layered learning model

14 Devised a machine learning model for the prognosis of thalas-
semia carriers and non-carriers GP-based DT and MLP MLP with two hidden layers carried out the prognosis with 

more efficacy than the GP-based DT

15
Screened a variety of groups of thalassemia disorder by inte-
grating only significant features correlated with the thalassemia 
disorder such as MCV, and levels of hemoglobin

NB, DT, and MLP NB and MLP showed better performance in the screening 
process
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are incorporated in the current dataset. A total of 2015 individuals were diagnosed as β-Thalassemia carriers 
whereas 3051 were declared as β-Thalassemia non-carriers. Thalassemia carriers class indicates subjects who are 
diagnosed with β-Thalassemia major. On the other hand, β-Thalassemia non-carriers are healthy subjects. For 
the diagnosis, a complete blood count (CBC) is performed and Hb-Electrophoresis is carried out to confirm the 
carrier status of the individual. For a clear understanding of the dataset, we graphically present the dataset in 
terms of class, age, and gender-wise distribution in Fig. 1. The dataset involves a total of 12 features among which 
9 features correspond to the attributes of CBC tests and 2 features contain demographic information regarding 
patients and 1 feature corresponds to the target label. These features are described in Table 2. In addition, the 
ratio of Thalassemia carriers regarding gender is 53% for males and 47% for females. Similarly, 54% of the carri-
ers are adults while the rest 46% are children.

Proposed methodology. This study utilizes the supervised machine learning approach for β-Thalassemia 
carriers classification. The flow of the proposed methodology is shown in Fig. 2.

First, we acquire the dataset from the study which is followed by the data normalization. Categorical data is 
normalized using ‘Label Encoder’ which is a technique for the transformation of categorical data into numeric 
data. Label encoder encodes the categorical values into numeric values with a 0 to N − 1 range. We implemented 
the encoding technique using the sci-kit-learn library LabelEnconder(). After that, we apply the data oversam-
pling technique to balance the dataset for both target classes. Oversampling of data helps to increase the size of 
training data and also reduces the model over-fitting problem. We used SMOTE and ADASYN techniques for the 
oversampling. The number of samples after applying each resampling technique is shown in Table 3. Later feature 
engineering is performed to improve the performance of machine learning models. To make an appropriate 

Figure 1.  Dataset variable visualization.

Table 2.  Features and the relevant description.

Feature Description Data type

Age Age of the patient Numeric

Sex Gender of the patient under-diagnosis Categorical

RBC Count of red blood cells in hemoglobin Numeric

HB The concentration of the hemoglobin protein molecules in the blood cells of a patient Numeric

HCT Hematocrit is the volume of RBCs in the blood Numeric

MCV Mean corpuscular volume measures the average size of RBCs Numeric

MCH Mean corpuscular haemoglobin measures the average volume of Hb in RBCs Numeric

MCHC Mean corpuscular haemoglobin concentration inside an individual RBC Numeric

RDW Distribution of width in RBCs Numeric

PLT The measure of the platelets in a volume of blood Numeric

WBC Count of white blood cells in a volume of blood Numeric

Final finding Diagnosis of the patient as β-thalassemia carrier or non-carrier Categorical
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feature set, this study proposes a hybrid approach where the features from PCA and SVD are combined. Data 
splitting is performed after feature engineering with a 0.9–0.1 ratio for training and testing, respectively. Models 
are trained using the training dataset and tested on the unseen test dataset. Performance is measured in terms 
of accuracy, precision, recall, and F1 score.

Date resampling. The skewed distribution between target classes tends to produce ambiguous results 
because the learning model can only interpret the data samples from the majority class more effectively than 
that of the minority class. The authors in Ref.16 suggested the integration of resampling techniques to address the 
difficulty in the detection of the minority class label. In Ref.17 the authors reviewed that the poor performance 
of machine learning models is mainly due to the uneven distribution of class. The dataset under analysis is also 
subjected to the skewed distribution of target classes which results in a higher misclassification rate. To address 
this challenge we incorporated data resampling in this study. For this purpose, SMOTE and ADASYN are uti-
lized to achieve a balanced distribution of target classes.

SMOTE is a statistical technique used to balance the dataset and solve the problem of over-fitting by adding 
new instances in the minority class. It randomly selects a single sample of data from the minority category and 
finds the nearest neighbors of that data sample. In SMOTE, the frequency is k = 5 for the selection of random 
data points and creating a new sample data for that line at the selected point.

