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Abstract 

Virtual histopathology is an emerging technology in medical imaging that utilizes advanced computational methods 
to analyze tissue images for more precise disease diagnosis. Traditionally, histopathology relies on manual techniques 
and expertise, often resulting in time-consuming processes and variability in diagnoses. Virtual histopathology offers 
a more consistent, and automated approach, employing techniques like machine learning, deep learning, and image 
processing to simulate staining and enhance tissue analysis. This review explores the strengths, limitations, and clinical 
applications of these methods, highlighting recent advancements in virtual histopathological approaches. In addition, 
important areas are identified for future research to improve diagnostic accuracy and efficiency in clinical settings.

Keywords Dual contrastive learning, Image-to-image translation, Virtual histopathology, Medical image processing, 
Computational pathology

Introduction
Light microscopy applied to biopsies is one of the most 
common diagnostic tools of pathology since pathomor-
phological analysis of biopsies or resection margins 

remains one of the fundamental approaches to under-
standing disease patterns and the development of an 
effective treatment plan. Originally, this process entailed 
the use of dyes on tissues to make structures sharper and 
more easily distinguishable under the lens of a micro-
scope. However, the conventional histopathology tech-
niques have disadvantages; time time-consuming, involve 
human errors; and are dependent on the number of 
qualified pathologists [1]. Traditional histopathological 
analysis is, however, restricted by these challenges, and 
in the recent past, virtual histopathology has received 
a boost through the updates in digital image process-
ing techniques, and artificial intelligence [2]. To this 
end, this introduction seeks to look at the antecedents, 
approaches, and possibilities that define modern virtual 
histopathology in medicine today.

Challenges of virtual histopathology
Even though virtual histopathology has matured into a 
very potent technique that has the potential to disrupt 
the field of medical imaging and diagnostics, many issues 
need to be resolved [3, 4]. Solving these problems will be 
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essential for achieving the implementation of virtual his-
topathology in further practice.

Data standardization and quality control
The application of virtual histopathology has been con-
sidered to encounter one of the most significant draw-
backs due to the absence of common datasets [5]. 
Histopathological images are extremely diverse concern-
ing staining methods, the techniques used to acquire the 
images, and the preparation of the tissue samples. This 
variability can lead to over/under fitting of the over-
learned models thus reducing there generalizability. 
Careful consideration of the issue and identification of 
important parameters for image acquisition and preproc-
essing enable the standardization of procedures followed 
in each dataset, thus ensuring reliability [6].

Annotation and labeling of training data
There is a need to have large sets of annotated data to 
train reliable machine learning models. However, the 
process of annotating histopathological images is quite a 
time-consuming task and needs prior specialized knowl-
edge of the field. This impedes the formulation of models 
that may in return, be useless due to insufficient datasets 
that are labeled for this specific purpose [7, 8]. This is a 
major concern as the process of manually labeling a large 
dataset can be tremendously time-consuming and costly 
Crowdsourcing, semi-supervised learning [9], and active 
learning techniques can help make this more manageable 
as they enable the creation of high-quality labeling more 
efficiently [10, 11].

Interpretability and transparency of AI models
Clinically, the so-called ’hard-to-interpret’ of many deep 
learning models becomes another difficult problem [12]. 
Clinicians have to implicitly trust the decision-making 
of Pathologists and thus, the same is required about the 
AI models. AI models that allow clinicians to understand 
the mechanism by which they arrived at the diagnosis are 
necessary for assuring medical professionals’ trust and 
achieving viable application of virtual histopathology in 
practice [13, 14].

Importance of the review
Advancing histopathological diagnostics
It is thus pertinent to revisit the methods of virtual his-
topathology to improve diagnostic processes in histo-
pathology. This research recognizes that conventional 
staining techniques while efficient, come with delays and 
hence result in shortening of valuable time when diag-
nosing patients [15–17]. Thus, virtual staining, especially 
in such procedures as dual contrastive learning, has a 
great enhancement in this regard because it simplifies the 

diagnostic process. It can be used to improve diagnostic 
outcomes in terms of time taken to arrive at the right ver-
dict thus adding to the efficiency of clinicians’ activities.

Improving diagnostic specificity and consistency
The review is tunned towards the direction of how vir-
tual histopathology can increase the chance of a more 
specific and accurate diagnosis. Due to the application of 
such learning techniques, even if the images are virtually 
stained [17], it is possible to retain high-quality images 
that would not hinder or diminish diagnostic character-
istics [11]. This leads to reproducibility and consistency 
in the diagnosis which is a drawback observed with the 
manual staining procedure [18].

