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This study emphasizes a multi-pronged approach to improving the energy efficiency of Multi-Effect 
Evaporator (MEE) in the paper industry. By incorporating traditional Energy-Saving Schemes 
(ESSs) and innovative renewable energy sources, the study demonstrates significant potential 
for reducing energy consumption and environmental impact, making it a decisive pathway for 
industrial sustainability. Key ESS strategies include Thermo-Vapor Compressors, Feed Preheaters, 
and Steam- and Feed-Split, which are employed to enhance Steam Economy (SE) to evaluate MEE 
efficiency. This integration results in a 67.93% enhancement in SE, reducing energy consumption 
significantly. Further, SE enhancement is achieved by integrating flash tanks that capture and 
reuse excess heat, which boosts SE by an additional 5.89%, leading to a total improvement of 73% 
without additional energy consumption. A significant innovation in the study is the integration of 
Linear Fresnel Reflectors (LFRs) based solar collectors and turbine-based wind energy sources to 
power the MEE and reduce reliance on conventional energy. This hybrid system decreases energy 
dependence by 62% for the base MEE and 34% for the hybrid MEE. The results are validated by 
comparing them with existing studies, confirming the effectiveness of the proposed method and 
offering significant energy and environment savings.
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1. Introduction

Black liquor (BL) is a biomass source extracted from the digester as industrial waste during the paper-making process, typically 
containing 15% to 20% solids [1]. It comprises chemicals used in pulp cleaning, along with a significant percentage of lignin, hemi-
cellulose, and 80% to 85% of water [2]. Annually, the paper industry produces approximately 170 million tons of BL, capable of 
generating about 2EJ of energy [2], making it a promising resource for energy generation [3]. Multi-effect evaporators (MEE) are 
crucial in concentrating BL for use as biofuel [4]. MEEs, consisting of multiple stages, utilize the latent heat of secondary steam to 
concentrate BL, but they also constitute a significant energy-consuming section of the paper industry, consuming over 30% of total 
industrial energy [5]. Consequently, various efforts have been made to integrate energy-saving schemes into MEE operations. This 
study focuses on a backward feed falling film seven-effect MEE located at a paper mill in Saharanpur, Utter Pradesh (UP), India, to 
explore renewable energy implementations and reduce energy consumption [6].

In recent years, various energy-saving schemes (ESSs) have been proposed to improve the energy efficiency of MEEs. These 
include feed preheaters [7], thermo-vapor compression (TVC) [8–10], mechanical vapor compression [11], and flash tanks [12,13]. 
Further, modifications to operations including feed- and steam-splitting have also been suggested to reduce energy consumption 
[6,14]. Hybrid models combining these ESSs have shown further improvements in energy efficiency [14–16]. Hence, this study aims 
to analyze process parameters to optimize Steam Economy (SE) in two separate MEE configurations, comparing base (b-) and hybrid 
(h-) models. SE is defined as the ratio of the difference between input and output black liquor to the amount of steam utilized to 
operate the system, which is termed Steam Consumption (SC), which is also a prime objective entity that needs to be minimized. The 
hybrid model incorporates TVC, feed preheater, flash tanks, and steam- and feed-splitting.

Integrating ESSs with MEEs offers limited energy savings. However, incorporating renewable energy can lead to self-sustainability, 
significantly reducing reliance on conventional energy sources. While the integration of renewables with MEEs in the paper industry 
remains largely unexplored, it’s a concept ripe for innovation. Unlike the desalination industry, where renewables like solar and wind 
are commonly integrated with MEEs, there’s a lack of literature on hybridized renewables in the paper sector [9,17,18]. Nonetheless, 
simulation-based studies have explored the potential of solar collectors in conjunction with MEEs [19,20].

While solar energy integration is crucial in many industries, its availability is limited to daytime without storage [21]. Wind energy, 
on the other hand, offers continuous power, making it a competitive renewable source. Hybrid integration of solar and wind energy is 
proposed to replace conventional energy usage in operating MEEs. Although commonly used in desalination plants, this approach is 
novel for other industries like papermaking due to differing industrial locations. Among solar alternatives, concentrating solar power 
(CSP) plants [22], particularly linear Fresnel reflectors (LFR), are promising for the paper industry due to their ability to produce 
direct steam at low temperatures, reducing traditional energy demands for MEEs. Thus, this investigation considers integrating LFR 
solar fields and wind energy sources for enhanced energy efficiency.

Analyzing the energy efficiency of ESSs integrated with MEEs involves developing steady-state models based on the first law of 
thermodynamics. These models incorporate mass and thermal balances along with heat transfer rate correlations for each MEE effect. 
Due to varying process variables in each effect, nonlinear behavior is observed. Solving for unknown variables such as temperature 
(Ti), Black Liquor (BL) flow rate (Li), and steam consumption (V0) is typically done using iterative techniques like the Newton-Raphson 
method [23–25]. However, this approach can be computationally complex due to the formation of the Jacobian matrix and is also 
sensitive to initial guesses. Other methods such as pinch analysis [26–28] and interior-point methods (IPMs) [14] offer alternatives 
but require further refinement, especially with increased MEE effects. Advancements in technology have led to the implementation of 
optimization approaches like nonlinear programming and metaheuristic techniques such as genetic algorithm (GA) [29], differential 
evolution (DE), particle swarm optimization (PSO) [30], WCA [31], ABCA [32,33], FDA [34] and AEFA [35], SCA [19] to achieve 
robust solutions efficiently. Furthermore, there is also a need to verify the efficiency and robustness of newly developed metaheuristic 
algorithms employed to solve these computationally complex nonlinear energy models.

Hence, a newly developed nature-inspired algorithm named the Walrus optimization algorithm (WaOA) inspired by the hunting 
behavior of walruses is proposed to search for the optimum process parameters [36]. Energy calculations for solar and wind sources are 
based on collected weather data for the region. Developing a simulation-based design for MEEs, incorporating solar and wind energy, is 
essential to estimate generating capacity and determine installation locations. This study addresses energy-related challenges in MEEs 
and explores energy management schemes to enhance BL concentration efficiently. The prime objectives of the present instigation 
are

• Formulate an optimization problem to maximize steam economy (SE) within a constrained environment.
• Employ the WaOA to identify the best optimal values.
• Reutilize waste heat through flash tanks.
• Incorporate LFR solar fields and wind energy to offset thermal demand.
• Compare and validate models integrating ESSs with MEEs.

Further, related work is discussed in Section 2 while the system description is provided in Section 3. Section 4 introduces the 
proposed approach. Renewable energy integration is discussed in Section 5 while wind energy is discussed in Section 6. Section 7
discusses the results and performance comparison with existing works. Section 8 concludes the study.
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2. Related work

Hybrid renewable energy systems (HRES) combining solar, wind, biomass, and other sources have gained increasing attention 
due to their potential to provide reliable and sustainable energy. Optimization algorithms are pivotal in enhancing the efficiency 
and effectiveness of such systems. Various studies have contributed to this growing field by developing advanced algorithms and 
analyzing the technical and economic performance of HRES under different conditions.

An enhanced Cuckoo Optimization Algorithm (COA) integrating a Gaussian Mixture Model (GMM) was introduced to improve 
the accuracy and convergence rate of the Optimal Power Flow (OPF) problem in solar and wind hybrid systems [37]. This work 
complements the efforts of Mishra and Shaik, who applied the African Vulture Optimization Algorithm (AVOA) to balance economic 
and environmental objectives in diesel-wind-solar microgrids [38]. By minimizing operational costs and emissions, AVOA tackles 
challenges in sustainable microgrid design, particularly in off-grid and remote locations.

On the environmental front, comprehensive exergy, exergoeconomic, and exergo environmental analysis of a hybrid solar, wind, 
and marine energy system highlights the importance of considering multiple performance metrics in HRES design [39]. This study 
emphasizes the thermodynamic efficiency and environmental impact of integrating various renewable sources, reinforcing the global 
focus on carbon-free energy production.

In wind energy analysis, novel probabilistic methods were developed to enhance the statistical representation of wind speed, 
improving both univariate and bivariate analyses [40]. Accurate wind speed modeling is critical for the optimal design and operation 
of wind-based hybrid systems, particularly when integrated with solar energy sources.

Optimization is not limited to generation systems; it also extends to consumption. A modified COA combined with an Artificial 
Neural Network (ANN) was used to optimize building energy performance [41]. This approach achieved significant energy savings, 
showcasing the potential for optimization in both energy generation and consumption aspects of hybrid systems.

In grid-connected systems, the challenge of inter-harmonic distortions in hybrid wind and solar energy systems was addressed 
through innovative Maximum Power Point Tracking (MPPT) techniques, improving both system efficiency and power quality [42]. 
These techniques are crucial for ensuring stability in grid-connected renewable systems with fluctuating power outputs.

A broad review of optimization techniques for energy storage and HRES provided insights into a range of metaheuristic algorithms 
aimed at improving system reliability and efficiency [43]. This work bridges the gap between optimizing energy generation and 
storage, both essential for the stability of hybrid systems.

Expanding on storage optimization, the Jellyfish Search Algorithm (JSA) was introduced to manage hybrid systems incorporating 
pumped storage, wind, thermal, and solar photovoltaic (PV) technologies [44]. The JSA demonstrated improvements in system 
reliability and cost reductions, particularly in large-scale hybrid energy projects.

On the economic side, a techno-economic feasibility study of an autonomous hybrid system for a university building in Saudi Arabia 
provided insights into the optimal sizing of hybrid systems for institutional applications [45]. This study highlights the economic 
viability of using renewable energy sources to achieve energy autonomy.

Similarly, the design optimization of off-grid hybrid systems was explored with a focus on building energy performance and 
climate change [46]. The adaptability of hybrid systems to varying climate conditions is essential for ensuring long-term sustainability, 
especially in regions with extreme weather conditions.

