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Simple Summary: This study provides an efficient method for lung cancer diagnosis from computed
tomography images and employs deep learning-supported support vector machine. Experimen-
tal results indicates that the proposed approach yields a 94% accuracy and performs better than
existing models.

Abstract: The diagnosis of early-stage lung cancer is challenging due to its asymptomatic nature,
especially given the repeated radiation exposure and high cost of computed tomography(CT). Ex-
amining the lung CT images to detect pulmonary nodules, especially the cell lung cancer lesions, is
also tedious and prone to errors even by a specialist. This study proposes a cancer diagnostic model
based on a deep learning-enabled support vector machine (SVM). The proposed computer-aided
design (CAD) model identifies the physiological and pathological changes in the soft tissues of the
cross-section in lung cancer lesions. The model is first trained to recognize lung cancer by measuring
and comparing the selected profile values in CT images obtained from patients and control patients at
their diagnosis. Then, the model is tested and validated using the CT scans of both patients and con-
trol patients that are not shown in the training phase. The study investigates 888 annotated CT scans
from the publicly available LIDC/IDRI database. The proposed deep learning-assisted SVM-based
model yields 94% accuracy for pulmonary nodule detection representing early-stage lung cancer.
It is found superior to other existing methods including complex deep learning, simple machine
learning, and the hybrid techniques used on lung CT images for nodule detection. Experimental
results demonstrate that the proposed approach can greatly assist radiologists in detecting early lung
cancer and facilitating the timely management of patients.

Keywords: lung cancer detection; capsule neural network; wide network; computed tomography

1. Introduction

Lungs are air-filled organs within the thoracic cavity (chest) and constitute the main
part of the human respiratory system. The cells within the lung may undergo cancerous
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change (malignancy) giving rise to lung cancer, which is the leading cause of cancer-related
deaths, accounting for around 27% [1]. Mutation, unregulated tissue growth, refers to the
occurrence of permanent changes in deoxyribonucleic acid (DNA) sequences. Mutation can
be due to external factors or inherited genetic abnormalities. The most common external
factors are chemicals in tobacco smoke but numerous other carcinogens exist. The damaged
tissue is usually replaced by new tissue but in the presence of a malignant mutation, the
new tissue growth is unregulated and leads to cancerous cells. Lung nodules are abnormal
growths within the lung that can either be benign or malignant and most are benign, but
some can be a sign of early cancer (suspicious nodules). Recent studies estimate the 5-year
survival rate of lung cancer to be only about 19% [2]. Lung cancer survival is markedly
increased by early diagnosis (i.e., diagnosis of early-stage lung cancer). Benign nodules are
noncancerous and do not spread to other parts of the body. According to World Health
Organization (WHO), the rate of cancer-related deaths is expected to increase to 45% by
2030 [3].

Morphologically, the malignant cells are characterized by a nucleus with irregular
shape and size [4]. Commonly, morphological features of the CT images are used to
analyze benign and malignant nodules. The straightforward approach heavily relies on
high-level and experienced radiologists for judging benign and malignant tumors. Due
to the proportionality in features, making a comprehensive judgment becomes difficult.
Another approach to overcome subjectivity is to train classifiers to automatically classify
benign and malignant nodules based on morphological features. Different methods can
be employed including using single classifiers and multiple features with classifiers [5].
The early detection of nodules provides a better chance for a patient’s survival. Therefore,
identifying the potential malign lung nodules becomes essential in diagnosing lung cancer.
To detect lung cancer, the characteristic of the benign nodule is compared with malignant
ones [6]. There is a considerable overlap of features of benign and malignant nodules,
and morphologic features need to be evaluated carefully for effective nodule assessment.
Furthermore, morphological assessment is essential for early diagnosis [7].

The timely detection of suspicious nodules can be achieved by performing computed
tomography (CT) scans. The scanned images of the body’s internal structure demon-
strate details by providing front, bottom, and top views, respectively. More information
about bones, soft tissues, and blood vessels is available when compared with plain X-rays.
However, it is difficult to detect early-stage lung cancer using chest CT scans, due to the
similarity of lung nodules to surrounding structures (e.g., blood vessels). Therefore, there
is a pressing need to design a computer-aided design (CAD) system to detect suspicious
nodules. Deep learning is a promising tool for classifying benign and malignant cancer
nodules by potentially reducing the number of scans required to achieve a benign or ma-
lignant diagnosis. Deep learning techniques show promising results to detect the benign
and malignant modules [8]. The current, state-of-the-art, CAD system uses deep learning
models to classify lung nodules, to detect whether it is suspicious or not. Such systems are
also used to classify the type of nodule as if it is suspicious or benign.