Reducing resource dependency
Virtual histopathology methods can alleviate the highly 
dependent use of the physical or tangible resources com-
monly used in staining processes. Traditional approaches 
consist of the use of many materials, equipment, and pro-
fessionals [19]. Virtual staining, in contrast, uses digital 
means to increase the contrast of the same images and 
does not require actual dyes, which makes Virtual stain-
ing most beneficial where the physical reagents are lack-
ing most of the time. This can improve the availability of 
quality diagnostic equipment in areas that lack adequate 
medical care hence eradicating inequalities in health care 
provision [20].

Preserving precious tissue samples
The classical staining techniques are nondestructive of 
the tissue samples and may be a drawback when working 
with scarce or expensive tissues [21]. Secondly, VHP is a 
non-destructive technique, that can be done once or in 
the future multiple times on the same sample. The main-
tenance of tissue integrity is significant for the Maximal 
use of samples especially in research and Clinics where 
samples are scarce.

Supporting research and development
A comprehensive review of virtual histopathology [5] 
methods provides critical insights into the current tech-
nological landscape, revealing limitations and identifying 
areas for future development. This facilitates the continu-
ous refinement of virtual staining algorithms and sup-
ports the broader adoption [22].

Objectives
Summarize current advances
Virtual histopathology aims to present a comprehen-
sive overview of the latest advancements in the field. 
Virtual staining is a new technology that can be used by 
researchers and practitioners to improve histopathology.
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Evaluate methodologies
It’s important to analyze the different approaches used 
in virtual histopathology. Identify the crucial diagnos-
tic methods that have achieved high diagnostic accu-
racy and pinpoint the areas that need to be improved. 
The review seeks to identify the advantages and dis-
advantages of these methods by identifying areas for 
improvement through research and practical use.

Assess diagnostic accuracy
A critical target is to assess the diagnostic precision of 
virtual histopathology [5] techniques. The assessment 
involves evaluating the degree of degree of preservation 
of tissue samples for diagnosis in comparison to con-
ventional staining techniques. A review of virtual stain-
ing techniques to determine their suitability in clinical 
settings to maintain visual and structural coherence by 
examining their effectiveness.

Analyze computational efficiency
The review also intends to evaluate the computational 
complexity of virtual histopathology models [23]. I want 
to see if these models can be used in clinical templates 
and how they perform in terms of resource utilization 
and processing speed. Virtual staining technologies are 
a very efficient and computationally demanding diag-
nostic tool.

Explore clinical applications
Virtual histopathology [5] is also a focus in clinical 
applications. I want to see how these technologies can 
improve diagnostic procedures, increase the precision 
of diagnoses, and integrate with digital pathology sys-
tems. Aims to show how virtual histopathology can 
practically improve patient outcomes and streamline 
clinical workflows.

Identification of challenges and limitations
Future research should be based on identifying the 
limitations and difficulties of virtual histopathology 
techniques. The analysis is designed to identify specific 
shortcomings and suggest ways to address them. The 
review can address these issues and assist in the refine-
ment and enhancement of virtual staining algorithms, 
leading to more effective and reliable histopathological 
diagnosis.

Structure of review paper
The first section after the Introduction is about the 
methodology which is described in Methodology sec-
tion. The Literature Review section reviews, which 
Reviews the basic studies published in particular, those 

relevant to the past ten years of dual contrastive learn-
ing [24]. Analysis to Compare these frameworks in 
depth is used to study their performance stability usa-
bility, and other metrics. Followed by a conclusion and 
recommendation. Summarising the main things from 
their review giving practical tips for developers and 
organizations. All the references in this paper will be 
comprehensive enough. mentioned in the paper and at 
the end.

Methodology
Search strategy
A systematic literature review of existing works on virtual 
histopathology is carried out to ensure a thorough under-
standing of the advancements and challenges faced in this 
important field. In the first step, the scope of the review is 
defined which leads to the selection of appropriate online 
repositories/databases for searching relevant articles. For 
this purpose, appropriate keywords are selected using the 
common words used in the existing works on virtual his-
topathology. These articles were later filtered using the 
inclusion and exclusion criteria.