For remote applications, the Flower Pollination Optimization Algorithm (FPOA) was applied to optimize an off-grid PV-Fuel Cell 
system [47]. This approach demonstrated the viability of hybrid systems in remote areas with limited access to the main grid, making 
it a practical solution for rural electrification.

Machine learning techniques also play a role in hybrid system optimization. Statistical methods combined with ANNs were used 
for decision-making and system design in green energy applications [48]. This integration of optimization and artificial intelligence 
further enhances system performance and energy efficiency.

In the transportation sector, fuel cell hybrid electric vehicles (FC-HEVs) were optimized through sizing and thermal control 
strategies [49]. This study illustrated how hybrid renewable technologies can extend beyond stationary energy systems, demonstrating 
their versatility.

Several studies have focused on rural electrification and agricultural applications. For example, the viability of a PV/Wind/Biomass 
hybrid system for a small village in Egypt was assessed, providing a case study in rural electrification [50]. Similarly, an economic 
analysis of renewable energy configurations for remote regions in Saudi Arabia highlighted the importance of hybrid systems in 
meeting energy needs in isolated areas [51].

In agriculture, hybrid PV-Biomass systems have been proposed to support large-scale irrigation projects in Saudi Arabia [52]. 
These systems optimize energy inputs, significantly improving resource efficiency and productivity in water-scarce regions.

A hybrid Invasive Weed Optimization and Particle Swarm Optimization (PSO) algorithm was developed to manage biomass/PV 
micro-grids [53]. This approach improved both system efficiency and reliability, showcasing the potential of advanced optimization 
techniques in managing complex microgrids.

Existing literature on renewable energy systems shows that the focus has been shifted to hybrid energy sources for reliability and 
sustainable energy. Several areas are of great importance in this regard. Optimization is the first aspect that focuses on improved 
convergence and accuracy for such systems and the Cuckoo algorithm, Gaussian model, Vulture optimization, Jellyfish algorithm, 
flower pollination optimization, etc. have been utilized in the existing research. Another important factor for such systems is to strike 
a balance between operational costs and emissions for a sustainable environment and AVOA, JSA, ANN, etc. Distortions in HRES 
are yet another important problem that was focused on by the researchers and MPPT, machine learning models have been prudent 
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Fig. 1. Schematic of proposed hybrid MEE with the integration of Solar/Wind energy field. 

solutions. In addition, the PSO algorithm has also been leveraged for biomass micro-grid solutions. Such efforts paved the way for 
future HRES to obtain efficient, reliable, and sustainable energy systems.

3. System description

The hybrid configuration depicted in this study comprises an LFR solar field, wind generator, and ESSs integrated MEE, as illus-
trated in Fig. 1. This schematic outlines the integration model aimed at enhancing energy recovery and utilization in the concentration 
of weak black liquor. The model developed here is an extension of previous work [19], with the sole modification being the incorpo-
ration of a wind source to generate the necessary motive steam to operate the entire system. Both solar and wind sources are utilized 
to operate the unit sustainably, with an auxiliary energy source available to supplement the required energy during renewable energy 
failures caused by various climatic conditions.

The considered MEE has seven effects in which steam is fed as the heating medium to concentrate the input black liquor, and the 
outputs are vapor, concentrated liquor, and condensate. The feed liquor enters into the MEE in a backward manner, i.e., to the 7𝑡ℎ
effects of the evaporator train, and the product is obtained from the 1𝑠𝑡 effects. The flow direction of the vapor is gradual from the 1st 
to the 7𝑡ℎ effects the output vapor from the 1𝑠𝑡 effects has been treated as the input to the next effects. The incorporated ESSs with 
the heptad-based MEE are steam-, feed-split, feed preheater, TVC, and flash tanks. The intake steam (𝑉0) supplied from the external 
source passes through the TVC that compresses the vapor out from the 7th effect (𝑉7) and produces an intermediate vapor (𝑉𝑚) with 
a temperature of 𝑇𝑚. Further, this amount of vapor is split into two parts with a split fraction of 𝑦 and (1 − 𝑦) that enters the 1𝑠𝑡
and 2𝑛𝑑 effects, respectively. The vapor exits from these effects have been combined with each other and fed to the 3rd effect as the 
input with an average temperature of (𝑇𝑎𝑣𝑔).

A preheater has been placed to preheat the feed liquor (𝐿𝑓 ) with a temperature of (𝛿𝑇 ) and a fraction of output vapor from the 
6th effects (𝑉6) with a vapor fraction of ‘1-𝑚’ has been fed as input to this preheater; whereas, 𝑚 fraction of 𝑉6 has been sent to the 
7𝑡ℎ effects of the MEE. The input liquor has also been split into two parts with a liquor split fraction of 𝑘 and fed to the 7𝑡ℎ effects 
and the rest of the liquor has fed to the 6𝑡ℎ effects along with the liquor out from the 7𝑡ℎ evaporator (𝐿7). The product liquor (𝐿1) 
has been exited from the 1st effect with a temperature the same as the output vapor temperature from that effect. Another output 
of the evaporator unit is the condensate obtained from each effect of the evaporator with condensate enthalpy ℎ𝑐’ at a temperature 
same as that of the input steam/vapor temperature to that effect. The product, feed, and condensates have been fed to the flashing 
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Fig. 2. Solar and wind energy integration with the proposed hybrid MEE model. 

tanks (FTs) to extract the vapor that could be used as additional heat, fed as input for the 4𝑡ℎ to 7𝑡ℎ effects in order to make an 
efficient re-utilization of the waste heat. The arrangement of these FTs (CFT1 to CFT7, PFT, and FFT) has been illustrated in Fig. 1. At 
Evaporator 1, latent heat is lost due to vaporization, producing some condensate by 𝑉𝑚. This condensate is flashed by a Condensate 
Flash Tank (CFT1) to obtain a 𝑉0 amount of vapor at the same temperature 𝑇𝑚. The remaining vapor from CFT1 is fed to CFT2 to 
extract heated vapor for further utilization. Similarly, a series of Condensate Flash Tanks (CFT2 to CFV8) are linked to the feed and 
product flash tanks (FFT and PFT) to supply extra vapor to the fourth through seventh stages.

As depicted in Fig. 1, renewable fields are utilized to heat fresh water for steam generation, serving as a heating source to operate 
the evaporation unit. Condensate from the steam separator and Evaporator 1 is also combined with the water source to reduce water 
intake. The mass flow rate of steam generated by the renewable field is denoted as MD, with temperature variation in the input (𝑇𝑖𝑛)
and output (𝑇𝑜𝑢𝑡). The fresh steam is directed to the steam separator to provide the desired steam flow rate 𝑉0 to the TVC unit, at 
temperature 𝑇0. TVC also utilizes low-pressure steam from Evaporator 7 to generate medium-pressure steam, 𝑉𝑚 at temperature 𝑇𝑚, 
which is used to operate the MEE.

At Evaporator 1, there is a loss of latent heat due to vaporization, resulting in the production of some condensate by 𝑉𝑚 . This 
condensate is flashed by a condensate flash tank (CFT1) to obtain a 𝑉0 amount of vapor at the same temperature 𝑇𝑚. The remaining 
vapor from CFT1 is fed to CFT2 to extract heated vapor for further utilization. Similarly, a series of CFTs (CFT2 to CFV8) are linked 
to the feed and product flash tanks (FFT and PFT) in order to supply extra vapor to the fourth through seventh stages. Additionally, 
three ESSs (steam- and feed-split, and feed preheating) have been unified by split fractions of 𝑦, 𝑘, and 𝑚, correspondingly, to enhance 
SE. Fig. 2 illustrates the pre-installation schematic of solar and wind source integration with the proposed hybrid MEE model.

4. Approaches and methodologies

The energy models were developed based on appropriate assumptions aligned with the actual system, using fundamental thermo-
dynamic laws. Prime assumptions include

i. All the system parameters are performed under a steady state.
ii. The product concentration of 1st effects from MEE is constant.

iii. The surrounding heat losses are negligible due to well-insulated system components operating at relatively low temperatures.
iv. Overhead vapors are considered pure steam to operate the following effects of MEE.
v. The system operates at ideal operating conditions (without any plant complexities).

With these assumptions, the mass, component, and heat transfer balance for each stage of the proposed MEE model has been 
generalized and stated as in Equations (1) to (4), respectively.

𝑉𝑖 =𝐿(𝑖+ 1) −𝐿𝑖 for 𝑖 = 1,2,… ,6 (1)

𝐿𝑖𝑥𝑖 =𝐿𝑖+1𝑥𝑖+1 for 𝑖 = 1,2,… ,6 (2)

(𝐿𝑖 −𝐿𝑖−1)(𝜆𝑖−1 − ℎ𝑐𝑖−1) +𝐿𝑖(𝐻𝑖 − ℎ𝑖) +𝐿𝑖+1(ℎ𝑖+1 −𝐻𝑖) = 0 (3)
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Table 1
Boundary values of unknown process parameters for i𝑡ℎ ef-
fects of suggested MEE.

b-MEE 
𝑇𝑖(◦𝐶)=[100:110; 70:85; 66:74 60:70 55:65 52:63] 
𝐿𝑖(𝑘𝑔∕𝑠)=[2:5; 3:6; 4.5:7; 6.5:9; 9:11; 10.5:13; 13:15]

h-MEE

𝑇𝑖(◦𝐶)=[100:125; 70:120; 66:90; 60:75; 55:65; 52:63] 
𝐿𝑖(𝑘𝑔∕𝑠)=[1.5:5: 3:6; 4:8; 6.5:10.5; 9:12; 6:13; 6:14] 

𝑈𝑖𝐴𝑖(𝑇𝑖−1 − 𝑇𝑖) − (𝐿𝑖 −𝐿𝑖−1)(𝜆𝑖−1 − ℎ𝑐𝑖−1) = 0 (4)

where, 𝑖 is the count of evaporator units, 𝑉 and 𝐿 represent the vapor and liquor flow rate respectively. However, ℎ𝑐, 𝐻 , and ℎ
represent the latent heat of vaporization, condensate, vapor, and liquor enthalpy respectively. 𝜆𝑖 is the latent heat of vaporization, 
𝑈 and 𝐴 represent the overall heat transfer coefficient and heat transfer area of the evaporator units respectively.