Although CAD systems demonstrate significantly high efficiency in lung nodule de-
tection, the number of studies considering the routine workflow of radiologists is relatively
low. Clinically, radiologists analyze the maximum projection intensity (MIP) images to
locate the nodular candidates for further examination. MIP allows projecting 3-D voxels
with maximum intensity to the plane of projection, thus enhancing nodule visualization [9].
MIP images are not threshold dependent and allow for preserving attenuation informa-
tion [10], which helps convolutional neural networks (CNN) automatically detect lung
nodules. In Figure 1, three CT images are shown: The top two show lungs containing
early-stage cancer; the first being malignant and the second being benign. It is difficult
to differentiate between vessel and cancer nodules during this stage. The last image is of
cancer in its late stage, with a large nodule size making it easier to detect, but survival rates
are low.
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Figure 1. CT scans based on maximum intensity projection.

This paper proposes an effective method to classify benign and malignant nodules
from CT images. To take the advantage of rich information without sacrificing efficiency,
MIP is employed to classify lung cancer nodules as benign or malignant. This study aims
to develop an effective method to classify benign and malignant lung cancer nodules using
CT scans based on MIP. The performance is analyzed in comparison to several hybrid
models, which are specifically designed for lung cancer detection.

2. Materials and Methods

The proposed methodology is depicted in Figure 2. The lung nodule image dataset
is obtained and preprocessed initially. Then, lung segmentation is conducted by capsule
network [11]. Capsule segmentations demonstrate state-of-the-art results as compared to
other techniques such as U-net [12] and image processing techniques. After lung segmenta-
tion, the region of interest (ROI) is selected using the information provided in the LUNA16
dataset. Then on that ROI, the proposed hybrid technique is applied for the classification
of cancerous and non-cancerous cells. The architecture of the proposed approach is shown
in Figure 3. The acquired images are preprocessed and segmented to extract the region of
interest (ROI). Next, a hybrid technique is applied for the classification of cancerous and
non-cancerous cells. Acronyms used in this study can be found in Table S1.

Figure 2. Flow of the proposed approach.
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Figure 3. Flow diagram of the proposed system.

2.1. Image Preprocessing and Segmentation
2.1.1. Dataset

The LUNA16 dataset [13] is used, which contains CT scanned images in DICOM
format. The dataset is created from a publicly available LIDC/IDRI database, and a slice
thickness of greater than 2.5 mm is excluded. The dataset contains a total of 888 samples,
where the CT scanned images have a 512 × 512 × Z resolution (Z being the depth of
DICOM Format CT scan, which varied for each CT sample, ranging from 100 to 400). Four
experienced radiologists marked the annotation of nodules and non-nodule. The reference
standard nodule is accepted, if 3 out of the 4 radiologists marked it as a nodule and the size
of that nodule is recorded to be greater than 3 mm. The location of each nodule in the lung
is given with a label to help identify whether it is cancerous. The size of each nodule is also
mentioned, with 1186 annotations being available. The total size of the dataset is 128 GB.

2.1.2. Data Preprocessing and Segmentation

A deep learning-based capsule network CapsNet [11] is utilized to maintain the objects’
position and properties. Capsule-based segmentations demonstrate state-of-the-art results
compared to other techniques such as U-net [12]. A 3-layer block capsule is used. The
input of the 512 × 512 image is given to the input layer of the capsule. Figure S2 shows the
capsule network model used for lung segmentation.
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After applying SegCaps on lung images, a segmented lung image is obtained. From
the segmented lungs, a 64 × 64 lung patch is extracted. The extracted patch of 64 × 64 pixel
is then used with deep learning-enabled support vector machine (SVM) methodologies for
detecting cancerous nodules in the patch. A total of 2400 patch images (1200 cancerous and
1200 non-cancerous) existed, of which 200 samples (100 cancerous and 100 non-cancerous)
are used for training.

2.2. Nodule Classification Using Deep Learning Enabled Support Vector Machine

The features extracted by the neural network are classified on the SVM. In SVM, the
best hyperplane (decision boundary) is identified in the N number of features for the best
classification, hence detecting the cancer nodule type. SVM requires less memory to run
and is relatively memory efficient than other machine learning algorithms. SVM is more
accurate if the number of dimensions is greater than the number of samples. It also works
well when clear margin space exists in classes and is robust on outliers. However, on a
large dataset, SVM does not work well and is not suitable. The application of the kernel
function becomes difficult when the dimension for classification is increased.