Expanded search strategy
To build a thorough understanding of virtual histopathol-
ogy, a layered search strategy was employed, including 
broader assessment criteria for study relevance, recent 
developments, and interdisciplinary impact. The strategy 
details are outlined below: 

 i. Iterative Development of Keywords: The search 
began with broad keywords that were then refined 
to target studies across related fields. This involved 
testing terms like “digital slide analysis”, “computa-
tional pathology”, and “diagnostic imaging”, allow-
ing the identification of relevant studies from adja-
cent fields like image processing and computational 
diagnostics. This iterative approach helped capture 
unique terminologies within each field, ensuring 
comprehensive coverage of current and emerging 
terms in virtual histopathology.

 ii. Evaluating Quality and Influence of Studies: Each 
study was assessed for quality based on its source, 
including high-impact journals and peer-reviewed 
conference proceedings. Citations were also used 
as an indicator of each study’s impact on the field, 
helping to prioritize highly-referenced work. This 
selection emphasized studies with robust, validated 
methodologies and reliable metrics over purely 
theoretical research, thus aligning the review with 
evidence-backed research and practical insights.

 iii. Cross-Referencing with Existing Reviews: To cap-
ture foundational work and identify new directions, 
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recent reviews in computational pathology and 
digital medical imaging were analyzed. By cross-
referencing frequently cited or highly relevant arti-
cles within these reviews, key studies were included 
that contributed significantly to advancements in 
virtual histopathology. These reviews also high-
lighted areas needing further exploration, guiding 
the selection of research that addressed these gaps. 
This approach ensured both a well-rounded rep-
resentation of established studies and coverage of 
recent innovations.

 iv. Trend Identification in Virtual Histopathology: 
Analyzing research trends over the past decade, 
the search strategy aimed to capture high-growth 
areas, such as machine learning for diagnostic 
precision and virtual staining methods. Studies 
clustered around significant advancements were 
included to ensure the review covered both foun-
dational and cutting-edge work. This method also 
allowed for the identification of recent methodolo-
gies, like contrastive learning and real-time imag-
ing techniques, which are shaping current research 
and practical applications in digital pathology.

 v. Inclusion of Diverse and Regional Contributions: 
To ensure global relevance, the strategy included 
research contributions from various regions and 
emerging research hubs. This expanded the range 
of sources to include studies capturing different 
datasets, healthcare practices, and methodological 
approaches worldwide. Regional studies brought 
unique perspectives, particularly in clinical applica-
tions, ensuring the review’s findings were relevant 
across different healthcare environments.

Scope definition
Virtual histopathology techniques were the primary 
focus, with special emphasis on advanced image process-
ing and machine learning approaches employed in this 
field. The objective was to analyze how staining can be 
made virtual and how it can be used to replicate tradi-
tional histopathological findings.

Database selection
The following databases were [25] chosen to cover a wide 
range of studies.

• IEEE Xplore: It is selected for its extensive range of 
engineering and technology publications.

• Pubmed: This repository is a biomedical journal that 
provides access to biomedical literature and research 
on medical imaging. It contains a large collection of 
articles published on virtual histopathology research.

• Google Scholar: Is expanding its collection to 
include more diverse academic articles, including 
those from interdisciplinary fields.

Search string
The decision on the search string influences the scope of 
the literature review conducted in the course of the sys-
tematic review. We used the following string to search for 
relevant articles:

“((Histopathology) OR (virtual histopathology)) AND 
((deep learning) OR (machine learning) OR (medical 
imaging) OR (image analysis) OR (image processing) OR 
(virtual staining) OR (image-to-image translation) OR 
(contrastive learning))”

Besides the above-given search string, these keywords 
were used to search for articles that may be of interest to 
virtual histopathology, especially in the areas of enhance-
ment in image processing and machine learning for 
medical image analysis. The articles had to be published 
between 2013 and 2023 while giving preference to peer-
reviewed articles and conference papers focusing on the 
investigation of ML and DL in Virtual Histopathology.

“Virtual histopathology”, “histopathological deep learn-
ing”, “machine learning”, “deep learning”, “virtual stain-
ing”, “image-to-image translation”, and “dual contrastive 
learning”

Inclusion and exclusion criteria
The included studies were subjected to special scrutiny to 
confirm their quality and relevance. The following crite-
ria are used to select relevant studies:

• Research published between 2013 and 2023,
• Conference papers and peer-reviewed studies are 

selected,
• Studies involving machine learning and deep learning 

for virtual histopathology investigations are selected 
only,

• Case studies that offered both quantitative and quali-
tative analyses of virtual staining techniques are also 
considered [26].

Besides using the inclusion criteria for selecting appro-
priate articles, exclusion criteria are also used to exclude 
irrelevant or redundant studies:

• Excluding those articles which are not available in 
English,

• Investigations using conventional histopathology 
without any computer-generated data are excluded,

• Studies that do not offer enough methodological 
details or evaluation metrics are also excluded,
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Selection criteria
This research selected articles based on practices 
observed in highly cited review articles, using specific 
criteria to guide its selection process. Table 1 shows the 
article selection criteria.