ADASYN works analogously to SMOTE with trivial changes which involve the generation of samples that 
are more correlated with the ‘harder to learn’ samples. It selects the random point for the generation of minority 
class samples by finding linearly correlated values. It generates synthetic minority class samples which can be 
computed using

where � is a random number: � ε [0, 1] and (Ku − Ki) is the vector difference in n-dimensional spaces. The 
number of samples after applying each resampling technique is shown in Table 3.

(1)Si = Ki + (Ku − Ki)x�,

Figure 2.  Flow of the proposed methodology.

Table 3.  Number of samples after data resampling.

Class Original SMOTE ADASYN

β-Thalassemia carriers 2015 3051 3121

β-Thalassemia non-carriers 3051 3051 3051
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Data splitting. The estimation of the generalizability of a machine learning model is highly correlated with 
its performance on unseen data. Data splitting is performed to split the data into train and test sets. The train set 
is used by the machine learning models to learn and interpret the data instances following the target variable. 
Whereas, the test set is fed to the trained model to evaluate its efficacy. Owing to the small size of the dataset, 
we split the data into 0.9–0.1 ratios for the train and test set, respectively. The sample count after data splitting 
is shown in Table 4.

Feature engineering. The dataset under consideration is comprised of features among which some con-
tain high predictive information regarding the target variable whereas, some features do not contain or contain 
less predictive information. Therefore, reducing the number of input features facilitates an improvement in the 
model’s training. In this study, we utilized two well-known techniques including the PCA and SVD for the fea-
ture engineering of the dataset to optimize the performance of the classifiers.

PCA is a quantitatively rigorous technique that projects high-dimensional data into a lower dimension with-
out any loss of significant information. This technique is targeted at describing maximum variance with minimum 
reconstruction error by generating a new set of vector representations called principal components which are a 
linear combination of the original vector representations. PCA avoids redundancy as principal components tend 
to create an orthogonal space for the data. On the contrary, SVD is a generalized version of PCA as it infers the 
decomposition of a feature set of n features to a feature set of k features which allows the generation of a linear 
combination of the low number of linearly independent feature vectors which are easy to analyze and manipu-
late by the machine learning models. Whereas, the components with less significance are skipped using PCA.

In this study, we combined both feature reduction techniques’ results and make the training features set more 
significant. The dataset contains a total of 11 features and we reduced these 11 features into 9 using PCA and 
9 using SVD. Then we combined these selected features into a single feature set of size 18 as shown in Fig. 3.

Machine learning models. This study employs LR, GBM, DT, RF, ETC, SVC, and ADA to carry out clas-
sification tasks. Many hyperparameters are fine-tuned for machine learning models to optimize their perfor-
mance.

Decision tree. DT has a tree-based structure in which the prediction made for each attribute is represented by 
an internal node, the prediction process is represented by each branch and the terminals or leaf nodes contain 
the target variable. DTs interpret the patterns from the train set based on the value of a single attribute set. This 
process repetitively takes place and is terminated when there is no further separation that can be made in the tree 
or when the output at the node is the same as the target  variable18. DT is used with max_depth = 20 for this study.

Table 4.  Training and testing count after data splitting.

Class

Original SMOTE ADSYN

Training Testing Training Testing Training Testing

β-Thalassemia carriers 1802 213 2746 305 2831 290

β-Thalassemia non carriers 2757 294 2745 306 2723 328

Total 5554 618 5491 611 4559 507

Figure 3.  Visualization of combing features from PCA and SVD.
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Gradient boosting machine. GBM is an ensemble learning model which trains weak learners in a sequential, 
additive, and gradual manner. It integrates the loss function with the gradients which measures how well the 
coefficients of the model fit the underlying input data. GBM provides the benefit of cost function optimization 
by the user  zhou2021developing19. GBM is used with max_depth = 300, learning_rate = 0.2, n_estimators = 350, 
and random_state = 52.

AdaBoost. ADA was initially developed to enhance the performance of a binary classifier by making use of 
iterations to gain information from the errors of the weak learners and then minimize the prediction error. It is 
an ensemble of weak learners which works by adjusting a weak learner on the input data and then fine-tuning 
more of the weak learners on the same input data concentrated on misclassified instances. This is done for the 
next weak learners to mainly target the wrongly predicted data  instances20. ADA is used with n_estimators = 
300, random_state=5, and learning_rate = 0.8.

