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Abstract: Chronic obstructive pulmonary disease (COPD) is a severe and chronic ailment that is
currently ranked as the third most common cause of mortality across the globe. COPD patients
often experience debilitating symptoms such as chronic coughing, shortness of breath, and fatigue.
Sadly, the disease frequently goes undiagnosed until it is too late, leaving patients without the care
they desperately need. So, COPD detection at an early stage is crucial to prevent further damage to
the lungs and improve quality of life. Traditional COPD detection methods often rely on physical
examinations and tests such as spirometry, chest radiography, blood gas tests, and genetic tests.
However, these methods may not always be accurate or accessible. One of the key vital signs for
detecting COPD is the patient’s respiration rate. However, it is crucial to consider a patient’s medical
and demographic characteristics simultaneously for better detection results. To address this issue,
this study aims to detect COPD patients using artificial intelligence techniques. To achieve this
goal, a novel framework is proposed that utilizes ultra-wideband (UWB) radar-based temporal and
spectral features to build machine learning and deep learning models. This new set of temporal
and spectral features is extracted from respiration data collected non-invasively from 1.5 m distance
using UWB radar. Different machine learning and deep learning models are trained and tested on
the collected dataset. The findings are promising, with a high accuracy score of 100% for COPD
detection. This means that the proposed framework could potentially save lives by identifying COPD
patients at an early stage. The k-fold cross-validation technique and performance comparison with
the state-of-the-art studies are applied to validate its performance, ensuring that the results are robust
and reliable. The high accuracy score achieved in the study implies that the proposed framework has
the potential for the efficient detection of COPD at an early stage.

Keywords: chronic obstructive pulmonary disease; machine learning; ultra wideband radar;
feature engineering
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1. Introduction

Chronic obstructive pulmonary disease is a life-threatening progressive pulmonary
syndrome that causes breathlessness and may lead to death if not diagnosed and treated at
early stages. COPD reduces the lung’s breathing capacity, creating respiration problems
in patients. The primary element of COPD is emphysema and chronic bronchitis [1].
Emphysema is a pulmonary condition in which the lung tissues of patients are damaged.
Chronic bronchitis is a bronchial condition caused by excessive coughing and mucus
production in the respiratory tract. The most common symptoms of COPD are wheezing,
shortness of breath and coughing. Coronary heart disease, weight loss, obesity, cognitive
dysfunction, anorexia, and lung cancer indicate COPD [2]. According to a recent report by
the world health organization (WHO), COPD is the third leading cause of death worldwide
and has caused around 3.23 million deaths in 2019 alone [3]. The research shows that COPD
has an extremely high mortality rate.

COPD is diagnosed by analyzing the patient’s history of exposure to pulmonary
irritants such as smoking and family history. Currently, the doctor performs a physical
examination to diagnose COPD in the hospital. The doctor uses classical methods such as a
stethoscope to listen to a patient’s lung and heart sounds. In addition, several tests can also
be performed for COPD detection including spirometry, chest radiography (X-ray), blood
gas test, a computed tomography (CT) scan, and genetic tests. The spirometry examination
is another best method for diagnosing COPD [4]. During the spirometry examination,
the patient has to inhale to full lung capacity and then push the air out of the lungs as
quickly as possible. The patient must maintain this examination until the lung volume is
close to the residual volume. The efficiency of the spirometry examination raised several
questions [5,6]. The improperly trained staff and inadequate testing are the reasons for
low-quality spirometry results. By examining the classical method’s efficiency, advanced
systems must be built to detect COPD in patients.

The ultra-wideband (UWB) radar is gaining wide attraction and is a highly used
technology by the time domain and Xtreme spectrum companies [7,8]. The UWB radar has
high data rates and low levels of transmission power. The UWB radar has non-intrusive and
non-tackling capabilities to penetrate various obstacles or materials, which is an advantage
over other classical methods [9,10]. Nowadays, many experiments are held in healthcare
applications using wireless sensing systems based on UWB to identify vital signs related to
different diseases [10,11]. The UWB radar radiates and absorbs little electricity compared
to other instruments in biomedical applications.