Figure 1 shows the number of articles at each stage car-
ried out to select appropriate articles concerning virtual 
histopathology.

Data extraction
To extract the main aspects the following standard 
approach was used: The extraction process involved sev-
eral steps:

• Abstract Evaluation: Where the titles and abstracts 
of the papers obtained through the searching process 
above were first screened step to identify possibly rel-
evant studies.

• Journal Article: So that all the papers selected can be 
put through a rigorous process to determine papers 

that contain only materials that are related and fall 
under the general umbrella of initiatives.

• Interconnection of data: To retrieve all of the data 
regarding a particular subject in everyone in each 
related investigation of the data, it is displayed in the 
form of tabular form.

• Key aspects: It is on this premise that this synthesis 
becomes useful to plot out many issues defining the 
area of digital innovation across these disciplines.

Core analysis
Technical approach
The central point in virtual histopathology is about 
using cutting-edge machine learning techniques in Deep 
Learning [27] and Generative Adversarial Networks [14] 
that have their key role in translating images of unstained 
tissue into virtually stained equivalents. In this respect, 
the model presented in the reviewed document, Dual 
Contrastive Learning Generative Adversarial Network 
[28], is such a model after considering the integration of 

Table 1 Criteria for article selection

Criteria Details

Publication year Those studies which are published between 2013 and 2023

Relevance Studies addressing neural stains, stain invariant, deep learning, cyclic 
attention, fabric GAN, and other related aspects

Type of study Empirical studies (journal and conference articles) offering significant 
insights into the framework evaluation

Citations Special preference is given to articles with a high number of citations

Fig. 1 Articles selection through various stages of review
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dual generators with their corresponding discriminators. 
This method uses contrastive learning to make the virtu-
ally stained images as similar as possible to traditionally 
stained images [26].

Data and preprocessing
Data forms an important part in the training of most 
virtual [29] histopathology models. In this, models will 
usually require paired datasets of unstained and stained 
images of the same tissue samples. Other important steps 
include image normalization, resizing, and augmenta-
tion for the proper functioning of the learning model. All 
these preprocessing methods will standardize the input 
images to very minimal variability, therefore improving 
model performance and more robustness to a single set 
of test images [30].

Dataset and preprocessing issues in virtual histopathology
In virtual histopathology, the development and success 
of models using machine learning and deep learning 
depend mostly on the availability and quality of datasets. 
High-quality annotated datasets are needed for training 
robust models with a very accurate tissue classification, 
disease detection, or prediction. However, this is the 
greatest challenge: the unavailability of large, well-anno-
tated datasets in the area. Images in histopathology are 
inherently complex and require expert annotation, which 
is time-consuming and expensive. In addition, variability 
in staining protocols, imaging equipment, and sample 
preparation methods is high, making the construction of 
standardized datasets quite challenging [26].

The other critical factor is the heterogeneity problem 
with the data itself. Histopathological images look very 
different due to differences in tissue processing and stain-
ing intensity, followed by differences in imaging condi-
tions. These variations may further feed biases into the 
training data and result in models that don’t generalize 
well on new, unseen data. For this, rigorous preprocess-
ing steps have to be undertaken, including normaliza-
tion of staining, aligning the images, and removing any 
artifacts within them. All these preprocessing steps by 
themselves are challenging and probably may change the 
biological information in these images, causing the loss of 
very important details for diagnosis.

Artificially increasing the dataset size using data aug-
mentation techniques like rotation, flipping, and scaling 
is very common to improve model robustness. Some of 
these methods, however, at times introduce irrelevance in 
the real-world data, leading to very good results on aug-
mented data but poor generalization on real clinical data. 
Therefore, it is key to the success of virtual histopathol-
ogy that standardized preprocessing pipelines for such 
data are developed, and it is related to its improvement.

GAN challenges related to algorithm complexity in virtual 
histopathology
The reason GANs have gained great attention is because 
of the potential capability of generating high-resolution 
synthesized images that most nearly match real histo-
pathological slides. Such synthetic images can be used 
for dataset augmentation, balancing data, or even virtual 
staining, whereby an unstained tissue would be digitally 
stained through a GAN. While GANs offer excellent 
potential, they also raise many challenges about algo-
rithm complexity and reliability [26].