Support vector classifier. SVC works by drawing the feature in N-dimensional space and then dividing the 
classes by drawing a hyperplane that separates the classes. Many hyperplanes are drawn the ideal hyper plan 
that divides the classes with the most distance from the features of other classes. The number of dimensions of 
a hyperplane is determined by the number of feature datasets contains. If the features of the dataset mapped on 
space are difficult to separate SVM uses a kernel function thus making SVC more flexible and effective. A kernel 
function maps the instance of data in higher dimensions which aids in separation by the  hyperplane21. It is used 
with ‘poly’ kernel, C = 5.0, and a random_state of 500.

Random forest. RF is an ensemble technique that integrates unpruned trees developed by bootstrapping the 
samples of input training data and randomly selecting the features in the induction of trees. Every individual 
tree in RF forecasts a target variable. The target variable with a maximum number of votes is selected as the final 
prediction. Every decision tree is unique due to bootstrapping technique used by RF therefore the variance of RF 
decreases. RF can handle noise in datasets and performs exceptionally in  classification22. For RF, 300 n_estima-
tors are used with random_state = 5, while the max_depth is 03.

Extra tree classifier. ETC also called Extremely Randomized Trees Classifier is an ensemble classifier. Several 
DTs are constructed and for each tree whole training dataset is available rather than subsets of the dataset which 
is the case in RF. The trees are provided with a random sample of k features at each test node, from which the 
best features are selected by the DTs based on some mathematical parameters. Based on these random samples 
of features, a Multiple Decorrelated Decision Tree is constructed which produces the final  output23. The hyper-
parameters for ETC are n_estimators = 200, random_state = 5, and the max_depth is 20.

Logistic regression. LR is a probabilistic model which classifies a given set of input X into a discrete set of output 
Y. It carries out classification tasks based on its output belonging to a target variable 0 or target value 1 which 
uses a sigmoid function to maximize the output within the given range of target  variables24. The random_state is 
1000, the solver is ‘liblinear’, multi_class = ‘ovr’, and C = 2.0 for experiments used in this study.

Evaluation parameters. The evaluation methods assess the accuracy of models by analyzing test data and 
scoring them accordingly. In this study, the machine-learning models are evaluated by using four basic evalua-
tion parameters including accuracy, precision, recall, and F1 score. We can calculate these evaluation parameters 
using confusion matrix values which are shown in Fig. 4.

We can define accuracy as:

Informed consent. Informed consent was obtained from all subjects and/or their legal guardian(s).

Results and discussion
Extensive experiments are conducted in this study to evaluate the performance of classifiers in different scenarios. 
The first scenario follows the classification of β-Thalassemia carriers and non-carriers by training classifiers on the 
original dataset. The second scenario involves the classification of the target variables by machine learning models 
when trained with the resampled data. The third scenario employs resampling techniques along with a unified 

(2)Accuracy =

TP + TN

TN + TP + FN + FP
,

(3)Positive Predictive Value (PPV) =
TP

TP + FP
,

(4)Sensitivity =

TP

TP + FN
,

(5)F1− Score = 2 ∗
Precision ∗ Recall

Precision+ Recall
,
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framework of two feature reduction techniques. These scenarios are illustrated in Fig. 5. This section presents the 
experimental results following the three aforementioned scenarios along with a detailed discussion. In addition 
to this, the performance of deep learning models following the three scenarios is also discussed in this section.

Scenario 1: Classification results of ML models using original data. The original dataset corre-
sponds to the skewed distribution of β-Thalassemia carriers and non-carriers with 12 features. In this scenario, 
the performance of the classifiers including ST, GBM, LR, RF, ETC, ADA, and SVC is evaluated on the original 
dataset. Table 5 shows the experimental results of ML classifiers utilized for the classification of β-Thalassemia 
carriers and non-carriers when integrated with original data. The results reveal that two tree-based models 
including ETC, RF, and a boosting classifier ADA achieve the highest accuracy score of 0.92 followed by similar 
weighted precision, recall, and F1 score. Whereas, SVC and LR with their ability to divide the target variables 
based on a decision boundary achieve a 0.91 accuracy score.