Machine learning and deep learning are the subfields of artificial intelligence. Artificial
intelligence-based techniques provide systems with the ability to automatically learn and
improve from experience without being explicitly programmed to perform the task. In
recent years, machine learning and deep learning have been applied to various bioinfor-
matics problems such as drug discovery, protein structure prediction, disease detection,
and many more. Machine learning and deep learning techniques can help us analyze large
biomedical datasets to find new insights and develop new applications for bioinformatics
research. Several COPD detection algorithms have been presented that utilize machine and
deep learning methods. However, such methods are predominantly intrusive and lack the
desired prediction accuracy. Situations such as pandemics require non-invasive methods
that can detect COPD patients from a distance and can provide high accuracy. This study
uses the temporal and spectral features data extracted from UWB radar-based biological
signals to detect COPD paints. Machine learning and deep learning-based methods detect
COPD patients from the temporal and spectral features data. The major contributions of
this study are as follows:

• A new dataset is created in this study to detect COPD patients. The dataset is based
on the UWB radar, which is used to collect data from confirmed patients and healthy
people from a hospital.

• This study utilizes the temporal and spectral features from UWB radar biological
signals data. The exploratory data analysis is applied to discover dataset patterns and
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correlations. The correlations analysis is conducted to select the dataset features with
high correlation values that result in high performance.

• For experiments, four machine learning, and two deep learning model are employed
for performance comparison. The decision tree (DT), logistic regression (LR), Gaussian
Naive Bayes (GNB), and support vector machines (SVM) are the applied machine
learning methods while long short-term memory (LSTM) and gated recurrent unit
(GRU) are applied as deep learning models.

• Performance is also validated using k-fold cross-validation, as well as performance
comparison with existing state-of-the-art studies.

The study is further divided into several sections. Section 2 analyzes the literature on
COPD detection. The materials and methods of the proposed framework are examined in
Section 3. The experimental results and discussions are presented in Section 4. In the end,
Section 5 concludes the study findings for COPD detection.

2. Related Work

In view of the increasing number of deaths from COPD, several research works have
been presented during the past years. For example, the goal of [12] is to examine whether
or not UWB radar could be used as a non-invasive method for distinguishing between
COPD patients and healthy individuals. Raw data are obtained from a distance of 1.5 m in
a real-world setting (a hospital). The obtained raw data are then processed using signal
extraction methods to obtain respiration data. The detection of COPD patients based just
on the respiratory rate is insufficient. However, the performance is significantly improved
by including other factors such as age, gender, and smoking history. Several machine
learning classifiers are used to identify COPD cases including Naive Bayes (NB), SVM,
random forest (RF), K nearest neighbor (KNN), Adaboost, and deep-learning models
such as convolutional neural network (CNN), and LSTM. The findings of the experiments
indicate that LSTM has the highest accuracy of 93%.

The study [13] determines the role of therapy to slow or stop disease development,
especially severe COPD. Twelve channel recordings of lung function are examined for
variable levels of COPD using the RespiratoryDatabase@TR. Forty-one patients’ right and
left posterior (chest) and anterior (back) clinical auscultation sites are used to capture lung
sounds. To isolate distinctive anomalies in lung sounds, a 3D second-order difference plot is
used. Quantization based on the cuboid and octant is used to isolate signature anomalies on
the chaos plot. In the classification phase, the deep extreme learning machine classifier (deep
ELM), one of the most reliable and speedy deep learning algorithms, is used. Compared
to the standard ELM autoencoder, the novel HessELM and LuELM autoencoder kernels
are applied to deep ELM, resulting in improved generalization abilities and a quicker
training time. The overall accuracy, weighted sensitivity, weighted specificity, and area
under the curve (AUC) value of the proposed deep ELM model with LuELM autoencoder
for classifying COPD severity are 94.31%, 94.28%, 98.76%, and 0.9659, respectively.

Electrocardiograph (ECG)-derived respiration (EDR) is used to differentiate between
COPD patients and healthy individuals in [14]. The MP45 Biopac is used to record the
heart rates and breath rates of 30 people during experiments. After examining the morpho-
logical pattern shifts in the respiration and EDR signals, three statistical characteristics are
generated for each subject including area, time, and skewness ratio. Error computation and
statistical analysis are used to establish how closely the EDR signal matches the original
respiration signal. DT, linear discriminant analysis (LDA), SVM, and KNN classifiers are
utilized for classification. An accuracy of 98.33% is found for respiration and EDR-derived
features when using both DT and KNN.