One of the major challenges to applying GANs in vir-
tual histopathology is model complexity. Briefly, GANs 
consist of two neural networks, a generator and a dis-
criminator, trained together in an adversarial process. 
The very fact that GANs contain dual networks sets them 
apart from other deep learning algorithms and makes 
them hard to train; it requires a balancing act so that nei-
ther network oversees the other in the training phase. 
Should the discriminator get too powerful, generating 
realistic images will then be hard for the generator, giving 
way to issues such as mode collapse. Here, the generator 
creates only limited types of images. On the other hand, 
when it is the opposite, that is if the generator is rather 
very strong against the discriminator, then it will gener-
ate unreal images that might at the same time fool the 
discriminator and, hence, reduce the quality of the syn-
thetic data.

Another problem associated with GANs lies in their 
inherently unstable training process. One major issue 
with GANs is that they are notoriously hard to train 
because of vanishing gradients, convergence problems, 
and sensitivity to hyperparameters. These make the 
reproducibility of results difficult to attain, mostly while 
trying to create results that include high-fidelity histo-
pathological images, which are virtually indistinguishable 
from real slides. Moreover, GAN training is computa-
tionally extremely intensive, making this model very hard 
to use in routine clinical practice.

These challenges form a great barrier to the wide appli-
cation of GAN-based methods in virtual histopathology, 
in which accuracy and reliability are of concern. Several 
research studies are underway to develop more stable and 
efficient GAN architectures, such as Wasserstein GANs 
and CycleGANs, to sort out some of these problems. 
However, until these issues are fully addressed, the use of 
GANs in clinical settings is likely to remain limited.

Algorithm computational complexity
Advanced models, especially those that correspond to 
deep learning architectures, are computationally very 
expensive in virtual histopathology. Convolutional Neu-
ral Networks and generative adversarial networks have 
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a high computational demand not only for training but 
also for inference [31]. This is due to the high volume of 
histopathological images processed at high resolution, 
which may be in the millions of pixels with multiple color 
channels.

Training these models typically requires the use of 
Graphics Processing Units (GPUs) or even better hard-
ware like Tensor Processing Units (TPUs). These are high 
financial cost resources that may not be readily avail-
able in every clinical or research setting, more so in low-
resource settings. Moreover, the training process for deep 
models is time-consuming, sometimes running into days 
or even weeks, depending on the size of a dataset and the 
model’s complexity. This makes iterative model devel-
opment and experimentation slow, reducing the pace at 
which progress is made within the field.

Moreover, even after training, the inference is compu-
tationally heavy in such models, especially considering 
WSIs in histopathology. In this context, WSIs are typi-
cally gigapixel images that need to be processed at high 
resolutions to avoid missing small-pathological features 
like an individual cancer cell. Additional challenges arise 
for latency and resource management when running such 
models in real time (e.g., during surgery or in an auto-
mated diagnostic workflow).

On the other hand, such computational complexity can 
be reduced using techniques like model pruning, quan-
tization, and a new architecture of neural networks. All 
of these methods strive to reduce the size and computa-
tion of models without loss of performance as much as 
possible. Another way this could work is through cloud 
computing, which provides on-demand access to scalable 
computational resources. However, concerns about data 
security and patient privacy should be dealt with care-
fully concerning cloud-based solutions, especially where 
sensitive medical data is concerned.

Evaluation metrics
Quantitative metrics are considered a benchmark of the 
effectiveness of virtual histopathology models. Some 
of the key metrics include SSIM [20] and PSNR, which 
quantify the fidelity of the generated images relative to 
real ones. In addition, FID and KID quantify the quality 
of generated images concerning visual realism and pres-
ervation of content [26, 32, 33].

Clinical evaluation
Clinical relevance is paramount in virtual histopathology 
[5]. Most of the studies reviewed entail evaluations done 
by expert pathologists comparing the diagnostic util-
ity between traditionally versus virtually stained images. 
These evaluations determine the extent of agreement 
between pathologists in diagnosis from virtual images 

and therefore establish the extent of applicability of the 
technology in clinical practice [26, 30, 34].

Applications and future directions
It has some very promising applications, including vir-
tual histopathology. Virtual staining might considerably 
minimize the time taken for histopathological analysis 
and increase the speed of diagnosis, by providing better 
patient care. This minimizes dependence on dangerous 
chemicals; the virtual staining removes the use of chemi-
cal reagents involved in traditional staining and thus 
assures the safety of the process for the laboratory per-
sonnel and beings that are friendly to the environment.

Telepathology and remote consultation
Virtual staining encourages telepathology, as it increases 
the sharing and diagnosis of tissue material without 
staining by experts remotely.