In deep learning (DL) enabled SVM, deep-learning techniques are applied to detect
lung cancer. Firstly, the convolution neural network is trained with backpropagation on
lung patches. After training, this network is splatted from the flattened layer. Hence,
the convolution layers block and fully connected layers block become separated. The
convolution layer block is then ready to extract features. After flattening, the features are
given to the support vector machine for classification. In a pure machine learning model,
handcrafted features are needed for classification, while in a deep learning model, features
can be extracted themselves. Therefore, in a hybrid approach, feature selection is carried
out by convolution layers, and classification is conducted by SVM.

A 64 × 64 image is given to the convolutional layer. The network consists of 5 convo-
lutional layers in total. The first two convolutional layers have 32 filters with 3 × 3 kernel.
The next convolutional layer has 2 × 2 max pooling, then more two-convolution layers are
placed with 32 filters and 3 × 3 kernel. Again, the max-pooling 2 × 2 is applied and then
in the 5th convolutional layer, 64 filters with 3 × 3 kernel are present. Finally, the output
of the 5th convolutional layer is flattened in a one-dimensional array. In that 1D vector,
features are extracted. These features are then input to the machine learning model SVM
for classification. Figure 4 shows the hybrid model, in which CNN extracts the features
from the image and SVM is used for classification.

Figure 4. Architecture of proposed hybrid model (CNN + SVM).
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2.3. Base for the Lung Cancer Detection Model: Algorithm of Support Vector Machine

For binary class problems, many possible hyperplanes distinguish two-class prob-
lems. However, in SVM, the best hyperplane among all has been identified based on the
maximum margin. If there is a W weight vector and an X feature, then the mathematical
equation of the hyperplane is written as

WTX + b = 0 (1)

SVM classifies the data point in 1 class if WTX + b ≥ 1 and another class if the data
point is WTX + b < 1. Thus, in general, the hypothesis function for the classification of
cancerous and non-cancerous using SVM is

h(xi) =

{
cancer i f w.x + b ≥ 0
non− cancer i f w.x + b < 0

(2)

Another important thing in SVM is the selection of kernel. Kernel helps SVM to
separate the non-separable data by adding a new feature and drawing the hyperplane.
Data are then separated on high dimensionality and a hyperplane can be drawn. This study
uses a radial basis function (RBF) kernel to compute the closeness and similarity between
two points. IfX1 and X2 are two points, then RBF can mathematically be represented as

K(X1, X2) = exp
(
−||X1 − X2||2

2σ2

)
(3)

where ||X1 − X2|| is the Euclidean distance between the given points and σ is the variance
hyperparameter.

If Euclidean distance is valued as 0, it concludes that X1 = X2, and hence both points
are the same. When the kernel value is less than 1 and close to 0, the points are dissimilar.
Therefore, it is necessary to find the appropriate value of σ to determine which points to
consider. The distance can be considered as the dissimilarity between points X1 and X2,
because if the distance decreases, the point is much similar and if the distance increases,
and then X1 and X2 are considered dissimilar. The value of σ can be considered as the base
if σ = 1 then σ2 = 1 and RBF equation becomes

K(X1, X2) = exp
(
−||X1 − X2||2

2

)
(4)

The graph for Equation (4) is for σ = 1; if the distance between two points is less than
4, these points are considered similar and if the distance is greater than 4, then these points
are considered dissimilar. If a small σ is assumed, e.g., σ = 0.1 then σ2 = 0.01 and RBF
equation become

K(X1, X2) = exp
(
−||X1 − X2||2

0.01

)
(5)

Consequently, the width of the similarity region should become small. The points are
only considered similar if their Euclidean distance is found to be less than or equal to 0.2.
However, if the distance is large, these points are considered dissimilar. Therefore, it can be
concluded that if a large σ value is considered, then similarity has existed and if a small σ
value is considered, less distance point is also considered as dissimilar.

2.4. Implemented Machine Learning and Deep Learning Models

Experiments are also performed on other techniques for the classification of segmented
patches. This study implements several machine learning (ML), DL, and hybrid models,
which are DL-enabled ML models. Features extracted from CNN are fed as input to the
Naïve Bayes (NB) algorithm, decision tree (DT), and the ensemble learning algorithm
random forest (RF), to classify cancerous and non-cancerous nodules. Hybrid models are
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formed, respectively. In this method, a combination of deep learning and machine learning
techniques is used. First, deep learning is used for feature selection and then these features
are classified into machine learning classifiers. Necessary architecture and implementation
details are provided here.