4.1. Energy modeling of MEE

The energy models utilized in this study analyze the performance characteristics of ESSs integrated MEEs concerning various 
associated process parameters. Mass, component, energy balance, and heat balance equations are employed to different effects of 
both the base (b-) and hybrid (h-) MEEs, resulting in a set of nonlinear steady-state equations [15,54]. These equations, along with 
those for condensate flashing, have been thoroughly elucidated in existing literature [20]. Therefore, this study leverages these 
established models to solve the proposed industrial optimization problem.

4.2. Formulation of objective function

This study focuses primarily on maximizing SE while minimizing SC. Given the inverse relationship between SE and SC, maximizing 
SE inherently leads to reduced SC utilization. Thus, the objective function of the problem can be expressed as the maximization of 
SE under various optimization constraints, as represented in Equation (5).

𝑀𝑎𝑥(𝐹 (𝑧)) =𝑀𝑎𝑥(𝑆𝐸) =
∑7
𝑖=1 𝑉𝑖

𝑉0
=
𝐿𝑓 −𝐿1

𝑉0
Subjected to 𝑔𝑖(𝑧) = 0 (5)

where 𝐹 (𝑥) represents the objective function (maximize the SE). SE measures the efficiency of a MEE, representing the amount of 
water vapor (steam) produced per unit of steam input. Specifically, SE is the ratio of the mass of evaporated water (i.e., 

∑7
𝑖=1 𝑉𝑖) 

to the mass of motive steam (𝑉0) supplied to the system. After solving, 
∑7
𝑖=1 𝑉𝑖,𝐿𝑓 − 𝐿1 is obtained representing the difference in 

the amount of feed liquor and product liquor. 𝑔𝑖(𝑧) represents the equality constraints obtained from the set of fourteen nonlinear 
equations of the MEE. The boundaries of the different process parameters such as 𝑉0, 𝑇𝑖, (𝑖 = 1,6), 𝐿𝑖, (𝑖 = 1,2, ...,7), which will be 
optimally estimated, taken from the real-time seven effects MEE [6,14].

The boundaries of the different process parameters such as 𝑉0, 𝑇𝑖, (𝑖 = 1,2,… ,6), 𝐿𝑖, (𝑖 = 1,2,… ,7), which will be optimally 
estimated, taken from the real-time seven effects MEE [6,14], which has been represented in Table 1. Finally, the extreme boundaries 
for Ti and Li are set for smooth conduct of the optimization problem and are represented in Equation (6).

𝑇𝑖 > 𝑇(𝑖+1), (𝑖 = 1,3,… ,6)

𝐿𝑖+1 >𝐿𝑖, (𝑖 = 1,2,… ,6)
(6)

4.3. Optimization strategies

This investigation adopts a novel optimization approach called WaOA [36]. WaOA is inspired by various phases of walrus hunting 
behavior, including feeding, migrating, escaping, and fighting predators. To mathematically model these behaviors, WaOA consists of 
three main steps: exploration, migration, and exploitation, which aim to provide optimal results. The optimization strategy employed 
in this investigation aims to maximize SE while minimizing SC, as they exhibit an inverse relationship. The pseudo-code of WaOA is 
presented in Algorithm 1.

5. Renewable energy integration

5.1. LFR integration

The LFR represents one of the most recent advancements in CSP technology, gaining popularity in recent decades [55]. An LFR-
based power plant consists of a series of long, narrow mirrors with shallow curvature and linear receivers positioned above them. 
These mirrors employ a simple line-focus geometry with single-axis tracking to concentrate sunlight. Additionally, a small parabolic 
mirror is affixed on top of the receiver to further concentrate sunlight, as illustrated in Fig. 3 [56].
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Algorithm 1 Pseudo code for SE computation using WaOA.
Define objective function, 𝐹 (𝑧) // Eq. (1) 

Set input parameters

Specify Lower Bound and Upper Bound
Problem dimension (D=14)
Set Algorithm Specifications

Population of Walruses (100)
Size of maximum iteration (1000)
Maximum Run (30)

Initialization

Create an initial population of Walruses, Walrus=[𝑧1 , 𝑧2,… , 𝑧𝐷]
for 𝑡(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) = 1 ∶𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do

Locate the initial position of the Walruses
Set 𝑖 (number of variables) = 1, iteration=1
Calculate the fitness function 𝑓
Update the strongest Walrus
for 𝑖 = 1 ∶𝐷 do

Exploration

Calculate the new position of the 𝑗𝑡ℎ Walrus (from population) 𝑧𝑝1
𝑖,𝑗
= 𝑧𝑖.𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗 (𝑆𝑊𝑗 − 𝐼𝑖,𝑗 .𝑧𝑖,𝑗 )

Update the newly generated position of 𝑖𝑡ℎ Walrus using 
{
𝑋
𝑃1
𝑖
, 𝐹

𝑃1
𝑖
< 𝐹𝑖

𝑋𝑖, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Migration

Select 𝑋𝑘 randomly as the migration destination for 𝑋𝑖 using 
{
𝑧
𝑝2
𝑖,𝑗
= 𝑧𝑖.𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗 (𝑧𝑘.𝑗 − 𝐼𝑖,𝑗 .𝑧𝑖,𝑗 ), 𝐹𝑘 < 𝐹𝑖

𝑧𝑖.𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗𝑧𝑖.𝑗 − 𝑧𝑘,𝑗 ), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Update 𝑋𝑖
{
𝑋
𝑃2
𝑖
, 𝐹

𝑃2
𝑖
< 𝐹𝑖

𝑋𝑖, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Exploitation: escaping and fighting against predators

Calculate a new position in the neighborhood of the 𝑖𝑡ℎ walrus
𝑧
𝑝3
𝑖,𝑗
= 𝑧𝑖.𝑗 + (𝐿𝐵𝑡

𝑙𝑜𝑐𝑎𝑙,𝑗
+ (𝑈𝐵𝑡

𝑙𝑜𝑐𝑎𝑙,𝑗
− 𝑟𝑎𝑛𝑑𝑖,𝑗 ∗𝐿𝐵𝑡𝑙𝑜𝑐𝑎𝑙,𝑗 ))

Local Bounds: 𝐿𝐵𝑡
𝑙𝑜𝑐𝑎𝑙,𝑗

= 𝐿𝐵𝑗

𝑡 
𝑈𝐵𝑡

𝑙𝑜𝑐𝑎𝑙,𝑗
= 𝑈𝐵𝑗

𝑡 
Update 𝑋𝑖

{
𝑋
𝑃3
𝑖
, 𝐹

𝑃3
𝑖
< 𝐹𝑖

𝑋𝑖, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

end for

Display the best solutions
end for

Results from the best solution
Display the optimum SE

Fig. 3. Main components of an LFR: (1) the primary Fresnel Reflectors field, (2) the receiver, and (3) the solar tracking mechanism. 

5.2. Energy modeling of LFR

The energy model of the LFR is designed to calculate both the amount of energy generated and the outlet temperature of the 
collector in series [9,57]. The integration of the LFR field is a supplement to conventional energy source utilization for the MEE 
operation. The expression for the per unit heat gain of the LFR solar collector is given by Equation (7).

𝑞 = 𝜂.𝐷𝑁𝐼.𝐼𝐴𝑀 −𝐵𝑙
(
𝑇𝑜𝑢𝑡 + 𝑇𝑖𝑛

2 
− 𝑇𝑎

)
= 𝜂.𝐷𝑁𝐼.𝐼𝐴𝑀 −𝑈𝑙Δ𝑇𝑎𝑣𝑔 = 𝜂𝐼𝐷 −𝑈𝑙Δ𝑇𝑎𝑣𝑔 (7)
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Table 2
Design parameters of LFR*.

Parameter(s) Values(s) 
Optical efficiency of LFR (𝜂) 0.65 
Heat loss Coefficient of LFR (𝑈𝑙) 0.65 W/m2 K 
Specific land required 2 𝐴𝑝
IMA effect Novatech design [59] 
Collector outlet dryness (𝐷𝐹 ) 0.5 
Cut off Radiation (𝐼𝑐 ) 100 W/m2

Maximum Design Radiation (𝐼𝐷𝑚𝑎𝑥) 600 W/m2

Plant capacity (𝑃𝐷) 1 MWe 
Aperture area of LFR 17,410 m2

Lifetime 25 years 
* Data available from Jodhpur, India.

where Δ𝑇𝑎𝑣𝑔 and 𝐼𝐷 represent the solar collector and atmospheric temperature difference and the effective design radiation respec-
tively. The LFR aperture area can be determined by the Equation (8).

𝐴𝐿𝐹𝑅 =
𝑄𝑀𝐸𝐸

𝑞𝐷
=

𝑄𝑀𝐸𝐸

𝜂𝐼𝐷 −𝑈𝑙Δ𝑇𝑎𝑣𝑔
(8)

The LFR solar collector mitigates the heat demand of the MEE at the desired DNI (𝐼𝐷 ). Whereas, at reduced DNI (𝐼), auxiliary 
heating is essential to generate a limited quantity of steam. The quantity of auxiliary heat needed at reduced DNI is expressed by the 
relation Equation (9) [58].

𝑄𝑎𝑢𝑥(𝐼) =𝑄𝑀𝑆𝐸 − 𝑞(𝐼)𝐴𝐿𝐹𝑅 (9)

Putting the relation in Equation (9), the relation of auxiliary heat required can be expressed as Equation (10).