Standardization and archiving
This methodology provides better consistency and 
standardization of histological images; it will be of great 
improvement in the long-term digital archiving and ret-
rospective studies in medicine.

Research applications
Virtual staining can thus be applied to generate large syn-
thetic H and E image datasets for training and developing 
other AI-empowered medical imaging instruments [26, 
32].

While strengths brought to the field of virtual histo-
pathology by ML, DL, and Visual Path are unique, the 
challenges each may pose are equally distinct. In that 
sense, ML brings versatility and predictive power, while 
DL uniquely offers very high image interpretation capa-
bilities, and Visual Path enhances the quality of images 
with the potential for real time diagnoses. However, 
their successful application mandates careful attention 
to the challenges presented by operational concerns of 
data quality, computational demands, and ethical con-
siderations. There is, therefore, the need to solve these 
challenges to realize the full potential of the application 
of these technologies in improving patient care with the 
continued development of virtual histopathology [26].

Literature analysis
Virtual histopathology has now given another frontier 
in medical imaging, wherein innovative computational 
algorithms fill an incorporated function by emulating 
the vast majority of traditional histopathological analy-
sis devoid of the concomitant staining process. There is 
great interest in this approach due to its potentiality in 
workflow streamlining, reduction of chemical use, and 
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increase in diagnostic accuracy. This paper presents an 
overview of virtual histopathology that unravels both the 
technical, clinical, and practical aspects evoked from the 
literature reviewed. Recent developments in computa-
tional methods have changed the face of medical imag-
ing in terms of diagnosis and treatment. Among all these 
techniques, the ML, DL, and Visual Path techniques 
have emerged to be instrumental in improving the effec-
tiveness of medical diagnoses. In this review, it is pro-
posed to provide a critical analysis of the advantages and 
limitations of these approaches, and its focus is on vir-
tual histopathology. Conducted based on the most cur-
rent literature reviews involving new methods in tumor 

histopathological diagnosis, such as the deep learning-
enabled virtual histological staining and other advance-
ments in the approaches As such, this review is expected 
to provide a clear understanding of the present situation 
and scope for future enhancement. Figure  2 shows the 
graphical workflow of this analysis.

Machine learning approaches in virtual histopathology
Machine learning has become a cornerstone of modern 
medical imaging, particularly within virtual histopathol-
ogy. Application of ML techniques in virtual histopa-
thology involves training algorithms for the recognition 
of patterns and features in histological images that may 

Fig. 2 Graphical workflow of literature analysis
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help in diagnosis, grade tumors, and foresee patient out-
comes, as shown in Fig. 3. One of the major strengths of 
ML in this regard has to do with its flexibility. In this con-
text, ML algorithms have been applied to a multitude of 
imaging modalities, including traditional histology slides, 
images from immuno-histochemistry, and even very new 
methods for imaging, such as multi-photon microscopy.

Another key advantage of ML in virtual histopathol-
ogy is that it enables predictive analytics. Algorithms of 
this nature can provide minute details regarding latent 
patterns correlating with disease progression or treat-
ment response by analysis of huge amounts of data., as 
shown in Fig. 4. For example, in the diagnosis of cancer, 
ML models can be trained to perfectly distinguish benign 
from malignant cells with an accuracy degree sometimes 
higher than human pathologists [35].

However, virtual histopathology ML approaches do not 
come easy. The most prominent challenges in this field 
are related to the need for large, labeled datasets. To train 
ML models effectively, histopathological images need to 
be accurately annotated, which is time- and resource-
intensive and requires expert opinion. Furthermore, it is 
the quality of training data that matters, since any biases 
or inconsistencies within the dataset may lead to skewed 
predictions and hence unreliable models. Of particular 

concern in this is medical applications, where misdiagno-
sis can result in grave consequences.

The second challenge relates to the interpretability of 
ML models. Many algorithms of ML, especially those 
using complex statistical methods, are often viewed 
to be of a “black box” nature, their inner decision pro-
cesses remaining obscure. The problem in a virtual his-
topathology setting is the lack of transparency, whereby 
clinicians must understand and trust the model’s predic-
tions to come up with informed decisions about patient 
care. Indeed, interpretable ML models have been under 
development, but this has remained an area of ongoing 
research.

ML models hold the following advantages in the con-
text of virtual histopathology:

• Versatility and Predictive Power: ML algorithms 
are adaptable to various imaging modalities, from 
traditional histology slides to advanced methods like 
multi-photon microscopy. They are particularly valu-
able in predictive analytics, offering insights into dis-
ease progression and treatment outcomes by identi-
fying latent patterns in data.