Only accuracy, PPV, Sensitivity, and F1 score are not sufficient measures for the evaluation of a classifier in 
medical diagnosis. We also incorporated the count of correctly and incorrectly predicted instances to evaluate 
the performance of classifiers. Figure 6 reveals that the machine learning classifiers predicted the target variable 
with a high ratio of TP and TN, however, owing to the skewed distribution of target values, these high ratios 
of correctly predicted instances can be  misleading25. Here, TP and FP refer to the count of correct and incor-
rect predictions β-Thalassemia non-carriers, respectively, TN and FN are the numbers of correct and incorrect 
predictions β-Thalassemia carriers respectively. The best performing tree-based models including RF, and ETC 
in this scenario show the highest count of correctly predicted instances whereas a significant difference can be 
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Figure 5.  Details of three scenarios considered for experiments.
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observed between the TP and TN which is due to fewer samples of the minority class. On the other hand, ADA 
resulted in the lowest number of wrongly predicted β-Thalassemia carriers and the highest number of wrongly 
predicted β-Thalassemia non-carriers.

Scenario 2: Classification results of ML models using oversampling techniques. This study 
intends to provide an accurate approach for the diagnosis of β-Thalassemia carriers and non-carriers. In the 
previous scenario, the data imbalanced problem resulted in inefficient training of the classifiers on the minority 
class i.e., β-Thalassemia carriers. This resulted in a higher ratio of wrongly predicted test samples from the target 
variable corresponding to β-Thalassemia carriers. To cope with the data imbalance problem, resampling tech-
niques including SMOTE and ADASYN are implemented individually to acquire a balanced dataset for effective 
training of the machine learning models. The performance of ML classifiers corresponding to each oversampling 
technique is presented in this section.

Classification results of ML models using SMOTE. Table 6 presents the performance results of ML models when 
trained with data oversampled using SMOTE. It is indicated that the performance of classifiers is boosted when 
oversampling is integrated. Tree-based classifiers RF, and ETC yield the best performance with a 0.95 accuracy 
score followed by similar PPV, sensitivity, and F1 scores. These models are composed of an ensemble structure 
which results in better performance in the classification of β-Thalassemia carriers and non-carriers as compared 

Table 5.  Experimental results of ML classifiers using original data.

Classifier Class Accuracy PPV Sensitivity F1 score

DT

β-Thalassaemia non-carrier

0.90

0.92 0.92 0.92

β-Thalassaemia carrier 0.87 0.87 0.87

Weighted average 0.90 0.90 0.90

GBM

β-Thalassaemia non-carrier

0.90

0.92 0.92 0.92

β-Thalassaemia carrier 0.87 0.87 0.87

Weighted average 0.90 0.90 0.90

ADA

β-Thalassaemia non-carrier

0.92

0.96 0.90 0.93

β-Thalassaemia carrier 0.85 0.94 0.89

Weighted average 0.92 0.92 0.92

SVC

β-Thalassaemia non-carrier

0.91

0.94 0.91 0.93

β-Thalassaemia carrier 0.87 0.91 0.89

Weighted average 0.91 0.91 0.91

RF

β-Thalassaemia non-carrier

0.92

0.94 0.93 0.93

β-Thalassaemia carrier 0.88 0.90 0.89

Weighted average 0.92 0.92 0.92

ETC

β-Thalassaemia non-carrier

0.92

0.93 0.93 0.93

β-Thalassaemia carrier 0.89 0.89 0.89

Weighted average 0.92 0.92 0.92

LR

β-Thalassaemia non-carrier

0.91

0.93 0.92 0.93

β-Thalassaemia carrier 0.87 0.90 0.88

Weighted average 0.91 0.91 0.91

Figure 6.  Count of correctly and incorrectly predicted instances of the test data.
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to DT. The effectiveness of tree-based models over other models is because of their increasing number of trees 
which results in more generalization and reduction in  variance26.

For a better understanding of the performance of classifiers, we present the correctly and incorrectly classified 
instances using SMOTE in Fig. 7. A significant increase in the correctly classified β-Thalassemia carrier instances 
can be observed. RF has the lowest number of wrongly classified β-Thalassemia carriers and non-carriers and 
outperforms other models. Whereas, LR and SVC perform poorly with the highest number of wrongly classified 
instances which is a clear indication that these models are not suitable for the classification of the current dataset 
when subjected to oversampling with SMOTE.