The researchers in [15] employed a risk prediction strategy based on deep learning
to detect COPD automatically by monitoring respiration rates. In order to distinguish
between COPD and non-COPD, several feature combinations were employed using LR,
DT, LDA, KNN, SVM, and quadratic discriminant classifiers. Spirometry readings and
other parameters of respiration were used to identify the category. When using the two
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most important characteristics for interpreting lung sounds—median frequency and linear
predictive parameters—the SVM classifier can attain a maximum classification accuracy of
83.6%. Using median frequency, linear predictive coefficient, and spirometry data, SVM
and LR both obtained 99 percent accuracy.

An ECG- and EDR-based technique is proposed in [16] to detect subtle and obstructive
respiratory disorders. The heartbeat data are collected using a Biopac system MP45. Each
patient has an electrocardiogram recorded for 300 s at a sampling rate of 1000 hertz. Both
the ECG and the EDR signal’s morphological variations are used to obtain temporal
information, which is then used to identify distinctive features. The subjects are then
categorized into normal, obstructive, and restrictive clusters utilizing numerous supervised
classifiers. Evaluation of the classifier’s performance on 90 participants (both healthy and
unwell) reveals that the SVM has a classification accuracy of more than 98%.

The study [17] discovers and compares the informative features of lung sounds using
various signal processing techniques, as well as chooses the classification approach that
gives the most accurate detection of bronchopulmonary system conditions. Power spectrum
density (PSD) is estimated for respiratory signals using the Fast Fourier transform (FFT)
technique. The spectrograms of the obtained signals are examined to derive the spectral
features of the lung sounds. The average temporal dependences of the PSD at various
frequencies are calculated. As spectrogram features, the sum of magnitude values of the
power spectrum curve for each frequency band is used. The ratios of energies related
to the detail levels of wavelet decomposition to the overall energy of the decomposed
signal are employed as the parameters for wavelet analysis-based signal identification.
As characteristics produced from mel-cepstral analysis, it is recommended to employ
the logarithmic (mel) filterbank energies, averaged across time frames, depending on the
channel index and time, as well as the mel frequency cepstrum based on cepstrum index.
The best classification models for computerized illness screening are determined using
supervised machine learning based on decision trees, discriminant analysis, SVM, LR, KNN,
and ensemble learning. Using these feature sets, the accuracy of the various classifiers
is calculated and compared. Based on the results, a combination of characteristics and
classifiers with an identification accuracy of 93% for lung conditions is presented.

In the same manner, ref. [18] employs CNN to aid medical professionals by offering
a comprehensive and rigorous analysis of the medical respiratory audio data for COPD
identification. Librosa machine learning library features such as MFCC, Mel-Spectrogram,
Chroma, Chroma (Constant-Q), and Chroma CENS are utilized for this purpose. Addi-
tionally, the proposed system could interpret the degree of the discovered ailment, such
as mild, moderate, or severe. The findings of the research verify the effectiveness of the
suggested deep learning method that achieved an accuracy score of 93%.

A CNN-based model is developed by [19] to diagnose COPD using the 3D lung airway
tree. After extracting airway trees from CT scans, ventral, dorsal, and isometric snapshots
of their 3D representations are generated. Using snapshots of each image, a deep CNN
model is developed and then tuned using a Bayesian optimization approach in order to
identify COPD. The ultimate forecast is determined by the majority vote of three opinions.
The class-discriminatory localization maps have been created to graphically illustrate the
CNNs’ judgments. The accuracy of the models trained with a single view (ventral, dorsal,
and isometric) of colorful images are comparable (86.8%, 87.5%, and 86.7%), while the
model after voting reaches an accuracy of 88.2%. Using gray and binary snapshots, the final
voting model obtains an accuracy of 88.6% and 86.6%, respectively. Similarly, the study [20]
proposes an integrated model for diagnosing COPD patients, based on the knowledge
graph. First, a knowledge graph of COPD is developed in order to assess the link between
feature subsets and identify knowledge about illnesses revealed by the data. Second, an
algorithm for sorting features and an adaptive feature subset selection method, CMFS-,
are proposed. CMFS- picks an ideal subset of features from the original high-dimensional
collection. Finally, the DSA-SVM integrated model is used as a classifier for the diagnosis
and prediction of COPD that achieved an accuracy of 95.1%.
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The accurate analysis of respiratory tract fluids, such as saliva, can be a promising
approach for identifying the severity of the disease and predicting its future exacerbations
in a Point-of-Care (PoC) environment. However, it is important to take the demographic
and medical parameters of patients into account to obtain accurate results. The study [21]
applied machine learning techniques on saliva samples from COPD patients and healthy
people, along with demographic information, for PoC recognition of the disease. As part of
the Exasens joint research project, two sets of saliva samples were gathered from healthy
controls (HC) and COPD patients. The samples consist of 160 HC and 79 COPD patient
specimens and were collected at the BioMaterialBank Nord in Borstel, Germany between
November 2016 and February 2018. A permittivity biosensor was used to analyze the
dielectric properties of saliva samples. The XGBoost gradient boosting algorithm achieved
a high classification accuracy and sensitivity of 91.25% and 100%, respectively, indicating
its potential for COPD detection.