2.4.1. Capsule Network

To overcome the limitation of CNN, capsule network (CapsNet) came in a capsule
network instead of the max pooling capsule layer, which is used to detect the features [14]. In
the capsule layer, a single capsule (the set of neurons) acts to identify size, position, and hue.
The output of the capsule consists of the length of the vector that determines the probability
of features present in the input, and the orientation of the vector is used for the qualification
of the capsule property. Capsules are independent and therefore, when multiple capsules
are brought to an agreement, the probability of result detection became higher.

The capsule network consists of 2 parts: The encoder and the decoder. The encoder
part consists of the convolutional layer, the primary capsule, and the nodule capsule.
The convolutional layer is used to detect the basic features. A 64 × 64 image is given to
the convolutional layer, which has a 64 × 9 × 9 filter with a stride of 1 that leads to a
56 × 56 feature map. The second layer is the primary capsule layer. The output of the
convolutional layer is given to the primary capsule, and the primary capsule makes the
combination of input features. It consists of 8 dimensions and has 32 component capsules
with 24 × 24 feature maps. The nodule capsule is the last layer in the encoder, containing
2 capsules: one capsule contains cancerous nodule features while the other contains non-
cancerous nodule features. The dimension of these two capsules is 16. On the other hand,
the capsule decoder has 3 fully connected layers that take input from the nodule capsule
and reconstruct the image. In the capsule decoder, 1st layer contains 512 neurons, 2nd layer
contains 1024 neurons and the 3rd layer contains 4096 neurons. At the 3rd neuron, the
image size that is recreated is 64 × 64.

2.4.2. Convolutional Neural Network

In CNN, a 64 × 64 image is given to the convolutional layer. There are 5 convolutional
layers and 2 max-pooling layers, stacked in the network. The first convolutional layer has
32 filters with 3 × 3 kernel and a stride of 1. The second convolutional layer also has 32
filters with 3 × 3 kernel and a stride of 1. After these convolutional layers, a 2 × 2 max
pooling is applied for feature selection. Later, two convolution layers are placed with
32 filters and 3 × 3 kernel and again max-pooling 2 × 2 is applied. Then, in the 5th
convolutional layer, the 64 filter exists with 3 × 3 kernel. After that, the output of the 5th
convolutional layer is flattened in a 1-dimensional vector. Three dense connected layers
exist after flattening to avoid overfitting. Dropouts of 20%, 25%, and 50% are used before
each dense layer, respectively. After each convolutional layer, sigmoid activation functions
are used. The proposed CNN for classification is shown in Figure 5.

2.4.3. Wide Neural Network

In a wide neural network, three convolutional layers are placed parallel to take the
input image of a nodule of 64 × 64. For these convolution layers, 8, 64, and 16 filters with
kernel size 7 × 7, 3 × 3, and 5 × 5 are used, respectively. After that, a 3 × 3 max pooling
is applied at each convolution layer. Again, after each pooling layer, a convolution layer
is applied with 32 filters with 3 × 3 kernel size. Then 3 × 3 max pooling is applied and
the output of each max pooling is concatenated and flattened in a 1D vector array. Later,
4 fully connected layers are stacked: the first layer has 256 neurons, the second layer has
128 neurons, the third layer has 32 neurons and the fourth layer has only 1 neuron. The
sigmoid activation function is then applied for classification. In a wide neural network,
convolution layers have different filter sizes to pick the best filter for feature selection. On
the first convolution layer, there is a stride of 2 whereas on the rest of the convolutions,
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there is a stride of 1. The wide neural network for the classification of lung nodules is
depicted in Figure 6.

Figure 5. Proposed CNN for classification of nodules (Cancerous-1, Non-Cancerous-0).

Figure 6. Wide neural net for classification of lung nodules.
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2.4.4. Deep Leaning Enabled Naïve Bayes

Features extracted through CNN are given as input to the NB algorithm to classify
cancerous and non-cancerous nodules. NB is the supervised machine learning algorithm
that assumes no correlation between input data. It also performs very well on a small
amount of data. First, the features are denoted with X = (x1, x2, x3, . . . , xn) and class
variables by Ck Bayes theorem is written as

P(Ck|X) =
(X|CK)P(Ck)

P(X)
, f ork = 1, 2, . . . , K (6)

where P(Ck|X) is the posterior probability, P(Ck) is the prior class probability, P(X/Xk)
is the likelihood and P(X) is the prior probability of the predictor. Figure 7 shows the
proposed hybrid model combining CNN with NB.