𝑄𝑎𝑢𝑥(𝐼) = 𝜂(𝐼𝐷 − 𝐼)𝐴𝐿𝐹𝑅,∀𝐼𝐷 > 𝐼 (10)

The input operational parameters of the LFR solar field have been obtained from data obtainable from Jodhpur, India [19] and 
depicted in Table 2.

5.3. Weibull modeling of LFR

Solar irradiance is a random stochastic source of energy and solar power takes a nonlinear relation through it. Weibull distribution 
is implemented for processing the solar irradiance time series data. The probability distribution function (pdf) of solar irradiance is 
expressed in Equation (11)

𝑝𝑑𝑓 (𝑖) = 𝛼

𝛽

(
𝑖 
𝛽

)𝛼−1
𝑒𝑥𝑝

[
−
(
𝑖 
𝛽

)𝛼]
(11)

Finally, all the solar power generating unit’s output has to be taken in the manner of one random variable and the cumulative 
distribution function (𝑐𝑑𝑓 ) for forecasted solar irradiance will be calculated as per the equation shown in Equation (12).

𝑐𝑑𝑓 (𝑖) = 1 − 𝑒
[
−
(
𝑖 
𝛽

)𝛼]
(12)

where, 𝑖 ≥ 0 is the randomly measured solar irradiance (𝑘𝑊 ∕𝑚2) and 𝛼, 𝛽 ≥ 0 are representing the shape and scale parameters of 
solar irradiance data respectively. The solar power (𝑃𝑠𝑜𝑙𝑎𝑟) will be computed from forecasted solar irradiance time series data. Solar 
power is represented in Equation (13) [60].

𝑃𝑠𝑜𝑙𝑎𝑟 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑃 𝑟𝑎𝑡𝑒𝑑
𝑠𝑙𝑓𝑟

×
𝐺2
𝑠𝑖

𝐺𝑠𝑡𝑑_𝑠𝑖 × 𝐼𝑐
, 0 ≤𝐺𝑠𝑖 < 𝐼𝑐

𝑃 𝑟𝑎𝑡𝑒𝑑
𝑠𝑙𝑓𝑟

×
𝐺𝑠𝑖

𝐺𝑠𝑡𝑑_𝑠𝑖
,

(
𝐼𝑐 ≤𝐺𝑠𝑖 < 𝐺𝑠𝑡𝑑_𝑠𝑖

)
𝑃 𝑟𝑎𝑡𝑒𝑑
𝑠𝑙𝑓𝑟

,
(
𝐺𝑠𝑖 ≥𝐺𝑠𝑡𝑑_𝑠𝑖

)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(13)

where 𝑃𝑠𝑜𝑙𝑎𝑟 represents the power generated by solar LFR, 𝐺𝑠𝑖 and 𝐺𝑠𝑡𝑑_𝑠𝑖 represents the global and standard solar irradiance respec-
tively. 𝑃 𝑟𝑎𝑡𝑒𝑑

𝑠𝑙𝑓𝑟
and 𝐼𝑐 represents the rated capacity of solar LFR and certain solar irradiance points respectively.

For solar irradiance, the shape parameter (𝛼) indicates the variability of solar energy; a higher 𝛼 value signifies more stable solar 
irradiance, whereas a lower 𝛼 suggests greater fluctuations. The scale parameter (𝛽) represents the average level of solar irradiance, 
with higher values indicating greater potential for energy generation. This information is vital for designing solar technologies like 
LFR to maximize efficiency.

Similarly, for wind speed, the shape parameter (𝛼) reveals the distribution’s skewness, affecting the optimal placement of wind 
turbines. A higher 𝛼 suggests more consistent wind speeds, while a lower 𝛼 indicates variability. The scale parameter (𝛽) represents 
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Fig. 4. Hourly solar irradiance (kW/m2) of Jodhpur City, from January to December 2019. 

Fig. 5. Hourly wind power generation (kW) of Jodhpur, India from January to December 2019. 

the average wind speed, with higher values corresponding to increased energy production potential. Accurate estimation of these 
parameters is essential for effective wind turbine selection and placement. By integrating Weibull parameters into the design and 
optimization of solar and wind energy systems, the study ensures that systems are tailored to local conditions, enhancing reliability 
and efficiency. This comprehensive approach minimizes waste and maximizes energy production, contributing to more stable and 
efficient energy systems. The revised manuscript incorporates these explanations to better connect the findings with their impact on 
energy system performance.

5.4. Techniques for estimation of solar irradiance data and power

5.4.1. Solar irradiance data collection

Jodhpur City solar irradiance data has been taken from the National Institute of Solar Energy (NISE), India in time series format. 
In Fig. 4 hourly solar irradiance profile of Jodhpur City, India is depicted from January to December 2019. Hourly solar power 
generation profile is shown in Fig. 5.

5.4.2. Techniques for estimation of solar power

Several approaches have been implemented for determining the two constraints of Weibull distribution. One of these techniques is 
proposed by Steven and Smulders known as the modified likelihood technique (MLT) [61]. The above data is processed in frequency 
distribution format for calculating the Weibull parameters of solar irradiance in MLT [62]. MLT requires larger nonlinear complex 
mathematical iterations. In this technique, 𝛼 and 𝛽 represent the shape parameter and scale parameter of solar irradiance, respectively. 
These parameters control the form and spread of the probability distribution, and they are used to describe the statistical behavior 
of solar irradiance over a given period, which is determined by Equation (14) and (15), respectively.

𝛼 =

[∑𝑁𝑅

𝑠𝑟=1 𝑖
𝛼
𝑠𝑟
𝑙𝑛(𝑖𝑠𝑟)∑𝑁𝑅

𝑠𝑟=1 𝑖
𝛼
𝑠𝑟

−
∑𝑁𝑅

𝑠𝑟=1 𝑙𝑛(𝑖𝑠𝑟)
𝑁𝑟 

]−1

(14)

𝛽 =

[
1 
𝑁𝑅

𝑁𝑅 ∑
𝑠𝑟=1

𝑖𝛼
𝑠𝑟

]1∕𝛼

(15)

where 𝑖𝑠𝑟 is the solar irradiance in each sunny hour. 𝑁𝑅 and 𝑠𝑟 are the number of nonzero points available from solar irradiance 
data. For
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Fig. 6. Solar irradiance for sample periods, (Top) Weibull pdf, and (Bottom) Cumulative Weibull pdf. 

Table 3
Weibull parameters of solar irradiance for mathematical models.

Mathematical Models MLT MMLT 
Weibull Parameters of solar irradi-
ance data

𝛼 1.88 1.74 
𝛽 3.55 3.42 

• 𝛼 > 1, the distribution has a peaked shape, indicating that the solar irradiance values are more concentrated.
• 𝛼 = 1, the Weibull distribution becomes an Exponential distribution, which suggests that solar irradiance decays exponentially 

over time.
• 𝛼 < 1, the distribution has a more spread-out shape, implying that solar irradiance values vary widely with less concentration 

around a mean value.

Whereas, 𝛽 represents the characteristic scale of the irradiance values, often related to the average intensity of solar radiation 
over time, i.e., a larger 𝛽 corresponds to higher values of solar irradiance, while a smaller 𝛽 vice versa. By adjusting the 𝛼 and 𝛽
parameters, the distribution can accurately reflect the statistical characteristics of solar energy at different sites or times of year.

Fig. 6 specifies the Weibull 𝑝𝑑𝑓 of solar irradiance and the cumulative Weibull 𝑝𝑑𝑓 of solar irradiance of Jodhpur city for January 
to December 2019.

Modified MLT (MMLT) is implemented when solar irradiance data is available in frequency distribution arrangement. In the case 
of this MMLT, the Weibull parameters of solar irradiance data are calculated using Equations (16) and (17).

𝛼 =

[∑𝑁𝑅

𝑠𝑟=1 𝑖
𝛼
𝑠𝑟
𝑙𝑛(𝑖𝑠𝑟)𝑝(𝑖𝑠𝑟)∑𝑁𝑅

𝑠𝑟=1 𝑖
𝛼
𝑠𝑟
𝑃 (𝑖𝑠𝑟) 

−
∑𝑁𝑅

𝑠𝑟=1 𝑙𝑛(𝑖𝑠𝑟)𝑝(𝑖𝑠𝑟)
𝑃 (𝑖𝑠𝑟 ≥ 0) 

]−1

(16)

𝛽 =

[
1 

𝑝(𝑖𝑠𝑟 ≥ 0)

𝑁𝑅 ∑
𝑠𝑟=1

𝑖𝛼
𝑠𝑟
𝑝(𝑖𝑠𝑟)

]1∕𝛼

(17)

𝑝(𝑖𝑠𝑟) represents the frequency of the solar irradiance within bins and 𝑃 (𝑖𝑠𝑟 ≥ 0) represents the probability of occurring the solar 
irradiance greater than equal to zero i.e., nonzero solar irradiance.

Fig. 7 illustrates the distribution extracted from solar irradiance time series data and Cumulative distribution extracted from solar 
irradiance of Jodhpur City from January to December 2019 time periods. Table 3 illustrates the Weibull Parameters of solar irradiance 
for mathematical models: A case study of Jodhpur, India.

6. Wind energy

6.1. Modeling of wind source

Wind turbines transform the mechanical energy of wind into electrical energy. This process involves the kinetic energy of the 
wind being transmitted through a system of aerodynamic blades to drive an electrical generator, producing electric energy. Wind 
turbines are primarily classified into two categories based on the orientation of the spin axis: vertical and horizontal axis turbines. 
Horizontal-axis wind turbines are the most commonly used for electricity generation and are therefore considered in this investigation 
for the overall system design. Unlike the LFR (used for direct steam generation), the wind turbines use the generated electricity to 
heat up the water and produce the steam that will lead to operating the MEE.
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Fig. 7. Distribution and cumulative distribution extracted from solar irradiance data. 