The study [22] compared several machine learning algorithms to identify early-stage
COPD using multichannel lung sounds. The study analyzed multichannel lung sounds
using statistical features of frequency modulations extracted using the Hilbert–Huang
transform. The proposed deep learning model with Hilbert–Huang transform-based
statistical features achieves high classification rates of 93.67%, 91%, and 96.33% for accuracy,
sensitivity, and specificity, respectively. The analysis of multichannel lung sounds provides
a standardized evaluation with high classification performance, and the 12-channel lung
sound analysis provides the advantage of assessing entire lung obstructions. This study is
the first to directly focus on lung sounds to differentiate between COPD and non-COPD
patients, and its significance lies in its ability to provide a standardized assessment using
advanced machine learning algorithms.

The authors analyzed the impact of different features for COPD detection in [23]
with a focus on differentiating between early and advanced stages of the disease. The
recursive feature elimination cross-validated (RFECV) method was utilized for feature
selection, and expert doctors were consulted to recommend features among those selected
using the RFECV method. Two sets of features were selected, and different machine
learning algorithms were employed to compare their performance and feature importance.
The RFECV method produced an accuracy of 96%, while feature reduction with doctor
recommendation (FRDR) achieved an accuracy of 90%. Despite the slight difference in
results, both sets of features exhibited promising outcomes.

The above-discussed studies report good results for COPD detection using various
technologies and approaches. However, these studies have several limitations regarding
the used technology or approach. Traditional approaches predominantly utilize physical
examinations, in addition to several tests such as spirometry, chest radiography, blood test,
and genetic tests. Yet, such tests are invasive, requiring close contact with the device and
other people. In addition, the diagnosis is based on a doctor’s subjective evaluation and may
be prone to error or misjudgments. Pandemic situations such as COVID-19, where physical
contact is restricted, demand non-invasive technologies. In such scenarios, the proposed
UWB-based approach is potentially important. Other than that, the reported accuracy
of the discussed research works requires further improvement. The timely detection of
COPD patients is another important aspect where UWB can be very effective. In addition,
it has the capability to penetrate various obstacles or materials, which means that it can
detect COPD patients through clothing and other obstructions. It also has low levels
of transmission power and can radiate and absorb little electricity compared to other
instruments in biomedical applications, which makes it safer for patients.

3. Study Methodology

Figure 1 shows the workflow diagram of the methodology used in this study. The
newly created dataset based on the UWB radar is utilized in this study for experiments. The
study makes use of temporal and spectral features for COPD detection. The exploratory
data analysis is applied based on numerous insightful charts and graphs. The final dataset
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is then split into 80% to 20% for training and testing, respectively. The training portion is
used for training the applied machine learning and deep learning models. The successfully
trained models are then tested with the test data. The recursive process of hyperparameter
tuning is applied to find each model’s best hyperparameters, resulting in high performance.
All applied machine learning and deep learning models are optimized to obtain better
results.

Figure 1. Work flow of the COPD patient detection.

3.1. Temporal and Spectral Data Analysis

The temporal and spectral features-based dataset is created and utilized to conduct the
study experiments [12]. The temporal and spectral features [24] are extracted from UWB
radar-based biological signals. The features ‘energy entropy’, ‘short time energy’, ‘time
zero crossing rate’, ‘spectral crest factor’, ‘time Rms’, ‘spectral kurtosis’, ‘spectral rolloff’,
‘spectral skewness’, ‘spectral flatness’, ‘spectral decrease’, ‘spectral centroid’, ‘spectral
spread’, ‘spectral slope’, and ‘spectral flux’ are the extracted temporal and spectral features
from the raw UWB signal. The descriptive analysis of the used study features are analyzed
in Table 1.