Figure 7. Proposed hybrid model using CNN with NB.

2.4.5. Deep Leaning Enabled Decision Tree

DT is another supervised machine learning algorithm used in this study. Features
extracted from the input lung image through CNN are given to the DT for classification.
DT has a tree-like structure, in which, on the root node, there is the most important splitting
feature. Internal node attributes are tested and split on the base of the test result, e.g., the
data point satisfying one condition. The data are split on one side while the data point
satisfying other conditions are split into other sides. The leaf node in the tree represents
the available classes in the dataset. In DT, attribute selection is the most important feature,
which divides the data in such a way that it results in the output class. The attribute that has
the best score is selected as the splitting attribute. Information gain is one of the attribute
selection measurements, which gives the split attribute. The hybrid model combining CNN
and DT is shown in Figure 8.

in f o(d) = ∑ pilog2(pi) (7)

in f oa(D) =
v

∑
j=1

|Dj|
|D| × in f o(Dj) (8)

where Pi denotes the probability of attribute into dataset D, which belongs to class Ci. The
mean value of the class/category of a data point in D is known as in f o(D) and it is also
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known as the Entropy of dataset D. In most cases, the information is encoded in bits, so a
log with a base 2 function is used for that. Information gain can also be calculated as

Gain(A) = in f o(D)− in f oa(D) (9)

Figure 8. Proposed hybrid model combining CNN and DT.

2.4.6. Deep Leaning Enabled Random Forest

RF is an ensemble learning algorithm where many weak classifiers are combined to
obtain a strong classifier. In RF, many DTs are trained on the data and each DT acts as one
predictor to produce the output class. The class with a majority vote then becomes the final
prediction of RF. The hybrid model combining CNN and RF is shown in Figure 9.

Figure 9. Hybrid model CNN + RF.

2.5. Environment

The system utilized for model creation is a NVIDIA graphical processing unit (GPU)
with a CUDA compute capability 8.0 on a Windows 10 operating system. The software on
which the model is implemented includes Python 3.9, and Keras on top of Anaconda.
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2.6. Performance Metrics

For performance measurement, multiple metrics are utilized, including accuracy,
precision, recall, and F1-score.

The accuracy of the model describes how well the model performs across classes.
Accuracy is formulated as shown below in Equation (10).

Accuracy =
Number of truly classified samples

Total samples
(10)

Precision is the measure of the models’ capability to identify true positives, and it is
calculated as shown in Equation (11).

Precision =
True Positive

True Postive + False Positive
(11)

The recall is the ratio between the true positive prediction values and the sum of pre-
dicted true positive and false negative values. It is calculated as represented in Equation (12).

Recall =
True Positive

True Postive + False Positive
(12)

F1 score is the overall model accuracy that balances precision and recall in a positive
class. It is calculated as represented in Equation (13).

F1 score = 2× Precision× Recall
Precision + Recall

(13)

3. Results

The LUNA16 dataset is divided into training, validation, and test sets with 710 images
in the training set, 89 images in the validation set, and the remaining 89 in the test set. No
external validation is applied in this work.

The reported accuracies are based on the comparison of the standalone classification
models with the proposed SVM + CNN model for lung nodule classification on the LUNA16
dataset. It was found that the proposed model outperforms standalone models. To further
investigate the efficacy of the proposed hybrid model, it is compared with state-of-the-art
approaches and DL models.

3.1. Experimental Results of All Models

Experiments with the LUNA16 dataset are performed with all the models previously
described. In addition, standalone models are also implemented including SVM, DT, RF,
and NB to analyze their performance in comparison to the proposed model. Table 1 shows
the results regarding the accuracy, precision, recall, and F1 scores. These are the most
commonly used performance evaluation metrics and are convenient when compared with
existing models.

Results demonstrate that standalone machine learning models demonstrate poor
results as compared to hybrid models. In the existing literature, ensemble models are
reported to demonstrate a superior performance than single models [15–17]. Similarly,
current results demonstrate that when DL-enabled machine learning models are used,
the classification accuracy is significantly higher. For example, the 72% accuracy of DT is
increased to 89% when joined with CNN. The same is true for RF and NB. The highest
accuracy for standalone models is RF, i.e., 81%, which is increased to 90% when it is used
with CNN. Hybrid models outperform standalone models by a substantial margin. On
average, the performance of hybrid is 23% higher than individual models. For hybrid
models, the proposed CNN+SVM model demonstartes the highest score of 94%, followed
by CNN with a 92% accuracy score. Similarly, the performance of CNN, CapsNet, and the
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wide artificial neural network (ANN) is poor as compared to the proposed hybrid model.
CNN shows better results as compared to the CapsNet and wide ANN.