6.2. Mathematical modeling for wind energy calculations

The velocity of wind is a random stochastic variable in nature and wind power conveys a nonlinear relation through it. The wind 
speed measured from Jodhpur city, India is considered here for this modeling and simulation. Weibull distribution is implemented 
for processing the wind power and wind speed. The pdf of wind speed is expressed in Equation (18)

𝑝𝑑𝑓 (𝑣) = 𝑢 
𝛼

(
𝑣 
𝛼

)𝜇−1
𝑒𝑥𝑝

[
−
(
𝑣 
𝛼

)𝜇]
(18)

The wind power 𝑃𝑤𝑖 will be computed from forecasted wind speed and this is also stochastic in nature. This wind power is 
represented in Equation (19).

𝑃𝑤𝑖 =

⎧⎪⎪⎨⎪⎪⎩
0, (𝑣 < 𝑣𝑐𝑖𝑛) or (𝑣 > 𝑣𝑐𝑜𝑢𝑡)

𝑃 𝑟𝑎𝑡𝑒𝑑
𝑤𝑖

, (𝑣𝑟𝑎𝑡𝑒𝑑 ≤ 𝑣 < 𝑣𝑐𝑜𝑢𝑡)
𝑣− 𝑣𝑖𝑛

𝑣𝑟𝑎𝑡𝑒𝑑 − 𝑣𝑖𝑛
𝑃 𝑟𝑎𝑡𝑒𝑑
𝑤𝑖

, (𝑣𝑐𝑖𝑛 ≤ 𝑣 < 𝑣𝑐𝑜𝑢𝑡)

⎫⎪⎪⎬⎪⎪⎭
(19)

When the wind speed is in the mid of the 𝑣𝑟𝑎𝑡𝑒𝑑 and 𝑣𝑐𝑖𝑛 then wind farm power generation will be assumed constant. Finally, all 
the wind power generating unit’s output has to be taken in the manner of one random variable 𝑃𝑤𝑖 , and pdf for this will be as in 
Equation (20).

𝑝𝑑𝑓 (𝑝𝑤𝑖) =
𝜇𝛾 × 𝑣𝑖𝑛
𝛼 × 𝑝𝑟𝑎𝑡𝑒𝑑

𝑤𝑖

⎡⎢⎢⎢⎢⎣

(
1 + 𝛾𝑝𝑤𝑖

𝑝𝑟𝑎𝑡𝑒𝑑
𝑤𝑖

)
𝑣𝑖𝑛

𝛼

⎤⎥⎥⎥⎥⎦

𝜇−1

× 𝑒𝑥𝑝

⎡⎢⎢⎢⎢⎣
−

(
1 + 𝛾𝑝𝑤𝑖

𝑝𝑟𝑎𝑡𝑒𝑑
𝑤𝑖

)
𝑣𝑖𝑛

𝛼

⎤⎥⎥⎥⎥⎦

𝜇

(20)

where 𝛾 =
((

𝑣𝑟𝑎𝑡𝑒𝑑

𝑣𝑐𝑖𝑛

)
− 1

)
.

6.3. Techniques for estimation of wind power and wind speed data

6.3.1. Wind speed data collection

Wind speed data for Jodhpur city, provided by the National Institute of Wind Energy (NIWE), India, has been transformed into a 
frequency distribution format to calculate Weibull parameters using MLT. Fig. 8 displays the hourly wind speed profile from January 
to December 2019 for Jodhpur, India, while Fig. 9 illustrates the corresponding hourly wind power generation profile.
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Fig. 8. Hourly wind speed (m/s) from January to December 2019. 

Fig. 9. Hourly wind power generation (kW) from January to December 2019. 

6.3.2. Techniques for estimation of wind power

Various techniques, including MLT proposed by Steven and Smulders [61], have been suggested for determining the two constraints 
of the Weibull distribution of wind speed. MLT requires large-scale nonlinear mathematical iterations, making it computationally 
complex. In this technique shape parameter (𝜑) and scale parameter (𝑐) of wind speed data are determined by Equations (21) and 
(22), respectively.

𝜑 =

[∑𝑁

𝑠=1 𝑣
𝜑
𝑠 𝑙𝑛(𝑣𝑠)∑𝑁

𝑠=1 𝑣
𝜑
𝑠

−
∑𝑁

𝑠=1 𝑙𝑛(𝑣𝑠)
𝑁

]−1

(21)

𝑐 =

[
1 
𝑁

𝑁∑
𝑠=1 
𝑣𝜑
𝑠

]1∕𝜑

(22)

where, 𝑣𝑠 represents the wind speed during each hour, 𝑠 and 𝑁 are the numbers of nonzero points of wind data. Fig. 10 indicates the 
Weibull 𝑝𝑑𝑓 of wind speed and the Cumulative Weibull pdf of wind speed for the Jodhpur city wind profile given for the January to 
December 2019 time periods.

MMLT is adapted when wind speed data are available in frequency distribution format. In this method, the Weibull parameters 
of wind speed are calculated using Equations (23) and (24).

𝜑 =

[∑𝑁

𝑠=1 𝑣
𝜑
𝑠 𝑙𝑛(𝑣𝑠)𝑃 (𝑣𝑠)∑𝑁

𝑠=1 𝑣
𝜑
𝑠 𝑃 (𝑣𝑠) 

−
∑𝑁

𝑠=1 𝑙𝑛(𝑣𝑠)𝑃 (𝑣𝑠)
𝑃 (𝑣𝑠 ≥ 0 

]−1

(23)

𝑐 =

[
1 

𝑃 (𝑣𝑠 ≥ 0)

𝑁∑
𝑠=1 
𝑣𝜑
𝑠
𝑃 (𝑣𝑠)

]1∕𝜑

(24)

where 𝑣𝑠 represents the speed of the wind central bins for a specific hour 𝑠 and 𝑁 is the number of bins, 𝑃 (𝑣𝑠) represents the frequency 
of the wind speed within bins, and 𝑃 (𝑣𝑠 ≥ 0) represents the probability of occurring the wind speed greater than equal to zero i.e., 
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Fig. 10. Weibull pdf and Cumulative Weibull pdf for Jodhpur wind profile sample periods. 

Fig. 11. Distribution extracted from wind data and Cumulative distribution extracted from wind data for Jodhpur wind profile. 

nonzero wind speed. In Fig. 11, the distribution extracted from wind speed data and the cumulative distribution extracted from wind 
speed data for the Jodhpur city wind profile has been given for January to December 2019.

Graphical technique is obtained from the cumulative distribution function. In this approach, the wind speed data is interpolated 
using a straight line. This method adapts the concept of least square regression [63]. The probability of wind speed occurrence has 
been expressed in Equation (25).

𝑃 (𝑣 < 𝑣𝑠) = 𝑃 (𝑣 ≥ 0){1 − 𝑒𝑥𝑝
[
−
𝑣𝑠

𝑐

]𝜑} (25)

Here 𝑃 (𝑣 < 𝑣𝑠) represents the probability of occurrence of wind speed less than 𝑣𝑠 and 𝑃 (𝑣 ≥ 0) represents the probability of 
occurrence of wind speed greater than and equals zero. Equations (25) can be modified as Equation (26).

𝑙𝑛{−𝑙𝑛[1 − 𝑃 (𝑣 < 𝑣𝑠)]} = 𝜑𝑙𝑛𝑣𝑠 −𝜑𝑙𝑛𝑐 (26)

Heliyon 11 (2025) e41653 

13 



S. Pati, N.K. Navin, O.P. Verma et al. 

Fig. 12. Linearized curve and fitted line comparison of Jodhpur wind speed data. 

Table 4
Design parameters for wind source (VESTAS V90 2.0 MW Wind Turbine).

Parameter (s) Values (s) 
Rated power 2000 kW 
Rotor diameter 90 m 
Length of the blade 44 m 
Maximum chord of the blade 3.9 m 
Swept area of rotor 6362 m2

Generator efficiency 90% 
Converter efficiency 80% 
Inverter efficiency 80% 
Frequency 50 Hz 
Cut-in speed 4 m/s 
Cut-out speed 25 m/s 
Average speed 14.5 m/s 
Blade diameter 70.34 m 
Height 80 m 
Lifetime 20 years 
Latitude 26.1279◦N 
Longitude 73.1144◦E 

Data available from Jodhpur, India.

Table 5
The Weibull parameters for the average wind speed.

Mathematical models MLT MMLT Graphical technique 
Weibull Parameters

𝜑 1.30 1.24 1.35 
𝑐 3.87 3.80 3.92 

Here a graph between 𝑙𝑛{−𝑙𝑛[1 −𝑃 (𝑣 < 𝑣𝑠)]} versus 𝑙𝑛(𝑣𝑠) is plotted for calculating 𝑘 and 𝑐. This plot gives a straight line having 
slope as 𝑘 and 𝑦 intercept as −𝜑𝑙𝑛𝑐.

In Fig. 12, a linearized curve and fitted line comparison of Jodhpur wind speed data is depicted. Table 4 indicates the design 
parameters of the wind turbine and Table 5 shows the Weibull Parameters of the wind source to calculate the amount of power that 
the wind turbines generate, it is noticed that the MMP method provides the most suitable parameters and hence is considered for 
further study.

6.4. Wind energy calculations

The wind energy is converted to mechanical energy with a performance coefficient 𝑐𝑃𝑅 . This mechanical energy is conveyed to 
the generator through a machine-driven transmission with efficiency 𝜂𝑚 (fraction of the power transmitted by the turbine blades to 
the generator) and generator efficiency 𝜂𝑔 [18]. The overall efficiency of the performance parameters is given in Equation (27).
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𝑐𝑃 = 𝑐𝑃𝑅 × 𝜂𝑚 × 𝜂𝑔 (27)

Expected values of performance coefficients are 𝑐𝑃𝑅=0.45, 𝜂𝑚=0.95 and 𝜂𝑔=0.90 for getting an overall efficiency of 38.475%. 
The real value of efficiency possibly lies between 25% and 30% and this for due to assumptions of no loss [18]. The kinetic power of 
the wind turbine is termed the total power of the wind. Hence, the total available wind power is expressed as in Equation (28).