Table 1. The temporal and spectral features-based descriptive dataset analysis.

Feature Description

Energy Entropy Energy entropy is the average amount of data acquired in each commu-
nication.

Short Time Energy Energy over a short time period is calculated due to the difficult determi-
nation of the energy of a signal since it fluctuates with time.

Time Zero Crossing Rate The zero-crossing rate refers to the number of times the signal level
crosses 0 in a certain amount of time.

Spectral Crest Factor The tonality of a signal is determined by using the spectral crest factor.

Time Rms Time Rms are the time-varying sinusoidal complex waveforms where the
amplitude changes over time.

Spectral Kurtosis The frequency domain positions of a sequence of transients are detected
using spectral kurtosis.

Spectral Rolloff The spectral roll-off is used to characterize an energy and frequency link.
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Table 1. Cont.

Feature Description

Spectral Skewness The spectrum skewness measures the average number of high frequencies
in a signal.

Spectral Flatness The flatness of a spectrum is measured by using spectral flatness.

Spectral Decrease The spectral decrease describes the average spectral slope of the rate-map
representation.

Spectral Centroid The spectral centroid is used to quantify a spectrum, which accurately
predicts the signal’s brightness.

Spectral Spread The spread spectrum fills the available frequency range by spreading the
provided signal.

Spectral Slope The signal quality indicator is referred to as spectral slope.

Spectral Flux The spectral components of the signal are calculated by using the spectral
flux.

Label The target label represents COPD and Health patients.

3.2. Exploratory Data Analysis

The exploratory data analysis based on temporal and spectral features is carried out.
The exploratory data analysis is necessary to discover dataset statics, patterns, and all
features correlation. The chart and heatmap-based graphs are drawn to explore the dataset.

The bar chart-based data analysis is visualized in Figure 2. The study shows that
target label 1 represents the COPD patient, and target label 2 represents healthy persons.
The analysis describes that each class contains a nearly equal number of data distributions
and there is no class imbalance problem. The dataset includes 210,000 records for COPD
patients and 210,000 records for healthy persons. The equivalent data distribution results
in achieving high-performance accuracy scores.

Figure 2. The target label-based data balancing analysis.

The correlation analysis of temporal and spectral features are demonstrated in Figure 3.
The correlation analysis is conducted to determine the association of dataset features that
can later cause significant damage during the model fitting. The study determines the
strength of a relationship between the temporal and spectral features and computes their
correlation association values. Based on the analysis, the features including ‘time Rms’,
‘gender’, and ‘spectral skewness’ are dropped from the dataset due to their low correlation
values. The study demonstrates that all used features have a positive correlation score. The
features ‘energy entropy’, ‘short time energy’, ‘spectral flux’, and ‘spectral slope’ have high
positive correlation values, resulting in increased performance for COPD detection.
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Figure 3. The correlation analysis of temporal and spectral features.

The temporal and spectral features-based dataset is divided into two portions with
a ratio of 0.8 to 0.2. The 80% features data are used to train the machine learning and
deep learning methods. The successfully trained applied methods are then tested with
the 20% portion of the dataset. The dataset splitting helps overcome the model overfitting
issue, resulting in the formation of generalized learning models.

3.3. Machine Learning and Deep Learning Models

This study uses DT, LR, GNB, and SVM as machine learning models. The performance
of these models is optimized using hyperparameter fine-tuning. In addition, LSTM and
GRU deep learning models are also used for experiments. The architecture of deep learn-
ing models is also optimized regarding the number of layers, number of neurons, and
other parameters.

3.3.1. Decision Tree

DT is a supervised non-parametric technique primarily utilized to solve regression
and classification problems. The DT method is based on a tree-like structure that contains
branches, connections, and leaf nodes. The DT technique learns decision rules inferred
from the dataset. The dataset attributes are mapped onto tree nodes. The tree leaf nodes
are based on the target class. The DT method is considered the white box method and has
a flow chart-like structure.