Table 1. Performance comparison of hybrid models.

Approach Classifier Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Single model

SVM 81 93 66 77

DT 72 77 62 69

RF 81 92 68 78

NB 63 65 63 61

CNN 92 93 86 89

CapsNet 82.9 86 78 81.8

Wide ANN 78 88 69 77.3

Hybrid model

DT + CNN 89 89 88.5 88.5

RF + CNN 90 91.5 90 90

NB + CNN 86 86 86 86

SVM + CNN (Proposed) 94 95 94.5 94.5

Classification of lung nodules is conducted using different methodologies. These
include purely machine learning-based methods such as SVM, NB, DT, and RF. DL-based
methods such as CNN and using hybrid approaches involve both DL and ML-based
approaches such as the deep learning-enabled SVM, NB, DT, and RF. The comparison of
applied techniques with the proposed model is shown in Figure 10. The results demonstrate
that the CNN selects the important features by max-pooling layer and classifies those
features using a fully connected layer. However, the max-pooling layer is inefficient in
preserving spatial information and, therefore, loses the information. It works as a messenger
between two layers, transferring relevant information, and dropping irrelevant information
(from lower to high layers). CNN needs a large amount of training data to train the network;
however, a limited amount of data is provided for lung cancer detection. A fully connected
layer is capable of classification, but it requires a lot of computation power and input data
to train, therefore higher chances of overfitting the data are predicted. The result of CNN is
highly dependent on the quality and size of input data; with good quality and large-sized
training data, it can surpass humans. However, CNN is not robust on glare and noisy data.

Figure 10. Comparison of all applied techniques on LUNA16 dataset.
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On the other hand, the capsule network methodology does not perform well compared
to hybrid models and the CNN model. It also takes comparatively more time for training.
Weight initialization is crucial for the capsule network; if the normalization value of
weight is set too high it saturates the squashing function, resulting in uniform predictions.
However, if the normalization value is set too low, issues arise in later layers due to the
squashing of the normalization value. Dynamic routing in the capsule networks is also
unstable. Moreover, wide networks have lower accuracy of 78% than other methodologies.
The accuracy improvement experiment can be conducted by giving a wide network of
3D input for classification. In a wide network, features can be learned at various levels
of abstraction. Multiple layers are good for generalization because they can learn all
intermediate features between input data and high-level classification. However, if the
wide network becomes too wide, it requires more resources and time to train.

3.2. Performance Comparison of Proposed Model with Existing CAD Studies

For performance comparison, several existing state-of-the-art models are selected
that conduct experiments using the same LIDC-IDRI or LUNA16 dataset. In addition,
some private datasets with fewer samples are also used in these CAD systems. Results
are presented regarding the reported accuracy and the number of scans used to obtain
that accuracy. Often, a higher number of scans are associated with a higher accuracy score.
Table 2 shows the results of all models in comparison to the result of the proposed model.
Among all these CAD Systems, the proposed hybrid model shows the best performance on
the LUNA16 dataset.

Table 2. Comparison of the proposed model with state-of-the-art approaches.