• Improvement in Diagnostic Accuracy: ML models 
can achieve high accuracy in distinguishing between 

Fig. 3 Typical steps for machine learning in digital pathological image analysis. After preprocessing, various ML approaches can be applied

Fig. 4 Various magnification levels show different structures even for the same histopathological image; taken from [6]
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benign and malignant cells, often surpassing human 
pathologists in specific tasks.

Despite their strengths and advantages, ML models face 
the following challenges:

• Data Dependency: The success of ML models heav-
ily depends on the availability of large, accurately 
labeled datasets. The labor-intensive nature of data 
annotation and the potential for bias in training data 
pose significant obstacles.

• Interpretability Issues: Many ML models func-
tion as “black boxes”, making their decision-making 
processes difficult to interpret. This lack of trans-
parency is a significant barrier to clinical adoption, 
where understanding model predictions is crucial for 
informed decision-making.

Deep learning approaches in virtual histopathology
The latter are developments over the traditional ML 
techniques and provide more powerful tools for the 
analysis of such images. More importantly, mostly DL 
models, particularly CNNs, have registered very high 
performance in image recognition tasks and therefore 
are highly effective in virtual histopathology [36]. They 
can learn hierarchical features directly from raw data, so 
these technologies detect and classify tissue structures 
with minimal human intervention. A typical schematic of 
DL models for histological staining is provided in Fig. 5.

One of the great strengths of DL in virtual histopa-
thology is its ability to manage massive high-dimen-
sional datasets. Unlike traditional ML models requiring 
heavy feature engineering, the same is not required at 
the same level for DL models, which can autonomously 
learn features from data, an explicit reason for consider-
ably less human curation and leading toward potentially 
discovering novel biomarkers. For example, DL-based 
algorithms have already demonstrated successful appli-
cations to tasks of tumor segmentation and classification 

of histopathological subtypes, down to genetic mutation 
prediction from histology images [37].

However, this is one of the strengths of DL, but instead, 
it challenges applications to virtual histopathology 
because of the high cost of computation for model train-
ing and inference. Typically, DL models require powerful 
hardware, such as GPUs, and large amounts of memory, 
which really can act as an impedance to their adoption 
in resource-limited settings. In addition, the process of 
training itself is quite time-consuming; it often requires, 
in the worst cases, even longer than a week or even a 
fortnight to attain optimal performance.

Another difficulty is susceptibility to overfitting, espe-
cially when working with small datasets [38]. This is quite 
a common issue with medical imaging data because med-
ical datasets are often quite small in realistic clinical set-
tings. When an overfitted classifier model is developed, 
it becomes too interested in the training set rather than 
generalizing over new, unseen examples. That is indica-
tive of poor performance in real-world applications. This 
can be a serious limitation in virtual histopathology, 
where variability in tissue samples and staining protocols 
is common.

Not only that but also ethical considerations come into 
play in respect of the application of DL in virtual histopa-
thology. Patient information privacy is paramount as DL 
models require access to voluminous sensitive medical 
data. The organization and protection of such data are of 
utmost importance concerning acting ethically. Besides, 
it must also work out the possibility of algorithmic bias 
since prejudiced models will equally perpetuate differ-
ences in health outcomes in healthcare.

DL models have the following advantages over other 
approaches:

• High Performance in Image Recognition: DL, par-
ticularly Convolutional Neural Networks (CNNs), 
has revolutionized image analysis in virtual histopa-
thology. These models excel in identifying complex 
tissue structures with minimal human intervention.

Fig. 5 Schematic of the standard histological staining and deep learning-based virtual staining
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• Handling High-Dimensional Data: DL models can 
autonomously learn hierarchical features from vast 
datasets, reducing the need for extensive feature 
engineering. This capability has led to breakthroughs 
in tasks like tumor segmentation and mutation pre-
diction from histology images.

The following are a few challenges related to DL 
approaches:

• Computational Complexity: DL models require 
substantial computational resources, such as GPUs 
or TPUs, for training and inference. This high cost 
can limit accessibility, particularly in resource-con-
strained settings.

• Overfitting Risks: DL models are prone to overfit-
ting, especially with small datasets, leading to poor 
generalization in real-world applications. This is a 
significant concern in virtual histopathology, where 
dataset sizes are often limited.

Visual path approaches in virtual histopathology
The Virtual Path in virtual histopathology is based on the 
enhancement and analysis of histological images with a 
focus on better spatial resolution and image clarity. It can 
have applications in all those areas where correct visu-
alization of tissue structures is critical like diagnosis of 
cancer or assessment of tissue morphology [37]. Visual 
schema of label-free virtual staining is provided in Fig. 6.