3.3.2. Logistic Regression

LR is a statistical machine learning method mostly used to predict binary outcomes.
The LR method predicts a dependent data variable by determining the relationship between
the independent variables. The LR model is based on the concept of probability of a certain
class. The model creates a probability of a certain event occurring given the set of inputs.
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In LR, the probability is represented by the logistic function. The probabilistic values using
the logistic function lie between 0 and 1. Once the model is trained, it can predict the
probability of the event occurring for new data.

3.3.3. Gaussian Naive Bayes

The GNB model is a probabilistic model often used for classification and pattern
recognition. The GNB is based on the Bayes theorem and assumes that the features of a
dataset are independent. The GNB method follows the Gaussian distribution. The Gaussian
distribution allows for fast computation and prediction for large datasets. GNB has been
used in various applications such as text classification, image classification, and spam
filtering. The GNB can achieve high accuracy when the data are not highly complex.

3.3.4. Support Vector Machine

SVM [25] is a supervised learning method that can be used for classification and
regression tasks. The SVM method aims to find the best boundary, known as the hyperplane,
that separates the data into different classes. The SVM algorithm determines the best
boundary by maximizing the margin. The distance between the boundary and the closest
data points from each class is known as the support vectors. The main disadvantage
of SVM is that it can be sensitive to the choice of kernel function and the value of the
regularization parameter.

3.3.5. Long Short-Term Memory

LSTM is an enhanced version of the recurrent neural network [26] and is designed to
handle sequential data. The LSTM technique overcomes the problem of vanishing gradients
in traditional recurrent neural networks. The LSTM architecture consists of a memory cell,
an input gate, an output gate, and a forget gate. These gates allow the LSTM to selectively
store, update and retrieve information from the memory cell over a prolonged period of
time, allowing it to maintain a long-term context. The limitation of the LSTM method is
that it requires a large amount of data to train and can be computationally expensive.

3.3.6. Gated Recurrent Unit

GRU is another recurrent neural network architecture that is designed to address
the vanishing gradient problem that plagues traditional recurrent neural networks by
introducing gating mechanisms that control the flow of information through the network.
The GRU model consists of two gates, the update gate and the reset gate. The update
gate controls the proportion of the previous hidden state passed on to the current hidden
state. In contrast, the reset gate controls the proportion of the previous hidden state that
is reset and replaced with new information. This allows the GRU to selectively retain or
discard information from the previous hidden state, making it more efficient and effective
at processing sequential data.

The hyperparameter tuning is carried out for both machine learning and deep learning
models. Hyperparameter optimization is a recursive process implemented during the
training of learning models to optimize their performance for better prediction accuracy.
The best-fit hyperparameters of the models used in this study are described in Table 2.
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Table 2. Fine-tuned hyperparameters for applied machine learning and deep learning models.

Technique Hyperparameters Description

DT
max_depth = 300 The depth level of tree nodes.

criterion = ‘entropy’ Features splitting method in the tree.

LR

solver = ‘lbfgs’ The algorithm used in the optimization problem.

max_iter = 100 The number of iterations.

multi_class = ‘auto’ Target label classification.

GNB var_smoothing = 1 × 10−9 smoothing that helps tackle the problem of zero
probability.

SVM

max_iter = 100 The number of iterations.

penalty = ‘l2’ Specifies the norm used in the penalization

loss = ‘squared_hinge’ Specifies the loss function.

LSTM

loss = ‘binary_crossentropy’ Specifies the loss function.

optimizer = ‘adam’ Loss optimizer function.

activation = ‘sigmoid’ Output layer activation function

GRU

loss = ‘binary_crossentropy’ Specifies the loss function.

optimizer = ‘adam’ Loss optimizer function.

activation = ‘sigmoid’ Output layer activation function

4. Results and Discussions

The study experiment results, discussions, and validations of applied machine learning
and deep learning models are comparatively analyzed in this section. Many performance
metrics are used to evaluate the applied models. The comparative results of machine
learning and deep learning models are also analyzed. The performance validation of the
outperformed technique with other studies is also conducted.

4.1. Experimental Setup

The experiments are conducted in the Google research Colab environment. The used
environment is based on a graphical processing unit (GPU) backend with 13 GB RAM,
90 GB disk space, and Intel(R) Xeon(R) system. The Python 3 programming language is
utilized to build machine and deep learning models. During the experimental evaluations,
the runtime computation, accuracy, precision, recall, and F1 score parameters are measured.