Classification results of ML models using ADASYN. This study also considers using ADASYN for oversampling. 
Then, the same ML models discussed above are employed to carry out classification tasks. The primary differ-
ence between SMOTE and ADASYN is that the latter utilizes density distribution to generate minority samples 
and the former generates the same number of synthetic samples for the minority  class27. Therefore, SMOTE gen-
erated 3051 samples for the minority class and ADASYN generated 3121 samples for the minority class. Table 7 
shows that the performance of ML classifiers using ADASYN oversampled data is somewhat lower than that of 
SMOTE. However, RF and ETC remained the highest performing classifiers with a 0.94 accuracy score. In terms 

Table 6.  Experimental results of ML classifiers with SMOTE.

Classifier Class Accuracy PPV Sensitivity F1 score

DT

β-Thalassaemia non-carrier

0.92

0.93 0.92 0.93

β-Thalassaemia carrier 0.92 0.92 0.92

Weighted average 0.92 0.92 0.92

GBM

β-Thalassaemia non-carrier

0.92

0.92 0.92 0.92

β-Thalassaemia carrier 0.91 0.91 0.91

Weighted average 0.92 0.92 0.92

ADA

β-Thalassaemia non-carrier

0.94

0.96 0.93 0.95

β-Thalassaemia carrier 0.92 0.96 0.94

Weighted average 0.94 0.95 0.94

SVC

β-Thalassaemia non-carrier

0.92

0.96 0.89 0.92

β-Thalassaemia carrier 0.89 0.96 0.92

Weighted average 0.92 0.92 0.92

RF

β-Thalassaemia non-carrier

0.95

0.97 0.94 0.96

β-Thalassaemia carrier 0.93 0.97 0.95

Weighted average 0.95 0.95 0.95

ETC

β-Thalassaemia non-carrier

0.95

0.97 0.93 0.95

β-Thalassaemia carrier 0.93 0.97 0.95

Weighted average 0.95 0.95 0.95

LR

β-Thalassaemia non-carrier

0.93

0.96 0.91 0.93

β-Thalassaemia carrier 0.90 0.96 0.93

Weighted average 0.93 0.93 0.93

Figure 7.  Count of correctly and incorrectly predicted instances by ML classifiers when trained SMOTE 
oversampled data.
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of other evaluation parameters such as PPV, sensitivity, and F1 score the aforementioned tree-based models also 
remained in the first place. Whereas GBM and SVC showed comparatively poor performance.

The test sample involves a total of 618 instances among which 311 corresponds to the class of β-Thalassaemia 
non-carriers and 307 are the test instances of β-Thalassaemia carriers from which the highest ratio of incorrectly 
predicted samples is achieved by SVC as shown in Fig. 8. However, ETC and RF being the highest accurate models 
yield the lowest ratio of incorrect predictions. Overall, it can be observed that the tree-based models perform 
comparatively better whereas, the boosting model GBM shows poor performance.

Scenario 3: Classification results of ML models using oversampling techniques integrated with 
unified framework of PCA and SVD. The dataset under analysis consists of twelve features among which 
all features do not carry predictive information regarding the target variable. This study intends to improve the 
performance of classifiers for the diagnosis of β-Thalassaemia carriers, therefore, we employed feature selection 
for effective training of the classifiers with only significant features. For this purpose, we proposed a unified 
framework of PCA and SVD which first chooses the nine most significant features with PCA and SVD individu-
ally and then combines these selected features into a single optimal feature set. Furthermore, the classifiers are 
trained with the combined feature set.

Table 7.  Experimental results of ML classifiers with ADASYN.