𝑃𝑚 = 𝑐𝑃
𝜌

2 
𝐴𝑟𝑣

3
𝑠

(28)

where 𝜌𝑎 represents the air density, 𝐴𝑟 is the rotor area of and 𝑣𝑠 is the average wind speed. According to the Weibull distribution 
function, the average output power of a wind turbine is given by Equation (29).

𝑃𝑎𝑣𝑔 =

∞ 

∫
0 
𝑃𝑚𝑃 (𝑣𝑠)𝑑𝑣𝑠 (29)

where 𝑃𝑚 is the maximum output power from the wind turbine at average wind speed 𝑣𝑠 and 𝑃 (𝑣𝑠) denotes the Weibull distribution 
function. Considering negligible generator and gearbox losses of the wind turbines and control system are in the form of heat, the 
quantity of net heat generated from the wind source per unit time is the same as that of the average power (𝑃𝑎𝑣𝑔 ).

6.5. Renewable integration with system components

The energy analysis with the integration of renewable sources is performed by employing the first law of thermodynamics to the 
system input. The energy balance equations due to this inclusion for the system components are represented as Equations (30) to 
(32).

𝑄𝑀𝑆𝐸 =𝑀𝐷(ℎ𝑜𝑢𝑡 − ℎ𝑖𝑛) (30)

𝑀𝐷ℎ𝑜𝑢𝑡 = 𝑉0𝐻0 + 𝑉𝑐𝑜𝑛𝑑ℎ𝑐𝑠𝑠 (31)

where ℎ𝑐𝑠𝑠 is the steam separator condensate enthalpy.
Equations (30) and (31) represent the MEE unit and steam separator, respectively while Equation (32) is for the LFR/wind.

𝑀𝐷 = 𝑉0
𝐻0 − ℎ𝑐𝑠𝑠
ℎ𝑜𝑢𝑡 − ℎ𝑐𝑠𝑠

(32)

The expressions for the 𝑇𝑜𝑢𝑡 and 𝑇𝑖𝑛 for the renewable fields are given by Equations (33) and (34), respectively.

𝑇𝑜𝑢𝑡 = 𝑇0 + Δ𝑇𝑑 (33)

𝑇𝑖𝑛 =
(𝑀𝐷 − 𝑉0)𝑇0 − 𝑉0𝑇𝑚

𝑀𝐷

(34)

Hence, these parameters remain unchanged for both LFR and Wind energy sources.

7. Results

The system of equations for the backward feed MEE operating in an Indian pulp and paper industry has been simulated and 
validated using a state-of-the-art optimization algorithm, WaOA, within the MATLAB environment. The convergence curve of WaOA 
for this industrial problem is illustrated in Fig. 13, demonstrating the efficiency of the proposed algorithm. The proposed algorithm 
has been applied to the base MEE model with 14 decision variables, utilizing 2000 maximum iterations and a population of 100, 
executed 30 times. Statistical analysis of the algorithm yielded an optimal SE value of 5.0297 at the 26𝑡ℎ execution, with an SC of 2.24 
kg/s, and an execution time of 73.161 seconds. This performance highlights the algorithm’s effectiveness in optimizing MEE systems, 
demonstrating both high efficiency and reliability. Comparing these results with the previously reported algorithms the execution 
speed is better compared to Teaching Learning Based Optimization (TLBO) and Artificial Electric Field Algorithm (AEFA) whereas, 
it produces better energy optimization results in terms of SE and SC than PSO, DEA, TLBO, GWO, and AEFA as reported in [35].

Table 6 displays the optimized process parameters and enthalpy values for both the base (b-) and hybrid (h-) MEE models obtained 
through simulation, allowing for comparative analysis. It is observed from Table 7, that the vapor, liquor, and condensate enthalpies 
have been decreased with a decrease in temperature, whereas, the latent heat of vapor increases with increasing in temperature.

Fig. 14 illustrates the impact of varying split fractions on SE, showing that higher split fraction values (ranging from 0.1 to 0.9) 
contribute to a better steam economy. This highlights the potential for optimizing MEE performance by adjusting the split fraction 
to achieve a better steam economy. In this simulation, EM-1 represents the base model without any ERSs with a SE of 4.849 and SC 
of 2.7 (kg/s). EM-16 (a hybrid of all the ERSs) shows the best result of SE (8.5473) with a SC of 1.6509 (kg/s). However, comparing 
the results of EM-1 and EM-16, there is an enhancement of 76.27% in SE and a 38.85% reduction in SC.

The proposed models incorporate waste heat reutilization, thereby enhancing SE while maintaining a constant SC through the 
use of FTs. The quantity of vapor collected by utilizing the waste heat from various flash tanks and corresponding feeding effects are 
depicted in Table 7. The amount of vapor produced is added according to the feed effect. The simulated result indicates that there is 
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Fig. 13. Convergence curve of WaOA for, (a) 30 runs, and (b) Best run. 

an approximated 2429.73 kg/h and 2361.65 kg/h waste steam extracted from the flash tanks for the b- and h-MEE respectively at a 
constant SC as observed from Table 7.

Additionally, Table 8 confirms SE calculations for the proposed MEE models: for the base MEE, SE is improved by 5.31%, and 
for the hybrid MEE, it is enhanced by 5.89% with a one-time model modification. Fig. 15 presents a comparative analysis of energy 
efficiency parameters for the proposed MEE models without and with FTs. The first two columns represent SC and SE without FTs, 
while the last column indicates the improved results achieved with FTs. The first two columns represent SC and SE without FTs, 
while the last column indicates the improved results achieved with FTs, i.e., an overall 73% SE enhancement obtained without extra 
consumption.

7.1. Synthesis of renewables integration

The proposed MEE models are based on steam analysis, providing insight into the thermal behavior of various streams within 
the system. Steam for evaporation is sourced from auxiliary heating units using conventional energy. Incorporating an LFR solar 
field-based CSP plant can reduce reliance on conventional energy. Table 9 presents calculated parameters for the MEEs with the 
LFR solar field. The heat obtained from the LFR field for the base (b-) and hybrid (h-) MEE models is 4730.7 kW and 2919.4 kW, 
respectively. Two reduced apertures effective DNI cases are considered to assess auxiliary heat requirements in the presence of the 
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Table 6
Obtained results of b- and h-MEE using WaOA.

Variables Unit
Evaporator Effect Numbers 
1 2 3 4 5 6 7 Output 

b-MEE Model 
𝑇 ◦C 147 110 71.647 68.852 62.996 58.983 55.383 52 
𝜆 kJ/kg 2109.5 2222.7 2329.0 2336.3 2351.4 2361.5 2370.6 2379.0 
𝐻 kJ/kg 2749.1 2689.0 2626.1 2621.8 2611.8 2605.2 2599.3 2593.7 
ℎ𝑐 kJ/kg 637.28 470.76 302.1 289.96 264.6 247.28 231.78 NA 
ℎ kJ/kg 329.1 237.14 229.99 228.65 220.9 211.54 201.33 NA 
𝐿 kg/s 4.42 5.586 6.457 8.451 10.561 12.359 13.892 NA 
𝑉 kg/s 2.24 1.166 0.871 1.994 2.11 1.798 1.533 1.719 
𝑆𝐶 kg/s 2.2400

𝑆𝐸 5.0300

h-MEE Model 
𝑇 ◦C 120 110.002 80.457 71.81 65.23 61.64 56.34 52 
𝜆 kJ/kg 2193.2 2222.7 2305.6 2328.7 2345.6 2354.8 2368.2 2379.0 
𝐻 kJ/kg 2705.3 2689.0 2640.6 2626.4 2615.5 2609.6 2600.8 2593.7 
ℎ𝑐 kJ/kg 515.4 470.77 340.49 302.8 274.27 258.75 235.9 NA 
ℎ kJ/kg 329.11 258.27 247.33 236.76 230.85 215.2 201.33 NA 
𝐿 kg/s 4.4947 5.9991 7.341 9.565 11.441 12.989 12.734 NA 
𝑉 kg/s 2.6277 1.504 1.3419 2.224 1.876 1.548 1.306 1.316 
𝑆𝐶 kg/s 1.3160

𝑆𝐸 8.4468

Table 7
Vapor extracted from different FTs and feed sections.

Model Flash ranks CFTR PFT CFT1 CFT2 CFT3 CFT4 CFT5 CFT6 CFT7 FFT 
b-MEE Amount of vapor exit 

(kg/h)
571.13 368.6 304.81 32.95 145.01 104.69 277.92 384.02 420.88 323.18 

h-MEE 203.63 350.11 140.18 42.43 187.92 155.48 319.12 408.78 434.45 323.18 
Fed to effects LFR 4th 4th 5th 6th 4th 5th 6th 7th 7th 

Fig. 14. Effect of split fraction variation on SE. 

Table 8
Additive vapors and SE calculation due to incorporation of FTs for the proposed MEE.

Model Parameters
Extracted vapor added to respective effects 
1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ 6𝑡ℎ 7𝑡ℎ

b-MEE

Vapor added (kg/h) 0 0 778.1 310.87 596.7 744.06 0 
Exit vapor (kg/h) 4197.6 3135.6 7178.4 7596 6472.8 5518.8 6188.4 
Total vapor(kg/h) 4197.6 4140 7956.5 7906.87 7069.5 6262.86 6188.4 
SE 5.297

h-MEE

Vapor added (kg/h) 0 0 645.77 361.55 596.7 757.63 0 
Exit vapor (kg/h) 5414.4 4830.8 8006.4 6753.6 5572.8 4701.6 4737.6 
Total vapor(kg/h) 5414.4 4830.8 8652.17 7115.15 6169.5 5459.23 4737.6 
SE 8.945
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Fig. 15. Energy efficiency parameter comparison for proposed MEEs without and with FTs. 