Reference Model Year No. of Scans Accuracy

[18] Watershed segmentation 2016 — 84.55%

[19] KNN, NB, SVM 2015 166 68%, 82%, 90%

[20] CNN Based 2018 1018 92.1%

[21] CNN Based 2016 1018 87.14%

[22] Google Net 2017 888 75%

[23] DCNN 2017 1018 89%

[24] GBM + 3D CNN 2018 888 90.44%

[5] DCNN 2016 888 86.4%

[14] Caps Net 2019 888 88.55%

[25] CNN + Machine Learning 2020 100 89.14%

[26] CNN Based, DNN-CNN Based 2017 1018 84.15%, 82.37%, 82.59%

[27] CNN Based 2019 – 69.1%

[28] CNN Based 2020 1018 90.69%

[29] CNN Based 2020 15,000 85.8%

[12] CNN Based 2019 – 85.2%

[30] CNN + SVM 2021 1018 90.65%

Current CNN 2022 888 92%

Proposed SVM + CNN 2022 888 94%

Following is the graphical comparison of different CAD systems that used LIDC/IDRI
or LUNA16 datasets. The literature suggests that state-of-the-art AI systems for lung
nodule detection and characterization come close to the performance levels of experienced
radiologists. The comparison demonstrates that the proposed model utilizing CNN for
feature selection and SVM for classification outperforms state-of-the-art methods with the
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highest accuracy of 94%. The proposed hybrid approach provides feature selection using
convolution layers and classification by leveraging SVM. It provides precise information
regarding the lung nodules with good sensitivity of 95%. The proposed model aims to
reduce the risk of medical errors and provide the confidence to make follow-up decisions
in a well-informed way. To demonstrate the efficacy of the presented hybrid model, it is
compared with other existing CAD systems, including Google Net, Deep CNN, MC-CNN,
and others as shown in Figure 11.

Figure 11. Comparison with other existing CAD systems.

4. Discussions

The results demonstrate that the CNN selects the essential features by the max polling
layer and classifies those features using a fully connected layer. However, the max polling
layer is inefficient in preserving spatial information. It works as a messenger between
two layers, transferring relevant information and dropping irrelevant information (from
lower to high layers). CNN needs lots of training data to train the network; however, a
limited amount of data is provided for lung cancer detection. A fully connected layer is
capable of classification, but it requires a lot of computation power and input data to train,
therefore, a lot of chances of overfitting the data are predicted. The result of CNN is highly
dependent on the quality and size of input data; with good quality and large training data,
it can surpass humans. However, CNN is not robust on glare and noise data. This study
performs experiments using the LUNA16 lung cancer dataset only and further experiments
are intended in the future to analyze the performance of the proposed approach. Moreover,
using transfer learning is under consideration to reduce the training time.

Lung nodule detection techniques found in the literature are mostly based on digital
image processing (DIP), ML, and DL due to advancements in data acquisition, storage,
and processing equipment. ML and DL studies provide different levels of sensitivity and
specificity for lung cancer detection, as stated in [31]. Zheng et al. propose a CNN based
on MIP images of different slab thicknesses. Through the morphologies obtained from
the CT slice images, the study detects small pulmonary nodules achieving a sensitivity of
94.2% [9]. Fang utilizes multi-view features of three-dimensional CT scans employing MIP
for automatic detection of lung cancer nodules [32]. Drokin and fellow authors propose
an end-to-end framework for detecting suspicious pulmonary nodules using MIP images
based on U-Net like CNN, achieving an average sensitivity of 95% [33]. DL with MIP
feature helps in achieving higher classification performance for distinguishing benign and
malignant lung cancer nodules [34].

Eman et al. use histogram, thresholding, and morphological operations for lung seg-
mentation from CT images [19]. The authors use K nearest neighbor (KNN), SVM, NB, and
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linear classifier for cancerous nodule classification on the TAIC dataset. The authors follow
image enhancement, ROI using multi-scale amplitude-modulation frequency modulation
(AM-FM), features filtering with partial least squares regression (PLSR), and training. The
linear classifier performs best with 95% accuracy. Tariq et al. use a thresholding technique
for lung segmentation and a neuro-fuzzy technique for the classification of the nodule with
95% accuracy [35]. Sweetlin et al. use features based on shape, texture, and run length
to classify benign and malignant nodules, achieving an accuracy of 94.36% utilizing the
SVM-based classification [36]. Watershed segmentation is used to segment images into
different colors, making it easier to detect lung nodules in [18]. Kumar et al. present an
image processing technique using thresholding and watershed segmentation for recog-
nizing normal and abnormal nodules from nodule size. The CT image dataset had a size
base of 200 mm lesions for ‘normal’ and larger than 200 mm for ‘abnormal’; hence, it can
detect later-stage cancer, but this approach is not found suitable to detect early-stage lung
cancer [37].

Wei Shen et al. propose multi-crop CNN, which crops nodules from CT scan cube for
cancer detection. The authors use the LIDC-IDRI dataset and utilize Conv with a pooling
layer to transform high-dimensional features into a low-dimensional space. Further, in
the instant of the max-pooling layer, the multi-crop max-pooling layer is used for feature
extraction [21]. Chon et al. propose two-dimensional deep CNN and three-dimensional
CNN using 128 × 128 nodule patch and 80 × 80 × 80 nodules, respectively. Additionally,
the segmented 3D RIO, linear second valine CNN, and Google Net are used. The results
demonstrate that Google Net outperforms with an accuracy of 75% [22]. Ding et al. propose
a fast region base convolution neural network (Fast RCNN), which extracts nodules from
CT-scanned images. The deep convolution neural network is used for false positive
reduction. They utilize the LUNA16 dataset and achieve a sensitivity of 94% [23]. Along
the same lines, Zhu et al. propose 3D fast regions with a convolution net (F-CNN) and 3D
dual-path network with a gradient boosting machine. The LUNA16 dataset is used where
a 90.44% accuracy is achieved [24]. Mobiny and Nguyen use a fast capsule network for
nodule classification using the General Electric and Siemens scanners dataset. With a 2D
fast capsule, 89.7% precision and 87.4% recall are achieved with an error rate of 11.45 (lower
than AlexNet and ResNet), while with a 3D fast capsule network, 91.9% precision and
87.4% recall are achieved with an error rate of 9.52 (lower than AlexNet and ResNet) [14].