4.2. Performance of Employed Models

The experimental results of the machine and deep learning models regarding the
accuracy, precision, recall, and F1 scores are presented in Table 3. The analysis demonstrates
that the applied GNB technique achieved poor accuracy performance scores in comparison
to other models. The GNB technique achieves a 93% score for precision, recall, and F1
metrics, which is also low in comparison. The machine learning-based LR and SVM
techniques achieved 89.13% and 89.27%. The deep leaning-based LSTM and GRU also
perform well in comparison; however, their performance is lower than the performance
of DT. The analysis concludes that the machine learning-based DT technique outperforms
other employed models with the highest accuracy of 100% for detecting COPD patients in
real-time.
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Table 3. The performance metrics scores analysis of applied machine and deep learning methods
using the unseen test data in real-time.

Model Accuracy Precision Recall F1 Score

DT 100 99.91 99.89 99.93

LR 89.13 90.11 90.31 90.38

GNB 82.61 83.85 83.91 83.88

SVM 89.27 89.09 89.18 89.20

LSTM 97.01 97.17 97.22 97.12

GRU 99.03 99.07 99.02 99.10

4.3. Analysis of Computational Complexity

The comparative analysis of runtime computations of machine learning and deep
learning techniques during training is analyzed in Table 4. The study shows that the deep
learning LSTM and GRU models require high running time and are thus computationally
expensive. LSTM and GRU have the highest time of 988.75 s and 744.23 s, respectively.
Comparatively, machine learning models require less training time. The lowest training
time is required from the GNB model; however, it also has the lowest accuracy of 82.61%.
On the other hand, the training time of the DT classifier is higher than the GNB, but it offers
the best prediction accuracy.

Table 4. The runtime computations cost analysis of applied machine and deep learning methods.

Model Running Time (s)

DT 11.13

LR 16.62

GNB 0.17

SVM 27.20

LSTM 988.75

GRU 744.23

4.4. K-Fold Cross-Validation Analysis

The k-fold cross-validation technique is applied to validate the performance of applied
machine learning and deep learning models, as shown in Table 5. The machine learning-
based methods are validated with 10-fold of data. However, the deep learning models
are validated with 5-fold data due to the high computational cost. The results analysis
demonstrates that machine learning-based LR, GNB, and SVM techniques achieve poor
performance during the cross-validations analysis. The validation results of deep learning
models are better than LR, GNB, and SVM. The analysis concludes that the DT approach
outperforms with a high accuracy score of 99.17 and with the lowest standard deviation of
0.0002 for COPD detection.
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Table 5. K-fold cross-validation analysis of the applied machine and deep learning methods.

Model K Fold Accuracy Standard Deviation

DT 10 99.17 0.0002

LR 10 89.31 0.0013

GNB 10 82.86 0.0011

SVM 10 89.60 0.0009

LSTM 5 99.08 0.0053

GRU 5 98.73 0.0073

4.5. Comparison with State-of-the-Art Studies

The performance comparisons analysis of the proposed technique with past applied
state-of-the-art approaches is analyzed in Table 6. The past applied deep learning-based
LSTM technique achieved 93% accuracy on the same dataset. The analysis reveals that the
employed and optimized DT model achieves better results than the previously obtained
results for COPD detection employing the UWB data.

Table 6. The comparative performance results analysis of the proposed technique with state-of-the-art
studies.

Reference Year Technique Accuracy

[12] 2022 LSTM 93

Proposed 2023 Decision Tree 100

5. Conclusions

COPD is a life-threatening disease and requires automated detection methods for
early diagnosis with high accuracy. This study presents the detection of COPD patients
using machine learning and deep learning techniques. The newly created radar-based
UWB, collected non-invasively from a distance of 1.5 m, is used in this study. Temporal and
spectral features from the data are utilized in this regard to obtain better performance. The
exploratory data analysis is applied to discover dataset patterns and features correlation.
Experimental results employing DT, LR, GNB, SVM, LSTM, and GRU indicate that the
performance of deep learning models is better. However, the best results are obtained
using an optimized DT model. The performance of the models is validated using k-fold
cross-validation. In addition, a performance comparison with existing methods reveals
the better performance of the current approach. In the future, we intend to apply transfer
learning- and ensemble learning-based advanced techniques to detect COPD patients.
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