Table 9
Estimated renewables and auxiliary parameters for the proposed MEEs.

Model Parameters 𝑀𝑘 (kg/s) 𝑇𝑖𝑛 (◦C) 𝑇𝑜𝑢𝑡 (◦C)
Solar energy Auxiliary energy 
𝑄𝑀𝐸𝐸 (kW) 𝐴𝐿𝐹𝑅 (m2) 𝑞𝑑 (kW)

𝑞 (kW) 𝑄𝐴𝑢𝑥 (kW) 
(𝐼=500 W/m2) (𝐼𝑐=194 W/m2) (𝐼=500 W/m2) (𝐼𝑐=194 W/m2) 

b-MEE 
Values acquired

3.286 147 157 4730.7 17.62 268.45 248.95 50.05 343.62 3848.5 
h-MEE 1.917 133.5 157 2919.4 10.7 272.84 253.34 54.44 208.66 2336.9 
Wind energy 

𝑣 (m/s) 𝑃𝑎𝑣𝑔 (kW) 𝑄𝑀𝐸𝐸 (kW) 𝐴𝐴𝑢𝑥 (kW) 

b-MEE

Values acquired

4 (Cut-in) 1017.705 
4730.7

3712.995 
14.5 (Average) 76385.06 -
25 (Cut-out) 394899.77 -

h-MEE
4 (Cut-in) 1017.705 

2919.4
1901.695 

14.5 (Average) 76385.06 -
25 (Cut-out) 394899.77 -

LFR as demonstrated in Table 9. Results indicate as demonstrated in Table 9 that wind integration performs better in meeting heat 
demands at average wind speeds, while deviations are observed during cut-in and cut-out wind speeds. Auxiliary heat sources are 
required for both b- and h-MEEs at cut-in wind speeds, whereas wind energy generation exceeds demand at average and cut-out wind 
speeds, offering surplus energy for utilization.

7.2. Comparative analysis with existing works

The efficacy of our proposal hinges on a thorough comparative analysis of diverse MEE models documented in prior literature. This 
comparative scrutiny specifically centers on MEE configurations employing seven effects. Table 10 states the comparative analysis.

7.3. Implementation of proposed approach

The practical implementation of integrating LFR and wind energy systems with MEE involves careful planning to accommodate 
site-specific resource availability, equipment installation, and system integration. Operational benefits include enhanced energy ef-
ficiency and reliability by combining solar and wind energy, which reduces reliance on conventional fuels and lowers operational 
costs. Although initial capital investment is significant, the long-term cost savings from reduced energy consumption and poten-
tial government incentives make the integration economically advantageous. Environmentally, this approach significantly reduces 
greenhouse gas emissions and supports sustainability goals by utilizing clean, renewable energy sources. A detailed case study or 
scenario analysis, such as one focused on an industrial facility in Jodhpur, India, would provide practical insights into the system’s 
effectiveness, highlighting real-world applications, cost implications, and environmental impacts.
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Table 10

Comparative analysis of proposed models with previous literature.

Ref. Flow sequence Interested ESSs Solving technique
Best energy efficiency values 
SC (kg/h) SE 

[15]
Backward

Steam split, FTs, vapor bleeding Generalized cascade algorithm
8776 5 

Mixed 8881.2 4.94 
[64] Backward Steam split, FTs, vapor bleeding Modified temperature path 7895 5.56 
[29] Backward Steam-, Feed-split, Feed 

preheater
Interior Point Method 7092 6.49 

[30] Backward Steam-, Feed-split, Feed 
preheater, FTs

Genetic Algorithm, Differential Evolution, 
Particle Swarm Optimization

5945.4 8.65 

[31] Backward Steam-, Feed-split, Feed 
preheater

Water Cycle Algorithm 6908.4 7.09 

[20] Backward Steam-, Feed-split, TVC, Feed 
preheater, FTs

BARON, PSO, DE, ABCA, TLBO, GWO, 
Artificial Electric Field Algorithm

5608.8 8.88 

[19] Backward Steam-, Feed-split, TVC, Feed 
preheater, FTs

CONstraint OPTimization, Sine Cosine 
Algorithm

6008.4 8.45 

Present work Backward
b-MEE

Walrus Optimization Algorithm (WaOA)
7704 5.28 

Steam-, Feed-split, TVC, Feed 
preheater, FTs (h-MEE)

4705.2 8.84 

7.4. Practical implications of linear Fresnel reflectors

The integration of LFR and wind energy significantly enhances system stability by diversifying energy sources, which mitigates 
the risks associated with dependency on a single energy type. The combination of solar and wind energy provides a more reliable and 
consistent energy supply for MEE operations. Addressing operational challenges, the system requires advanced control mechanisms 
to manage the variability of solar and wind resources effectively. Incorporating energy storage solutions can further smooth out these 
fluctuations. Additionally, this hybrid approach bolsters resilience against energy supply disruptions and price volatility by reducing 
reliance on conventional energy sources. To sump up, LFR and wind energy with MEE systems can provide benefits in terms of 
stability, operational efficiency, and overall system robustness.

8. Conclusion

The integration of energy-saving schemes (ESSs) with the Walrus optimization algorithm (WaOA) demonstrates significant im-
provements in the energy efficiency of multiple effect evaporators (MEEs). Through the analysis, it was found that incorporating 
ESSs led to a remarkable 67.93% increase in the steam economy under nonlinear constraints. Furthermore, including Flash tanks 
resulted in an additional 5.89% enhancement in the steam economy compared to other ESSs integrated with MEEs, culminating in 
an overall energy improvement potential of approximately 73%. Comparing findings with existing literature, the results demonstrate 
competitive performance. Additionally, the hybridization of solar and wind energy sources ensures uninterrupted operation of the 
MEE despite fluctuations in sunlight availability and wind speeds. This hybrid approach effectively mitigates the heat demand of 
the MEE, reducing conventional energy utilization by a significant margin of 62% (with linear Fresnel reflectors) and 34% (with 
wind energy). It is found that the results obtained from the system model are in accordance with the literature. The highlights of the 
conclusions related to system simulation can be summarized as

• Inclusion of different ESSs presents an effective impact on the design variables especially on the energy efficiency.
• The renewable energy potential for the proposed MEE is very high and hence it can also be helpful for other energy-intensive 

units or we can also specify the size of the employed renewables.

On account of the fact that the integration of renewables reduces the conventional energy load in various industrial sectors, its 
use needs to be highly pumped and a forced implementation may be suggested by the government. Given the substantial reduction in 
conventional energy consumption achieved through renewable integration, there is a compelling case for promoting and mandating 
the adoption of renewable energy solutions across various industrial sectors. Moreover, investigating the incorporation of other 
renewable energy sources, such as biomass or geothermal energy, could provide further reductions in conventional energy reliance 
and improve system efficiency. Scale-up studies would be beneficial to evaluate the practical implementation of these models in 
various industrial contexts and for different sizes of MEE systems. Additionally, a detailed economic analysis is necessary to understand 
the cost-effectiveness of integrating ESSs and renewable energy solutions in industrial settings. Lastly, assessing the environmental 
impact, including potential reductions in greenhouse gas emissions, would offer valuable insights into the broader sustainability 
benefits of these integrations. Addressing these aspects in future research will contribute to advancing more efficient, cost-effective, 
and environmentally sustainable industrial processes.

9. Acronyms

Table 11 shows the list of the acronyms used in this study.
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Table 11

Acronyms and their explanation.

Acronym Full form Acronym Full form

𝐴 Heat transfer area (m2) 𝑎 Ambient
𝑎𝑣𝑔 Average 𝐴𝑟 Rotor area of wind turbine
𝑐 Scale parameter of wind speed 𝐶𝑂 Condensate out
𝑐𝑜𝑛𝑑 Condensate 𝐶𝑝 Specific heat
𝐷 Demand 𝐶𝑅 Compression Ratio
𝑓 Feed 𝐷𝑁𝐼 Direct normal irradiance (W/m2)
𝑖 Number of variables 𝐸𝑅 Expansion Ratio
𝑖𝑛 Input 𝐹 Objective Function
𝑗 Outlet 𝑔 Equality constraint
𝑙 Loss ℎ Enthalpy (kJ/h)
𝐿 Liquor 𝐻 Vapor enthalpy (kJ/h)
𝑚 Medium 𝐼 Radiation (W/m2)
𝑜𝑢𝑡 Output 𝐼𝐴𝑀 Incidence angle modifier
𝑟 Rise 𝑘 Feed-split fraction
𝑣 Vapor 𝐿 Feed flow rate (kg/s)
𝑠 Suction 𝑚 Vapor fraction is sent to the 7th stage for preheater
𝑠𝑠 Steam Separator 𝑀 The mass flow rate of water/steam (kg/s)
𝑛 Number of stages 𝑁 Number of populations
𝑃 Power 𝐵𝐿 Black Liquor
𝑄 Heat (kW) 𝐶𝐷𝐹 Cumulative distribution function
𝑇 Temperature (◦C) 𝐶𝐹𝑉 Condensate Flash Valve
𝑈 Overall heat transfer coefficient (kW/m2◦C) 𝐶𝐹𝑇 Condensate Flash Tank
𝑣𝑠 Wind speed 𝐶𝑆𝑃 Concentrating Solar Power
𝑉 Vapor flow rate (kg/s) 𝐸𝑆𝑆 Energy Saving Scheme
𝑥 Concentration of black liquor 𝐹𝐹𝑇 Feed Flash Tank
𝑦 Steam-split fraction 𝐹𝑇 Flash Tank
𝑧 Decision variables 𝐿𝐹𝑅 Linear Fresnel Reflector
𝑀𝐸𝐸 Multiple Effect Evaporator 𝛼 Shape parameter of solar irradiance
𝑀𝐿𝑇 Maximum Likelihood Technique 𝛽 Scale parameter of solar irradiance
𝑀𝑀𝐿𝑇 Modified Maximum Likelihood Technique 𝑃𝐷𝐹 Probability Density Function
≓ Latent heat of vaporization (kJ/kg) 𝑃𝐹𝑇 Product Flash Tank
𝜑 Shape parameter of wind speed 𝑆𝐶 Steam Consumption (kg/s)
𝜌 Density 𝑆𝐸 Steam Economy
𝑇𝑉 𝐶 Thermo-Vapor Compressor 𝑊 𝑎𝑂𝐴 Walrus Optimization Algorithm