Shakeel et al. use the cancer image archive dataset, with a weighted mean histogram
equalization technique. With segmentation using improved profuse clustering technique
(IPCT), deep learning instantaneously train a neural network (DITNN) and obtains 98.42%
accuracy score[38]. Margarita et al. use one CNN for feature selection and one for classifica-
tion. In feature selection, CNN PET and CT input images are provided to the network. An
accuracy of 69.1% is achieved [39]. Gurcan and others propose multi-view light-weighted
CNN for the classification of lung nodule types. In lung nodules, benign and malignant
look like one point of view. However, once the point of view changes, both look differ-
ent, making them distinguishable [28]. Similarly, multi-section CNN is proposed for the
same task in [27]. The study uses multi-cross-sections from lung nodules for classifica-
tion. LIDC-IDRI dataset is used and the accuracy of the multi-section CNN achieved is
93.18% [27].

Ali et al. propose a transferable texture CNN consisting of nine layers for feature
extraction and nodules classification. Transformable texture CNN is applied to the LIDC-
IDRI dataset, and the accuracy of proposed CNN is achieved to be 90.69% [28]. Veasey et al.
propose a convolutional attention-based network that enables multiple-time classification
in the Siamese structure, using a pre-trained 2-D convolutional feature extractor. Attention-
based CNN is applied on the NLSTx dataset, and with a single time point of view, an
accuracy of 85.8% is achieved, whereas, with multiple time points of view, 88.2% accuracy
is achieved [29].

Clinical features such as cerebrovascular disease, diabetes, hypertension, smoking
history, etc. are used with image features. 3D-ResNet is used for feature selection with the
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LIDC-IDRI dataset. Since LIDC-IDRI has no clinical data, this train network feature is used
as an input with private hospital data and clinical data to the SVM + MKL for the nodule
classification. The accuracy of ResNet-34 + MKL is 90.65% [30]. Afshar et al. propose a 3D
multi-scale capsule network for lung nodule detection. The network input is a 3D nodule
for local features. CapNet requires fewer data to train as compared to CNN, and the output
of 3 CapNets is concatenated. A dataset of LIDC-IDRI has been used that contains 1018
samples. The accuracy of the LIDC-IDRI dataset on the capsule network is 93.12% [11].

From the literature review, the lung cancer detection CAD system can be divided
into image processing-based, ML-based, DL-based and hybrid approaches. Different
types of methodologies for lung cancer detection are depicted in Figure S1, given in the
Supplementary Material.

5. Conclusions

This study involves applying various supervised learning techniques for cancer de-
tection on the LUNA16 dataset. It envisions that the proposed model SVM + CNN, deep
learning-enabled SVM outperforms all other methodologies. Understanding the dataset
and extracting features from it prior to inputting data into the machine learning algorithm
is necessary, as it is extremely difficult to manually select a feature from the dataset on
which the algorithm can perform better. Ultimately, this feature selection impacts the final
accuracy of the machine learning models. Contrarily, a deep learning algorithm also has a
final classification layer, however, with a high chance of over-fitting. It also requires high
computational power, a large feature set, and resources compared to machine learning
models. The hybrid deep learning-enabled SVM uses the advantages of both deep and
machine learning techniques. In this approach, CNN is used for feature selection and the
machine learning model SVM is used for classification. No separate approach for feature
selection is required in the deep learning model and raw input is provided from where
features are extracted. The machine learning model cannot automatically select the features
and an approach suggesting suitable features is required for classification. The advantages
of both types of learning are combined in the proposed scheme and hence a definitive
outcome is achieved that is more accurate and fast compared to other existing approaches.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14215457/s1, Table S1: Acronyms used in this study.
Figure S1: Types of methodologies for lung cancer detection. Figure S2: Capsule network model for
lung segmentation.
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