Classifier Class Accuracy PPV Sensitivity F1 score

DT

β-Thalassaemia non-carrier

0.92

0.95 0.87 0.91

β-Thalassaemia carrier 0.88 0.96 0.92

Weighted average 0.92 0.92 0.92

GBM

β-Thalassaemia non-carrier

0.90

0.88 0.93 0.90

β-Thalassaemia carrier 0.92 0.88 0.90

Weighted average 0.90 0.90 0.90

ADA

β-Thalassaemia non-carrier

0.91

0.94 0.89 0.91

β-Thalassaemia carrier 0.89 0.94 0.91

Weighted average 0.91 0.91 0.91

SVC

β-Thalassaemia non-carrier

0.90

0.96 0.84 0.90

β-Thalassaemia carrier 0.85 0.97 0.91

Weighted average 0.91 0.90 0.90

RF

β-Thalassaemia non-carrier

0.94

0.97 0.91 0.94

β-Thalassaemia carrier 0.91 0.97 0.94

Weighted average 0.94 0.94 0.94

ETC

β-Thalassaemia non-carrier

0.94

0.98 0.91 0.94

β-Thalassaemia carrier 0.91 0.98 0.95

Weighted average 0.95 0.94 0.94

LR

β-Thalassaemia non-carrier

0.91

0.93 0.88 0.91

β-Thalassaemia carrier 0.89 0.93 0.91

Weighted average 0.91 0.91 0.91

Figure 8.  Count of correctly and incorrectly predicted instances by ML classifiers when trained on data 
oversampled using ADASYN.
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Classification results of ML models using SMOTE integrated with unified framework of PCA and SVD. Feature 
selection and expansion of feature set size boosted the performance of ML classifiers as shown in Table 8. The 
performance results of ML classifiers when trained on the oversampled dataset by SMOTE integrated with the 
unified framework of PCA and SVD reveal that the ensemble tree-based models such as ETC and RF show the 
best performance with a 0.96 accuracy score. Whereas, the remainder of the ML models including LR, DT, and 
GBM achieve 0.92, 0.91, and 0.91 accuracy scores, respectively which is comparatively lower. As for ADA and 
SVC, the increase in the number of features enhanced the predictive capability of these models as they achieved 
a 0.94 accuracy score.

Figure 9 reveals that overall, the feature selection and expansion combined with SMOTE oversampled data 
increases the performance of the ML classifiers. PCA and SVD generate a feature set of attributes that are highly 
correlated with the target variable. Their unified framework results in a larger feature set comprised of signifi-
cant features which improve the training of the classifiers hence boosting their performance. It is indicated that 
the number of correctly classified target variables has increased with the proposed approach. This shows the 
effectiveness of the proposed approach of combining oversampling technique with the unified framework of 
PCA and SVD.

Table 8.  Experimental results of ML classifiers using SMOTE integrated with unified framework of PCA and 
SVD.

Classifier Class Accuracy PPV Sensitivity F1-Score

DT

β-Thalassaemia non-carrier

0.91

0.90 0.92 0.91

β-Thalassaemia carrier 0.92 0.90 0.91

Weighted average 0.91 0.91 0.91

GBM

β-Thalassaemia non-carrier

0.91

0.89 0.94 0.91

β-Thalassaemia carrier 0.94 0.88 0.91

Weighted average 0.91 0.91 0.91

ADA

β-Thalassaemia non-carrier

0.94

0.93 0.95 0.94

β-Thalassaemia carrier 0.95 0.93 0.94

Weighted average 0.94 0.94 0.94

SVC

β-Thalassaemia non-carrier

0.94

0.94 0.94 0.94

β-Thalassaemia carrier 0.94 0.95 0.94

Weighted average 0.94 0.94 0.94

RF

β-Thalassaemia non-carrier

0.96

0.96 0.95 0.96

β-Thalassaemia carrier 0.95 0.96 0.96

Weighted average 0.96 0.96 0.96

ETC

β-Thalassaemia non-carrier

0.96

0.96 0.95 0.96

β-Thalassaemia carrier 0.96 0.96 0.96

Weighted average 0.96 0.96 0.96

LR
β-Thalassaemia non-carrier

0.92
0.91 0.93 0.92

β-Thalassaemia carrier 0.93 0.92 0.92

Figure 9.  Count of correctly and incorrectly predicted instances by ML classifiers using SMOTE integrated 
with unified framework of PCA and SVD.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19999  | https://doi.org/10.1038/s41598-022-22011-8

www.nature.com/scientificreports/

Classification results of ML models using ADASYN integrated with unified framework of PCA and SVD. Table 9 
reveals that the classifiers performed comparatively lower when integrated with feature union and ADASYN 
oversampling technique than with SMOTE. However, ETC showed better performance with a 0.96 accuracy 
score and 1.00 precision in the classification of the β-Thalassaemia non-carrier class. ADASYN oversamples the 
minority class following the learning difficulty of the minority class. More synthetic samples will be generated for 
the target class which is relatively harder to learn and interpret. Although ADASYN has been advocated to solve 
the problems faced by SMOTE, in literature it can be viewed that SMOTE outperforms ADASYN for classifica-
tion  tasks28–30 which is the case in this study. Overall performance of the classifiers is observed to decrease with 
ADASYN. The lowest accuracy score of 0.89 is achieved by GBM when subjected to training samples oversam-
pled by ADASYN and the feature set generated by a unified framework of PCA and SVD.