CRediT authorship contribution statement

Smitarani Pati: Writing – original draft, Data curation, Conceptualization. Nandan Kumar Navin: Writing – original draft, For-
mal analysis, Conceptualization. Om Prakash Verma: Methodology, Formal analysis, Data curation. Dwesh Kumar Singh: Software, 
Project administration, Methodology. Tarun Kumar Sharma: Visualization, Software, Resources. Saurabh Agarwal: Writing – re-
view & editing, Validation, Formal analysis. Santos Gracia Villar: Visualization, Investigation, Funding acquisition. Luis Alonso 
Dzul Lopez: Project administration, Investigation, Data curation. Imran Ashraf: Writing – review & editing, Validation, Supervision.

Funding

This research is funded by the European University of Atlantic.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

The data can be requested from the corresponding authors.

References

[1] O.P. Verma, G. Manik, S.K. Sethi, A comprehensive review of renewable energy source on energy optimization of black liquor in mse using steady and dynamic 
state modeling, simulation and control, Renew. Sustain. Energy Rev. 100 (2019) 90–109.

[2] I. Bioenergy, Summary and conclusions from the iea bioenergy exco54 workshop, black liquor gasification, https://www.ieabioenergy.com/wp-content/uploads/
2013/10/Black-Liquor-Gasification-summary-and-conclusions1.pdf, 2007.

[3] R. Aguado, D. Vera, F. Jurado, G. Beltrán, An integrated gasification plant for electric power generation from wet biomass: toward a sustainable production in 
the olive oil industry, Biomass Convers. Biorefin. (2022) 1–20.

[4] S. Sapmaz, İ. Kılıçaslan, Study on increasing the energy efficiency of a dryer used for the conversion of sewage sludge to biofuel, Biomass Convers. Biorefin. 
13 (3) (2023) 2459–2468.

Heliyon 11 (2025) e41653 

20 

http://refhub.elsevier.com/S2405-8440(25)00033-7/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(25)00033-7/bibC4CA4238A0B923820DCC509A6F75849Bs1
https://www.ieabioenergy.com/wp-content/uploads/2013/10/Black-Liquor-Gasification-summary-and-conclusions1.pdf
https://www.ieabioenergy.com/wp-content/uploads/2013/10/Black-Liquor-Gasification-summary-and-conclusions1.pdf
http://refhub.elsevier.com/S2405-8440(25)00033-7/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(25)00033-7/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(25)00033-7/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(25)00033-7/bibE4DA3B7FBBCE2345D7772B0674A318D5s1


S. Pati, N.K. Navin, O.P. Verma et al. 

[5] A. Ray, N. Rao, M. Bansal, B. Mohanty, Design data and correlations of waste liquor/black liquor from pulp mills, 1992.
[6] R. Bhargava, S. Khanam, B. Mohanty, A. Ray, Selection of optimal feed flow sequence for a multiple effect evaporator system, Comput. Chem. Eng. 32 (10) 

(2008) 2203–2216.
[7] D. Kaya, H.I. Sarac, Mathematical modeling of multiple-effect evaporators and energy economy, Energy 32 (8) (2007) 1536–1542.
[8] P. Sharan, S. Bandyopadhyay, Energy optimization in parallel/cross feed multiple-effect evaporator based desalination system, Energy 111 (2016) 756–767.
[9] P. Sharan, S. Bandyopadhyay, Solar assisted multiple-effect evaporator, J. Clean. Prod. 142 (2017) 2340–2351.

[10] M. Sharaf, A. Nafey, L. García-Rodríguez, Thermo-economic analysis of solar thermal power cycles assisted med-vc (multi effect distillation-vapor compression) 
desalination processes, Energy 36 (5) (2011) 2753–2764.

[11] H.T. El-Dessouky, H. Ettouney, Multiple-effect evaporation desalination systems. Thermal analysis, Desalination 125 (1–3) (1999) 259–276.
[12] S. Khanam, B. Mohanty, Placement of condensate flash tanks in multiple effect evaporator system, Desalination 262 (1–3) (2010) 64–71.
[13] G. Jyoti, S. Khanam, Simulation of heat integrated multiple effect evaporator system, Int. J. Therm. Sci. 76 (2014) 110–117.
[14] O.P. Verma, T.H. Mohammed, S. Mangal, G. Manik, Minimization of energy consumption in multi-stage evaporator system of kraft recovery process using 

interior-point method, Energy 129 (2017) 148–157.
[15] R. Bhargava, S. Khanam, B. Mohanty, A. Ray, Simulation of flat falling film evaporator system for concentration of black liquor, Comput. Chem. Eng. 32 (12) 

(2008) 3213–3223.
[16] S. Khanam, B. Mohanty, Energy reduction schemes for multiple effect evaporator systems, Appl. Energy 87 (4) (2010) 1102–1111.
[17] S. Kalogirou, Economic analysis of a solar assisted desalination system, Renew. Energy 12 (4) (1997) 351–367.
[18] İ.H. Yılmaz, M.S. Söylemez, Design and computer simulation on multi-effect evaporation seawater desalination system using hybrid renewable energy sources 

in Turkey, Desalination 291 (2012) 23–40.
[19] S. Pati, O.P. Verma, Integration of solar field with multiple stage evaporator to sustain eco-energy in pulp and paper plant, J. Clean. Prod. 333 (2022) 130148.
[20] S. Pati, O.P. Verma, Energy integration of solar assisted multiple stage evaporator and optimum parameter selection, Energy 239 (2022) 122162.
[21] R. Ragasudha, P. Karthickumar, S. Murali, R. Pradeep, K. Rathnakumar, C. Mercy Amrita, D. Babiyola, N. Manimehalai, Design and performance analysis of a 

pv-powered solar-infrared hybrid dryer for anchovy fish drying, Biomass Convers. Biorefin. (2023) 1–12.
[22] P. Palenzuela, G. Zaragoza, D.C. Alarcón-Padilla, E. Guillén, M. Ibarra, J. Blanco, Assessment of different configurations for combined parabolic-trough (pt) solar 

power and desalination plants in arid regions, Energy 36 (8) (2011) 4950–4958.
[23] O.S. Zain, S. Kumar, Simulation of a multiple effect evaporator for concentrating caustic soda solution-computational aspects, J. Chem. Eng. Jpn. 29 (5) (1996) 

889–893.
[24] C. Diel, R. Canevesi, D. Zempulski, J. Awadallak, C. Borba, F. Palú, E.A. Silva, Optimization of multiple-effect evaporation in the pulp and paper industry using 

response surface methodology, Appl. Therm. Eng. 95 (2016) 18–23.
[25] C. Ribeiro Jr, M.C. Andrade, A heat transfer model for the steady-state simulation of climbing-falling-film plate evaporators, J. Food Eng. 54 (4) (2002) 309–320.
[26] M. Higa, A. Freitas, A. Bannwart, R. Zemp, Thermal integration of multiple effect evaporator in sugar plant, Appl. Therm. Eng. 29 (2–3) (2009) 515–522.
[27] C.-I. Tuan, Y.-L. Yeh, L.-F. Hsu, T.-C. Chen, The pinch technology combined with a heat pump applied in a three-effect evaporator and energy-saving performance 

assessment, Korean J. Chem. Eng. 29 (2012) 341–348.
[28] P. Sharan, S. Bandyopadhyay, Integration of multiple effect evaporators with background process, Chem. Eng. Trans. 45 (2015) 1591–1596.
[29] O.P. Verma, G. Manik, V.K. Jain, D.K. Jain, H. Wang, et al., Minimization of energy consumption in multiple stage evaporator using genetic algorithm, Sustain. 

Comput. Inf. Syst. 20 (2018) 130–140.
[30] S. Pati, D. Yadav, O.P. Verma, Synergetic fusion of energy optimization and waste heat reutilization using nature-inspired algorithms: a case study of kraft 

recovery process, Neural Comput. Appl. 33 (2021) 10751–10770.
[31] D. Yadav, O.P. Verma, Energy optimization of multiple stage evaporator system using water cycle algorithm, Heliyon 6 (7) (2020).
[32] S. Pati, O.P. Verma, Optimization of energy efficiency of multiple-stage evaporator using abc algorithm, in: Advances in Mechanical Engineering: Select Proceed-

ings of CAMSE 2020, Springer, 2021, pp. 521–536.
[33] M. Eteiba, S. Barakat, M. Samy, W.I. Wahba, Optimization of an off-grid pv/biomass hybrid system with different battery technologies, Sustain. Cities Soc. 40 

(2018) 713–727.
[34] S. Pati, T.K. Sharma, K.K. Goyal, O.P. Verma, Renewable integration and energy reduction in multiple stage evaporator, Mater. Today Proc. 80 (2023) 24–31.
[35] S. Pati, O.P. Verma, Performance optimization of multiple stage evaporator using interior-point method and metaheuristic approaches in environment of real-time 

plant complexities, Int. J. Green Energy 18 (9) (2021) 933–950.
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