For a detailed evaluation of the performance of the proposed approach when integrated with ADASYN we 
present the count of correct and incorrect classified test instances in Fig. 10. ETC with the highest accuracy 
score classified the highest number of correct instances and the lowest ratio of incorrectly predicted test samples. 
Whereas, the remainder of the models show poor performance with 10.8%, 10.0%, 7.0%, 6.9%, 4.8%, 4.2%, and 
10.1% wrong predictions by GBM, DT, ADA, SVC, RF, ETC, and LR, respectively.

Table 9.  Experimental results of ML classifiers using ADASYN integrated with unified framework of PCA and 
SVD.

Classifier Class Accuracy PPV Sensitivity F1 score

DT

β-Thalassaemia non-carrier

0.90

0.90 0.90 0.90

β-Thalassaemia carrier 0.90 0.90 0.90

Weighted average 0.90 0.90 0.90

GBM

β-Thalassaemia non-carrier

0.89

0.87 0.92 0.89

β-Thalassaemia carrier 0.91 0.87 0.89

Weighted average 0.89 0.89 0.89

ADA

β-Thalassaemia non-carrier

0.92

0.94 0.91 0.92

β-Thalassaemia carrier 0.91 0.94 0.93

Weighted average 0.92 0.92 0.92

SVC

β-Thalassaemia non-carrier

0.93

0.97 0.89 0.93

β-Thalassaemia carrier 0.90 0.97 0.93

Weighted average 0.93 0.93 0.93

RF

β-Thalassaemia non-carrier

0.95

0.99 0.91 0.95

β-Thalassaemia carrier 0.92 0.99 0.95

Weighted average 0.95 0.95 0.95

ETC

β-Thalassaemia non-carrier

0.96

1.00 0.92 0.96

β-Thalassaemia carrier 0.93 1.00 0.96

Weighted average 0.96 0.96 0.96

LR

β-Thalassaemia non-carrier

0.90

0.90 0.89 0.90

β-Thalassaemia carrier 0.89 0.90 0.90

Weighted average 0.90 0.90 0.90

Figure 10.  Count of correctly and incorrectly predicted instances by ML classifiers using ADASYN integrated 
with unified framework of PCA and SVD.
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The current study focuses on providing an accurate diagnosis of the β-Thalassaemia carrier by proposing 
a combined framework of oversampling technique and feature selection techniques. For this purpose, three 
scenarios are integrated into this study. The performance of ML classifiers corresponding to each scenario is dis-
cussed above. To see the overall performance of the proposed approach and other scenarios we have graphically 
presented the accuracy of each ML classifier in Fig. 11 which reveals that overall, the performance of the classi-
fiers integrated into the proposed scenario 3 which involves oversampling with SMOTE and unified framework 
of PCA and SVD, is better as compared to other scenarios which show the efficacy of the proposed approach in 
diagnosing the β-Thalassaemia carriers and non-carriers. In terms of classifiers, the tree-based models involving 
an aggregated ensemble of DTs outperformed other ML classifiers. Whereas, in terms of oversampling technique, 
a significant improvement in the performance of classifiers can be observed as compared to the original data. 
Therefore, our proposed approach involving SMOTE as an oversampling technique and a unified framework 
of PCA and SVD as a feature selection and expansion technique stands out in diagnosing the β-Thalassaemia 
carriers using the dataset under consideration.

Experimental results of deep learning networks. This section presents the performance results of the 
neural networks integrated into the three aforementioned scenarios. Four neural networks including  LSTM31, 
GRU 32,  CNN33, and CNN-LSTM34 are utilized in this study. Figure 12 illustrates the experimental settings of the 
aforementioned neural networks. Table 10 reveals that neural networks do not perform well regarding the clas-
sification task of β-Thalassaemia carriers and non-carriers. Neural networks provide high-quality results when 
the data under analysis is comprised of a large number of records. The above-mentioned neural networks are not 
able to efficiently carry out the classification task under consideration. This is mainly due to the small number of 
training samples fed into the input layers of networks for the models to interpret the hidden patterns. This shows 
that the proposed approach works efficiently with machine learning models.

Performance comparison of proposed study with previous approaches. The effectiveness of the 
proposed approach is investigated by comparing its performance with the previous state-of-the-art study per-
formed to diagnose the β-Thalassaemia carriers using CBC tests of 5066 patients among which the β-Thalas-
saemia carrier target class comprise only 39.7% of the dataset which was collected from the database of  PTPP8. 
The study utilized an ensemble of three statistical machine learning models including SVC, GBM, and RF, and 
achieved a 93% accuracy score. β-Thalassemia carriers are classified with 89% precision, 89% recall, and 90% F1 
score, whereas, β-Thalassaemia non-carriers are predicted with 96% PPV, 93% sensitivity, and 93% F1 score. The 
variance precision of predicted target classes in the previous study is due to the skewed distribution of classes 
indicating that the classifiers are subjected to bias. Therefore, the F1 score for the diagnosis of β-Thalassaemia 
carriers is low as compared to that of β-Thalassaemia non-carriers. Table 11 reveals the superior performance 
of the proposed approach on a similar dataset when subjected to oversampling using SMOTE with ETC, RF, 
and ADASYN with ETC, and feature selection and expansion using the unified framework of PCA and SVD. 
It is also evident from this comparison, that the proposed approach with ETC or RF produces state-of-the-art 
results with low computation cost and less time consumption. Whereas, with the ensemble structure of three 
weak learners, the computation cost along with diagnosis time increases. This also shows the robustness of the 
approach proposed in the current study.

Figure 11.  Comparative analysis of ML models in Scenario 1, Scenario 2, and Scenario 3.
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Conclusion
The ratio of β-Thalassaemia carriers is increasing in Pakistan with a 5–7% current rate among the whole popula-
tion which suggests that there is a dire need for an accurate and efficient approach for the detection of β-Thalas-
saemia carriers. This study proposes a machine learning-based approach for the classification of β-Thalassaemia 
carriers and β-Thalassaemia non-carriers to obtain high classification accuracy. In essence, two aspects are 
focused on: the dataset imbalance and the appropriate feature set. For data imbalance, SMOTE and ADASYN 
are analyzed for their efficacy to increase the accuracy and reduce models’ bias towards the major class. Keeping 
in view the fact that all features are not equally important, PCA and SVD are used to select important features 
which are unified to make a better feature set. Extensive experiments are performed involving different scenarios 
considering original data, oversampled data, and oversampled data with the unified framework of PCA and 
SVD features augmented with machine learning and deep learning models. Experimental results reveal that 
the proposed approach which integrates SMOTE with the unified framework of PCA and SVD yields the best 

Figure 12.  Count of correctly and incorrectly predicted instances of the test data.

Table 10.  Experimental results of neural networks.

Scenarios Classifiers Accuracy PPV Sensitivity F1 score

Scenario 1

LSTM 0.87 0.87 0.87 0.87

GRU 0.89 0.89 0.89 0.89

CNN 0.90 0.91 0.90 0.90

CNN-LSTM 0.90 0.90 0.90 0.90

Scenario 2 (SMOTE)

LSTM 0.89 0.89 0.89 0.89

GRU 0.90 0.90 0.90 0.90

CNN 0.91 0.91 0.91 0.91

CNN-LSTM 0.91 0.91 0.91 0.91

Scenario 2 (ADASYN)

LSTM 0.89 0.89 0.89 0.89

GRU 0.87 0.87 0.87 0.87

CNN 0.86 0.86 0.86 0.86

CNN-LSTM 0.87 0.87 0.87 0.87

Scenario 3 (SMOTE)

LSTM 0.91 0.91 0.91 0.91

GRU 0.91 0.91 0.91 0.91

CNN 0.90 0.90 0.90 0.90

CNN-LSTM 0.90 0.90 0.90 0.90

Scenario 3 (ADASYN)

LSTM 0.88 0.88 0.88 0.88

GRU 0.90 0.90 0.90 0.90

CNN 0.89 0.89 0.89 0.89

CNN-LSTM 0.91 0.91 0.91 0.91
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results with 0.96 accuracy and surpasses the performance of existing approaches by 3.22%. Tree-based ensemble 
machine learning shows superior performance as compared to deep learning models. For future work, our goal 
is to increase the size of the dataset to improve the performance of deep learning models and achieve even better 
classification accuracy for β-Thalassemia carriers.

Data availability
The datasets generated and/or analysed during the current study are available on request. The dataset is not 
publicly available. The data can be requested from Furqan Rustam. All experimental protocols were approved 
by a Sheikh Zayed Hospital, Rahim Yar Khan, Pakistan.
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