Probably one of the greatest strengths of the Visual 
Path approach is its potential to provide better image 

quality of histopathological images, wherein subtle fea-
tures could become more visible and easier for analysis. 
Techniques such as super-resolution imaging, virtual 
staining, and image deconvolution could improve the 
resolution of digital slides very significantly. This would 
offer pathologists an opportunity to get a closer view of 
the tissues than they would have done using light micros-
copy. It can, therefore, result in increased accuracy in 
diagnosis and a finer understanding of the mechanisms 
behind diseases.

The Visual Path approach also holds a great deal of 
promise for monitoring and diagnosis in real-time. With 
improvements in imaging technology, systems that can 
capture images in real time can be developed and provide 
immediate feedback right at the procedure area during a 
surgical procedure or a biopsy examination. This would 
prove extremely valuable in situations whereby decisions 
have to be rendered within a very short time, such as dur-
ing a surgery while identifying tumor margins.

Another strength of the Visual Path approach is its inte-
gration with other imaging modalities. Histopathological 
images can be combined with information from other 
modalities, like magnetic resonance imaging or positron 
emission tomography, for an ever more minute analysis 
of tissue. In this very multimodal approach, improved 
insight can be obtained into the underlying pathologies, 
hence improving diagnostic accuracy.

The challenges to the Visual Path approach are not 
few. Equipment and expertise in these advanced imag-
ing techniques are fairly expensive and not available in 
most clinical settings. Besides, the quality of the imag-
ing equipment is also very critical for the Visual Path 

Fig. 6 Overview of steps involved in visual path approach for virtual histopathology
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approach. This variability in imaging conditions, for 
example, because of different staining protocols or 
microscope calibration, already influences inconsistent 
results and thus limits the reliability of this approach 
when applied in routine clinical practice.

Another challenge involves incorporating these Visual 
Path techniques into the existing clinical workflow. The 
adoption of many new imaging technologies typically 
involves tremendous changes in well-established pro-
cedures, which might prevent their implementation. If 
these techniques are to be used at large scales, then it 
becomes very important that they are user-friendly and 
compatible with existing systems.

Visual Path approaches hold the following key 
advantages:

• Enhanced Image Quality: Techniques like super-
resolution imaging and virtual staining have sig-
nificantly improved the quality of histopathological 
images. This allows for more detailed tissue analysis, 
potentially leading to more accurate diagnoses.

• Real-Time Diagnosis: The Visual Path approach 
holds promise for real-time applications, such as 
during surgeries, where immediate feedback is criti-
cal. This capability could revolutionize intraoperative 
decision-making.

Even though Visual Path approaches have several key 
advantages, they are limited by the following factors:

• Equipment and Expertise Requirements: Advanced 
imaging techniques require sophisticated equipment 
and expertise, which may not be available in all clini-
cal settings. This can limit the widespread adoption 
of the Visual Path approach.

• Integration into Clinical Workflow: Adapting these 
advanced techniques to fit into existing clinical work-
flows can be challenging. Compatibility and user-
friendliness are essential for successful integration.

Comparison and future directions
Each approach, ML, DL, and Visual Path brings unique 
strengths to virtual histopathology, but they also come 
with distinct challenges. The continued advancement of 
these techniques will require addressing issues related to 
data quality, computational demands, and ethical consid-
erations. Collaboration between researchers, clinicians, 
and regulatory bodies will be essential to overcoming 
these challenges and realizing the full potential of virtual 
histopathology in improving patient care (Table 2).

• ML vs. DL: While ML offers versatility and can work 
with various data types, DL provides superior per-
formance in tasks requiring complex image analysis. 
However, DL’s computational demands and risk of 
overfitting present significant challenges.

• Visual Path’s Unique Contribution: The Visual Path 
approach stands out for its potential to enhance 
image quality and provide real-time diagnostic capa-
bilities. However, its adoption is hampered by the 
need for advanced equipment and the complexity of 
integrating it into clinical practice.

Technical approach
Figure  7 shows the overview of the technical approach 
for virtual histopathology which involves generative 
adversarial networks (GANS), dual contrastive learning, 
and processing and handling of data. Each of these steps 
is further used for various tasks as shown in the figure.

Deep learning models find core applications in virtual 
histopathology in the image transformation by GANs 
[29] from images of unstained tissue into virtually stained 
images and the mimicking of their traditional stained 
specimen counterpart’s visual characteristics. Key tech-
nical elements include:

Generative Adversarial Networks: They involve the 
generator and discriminator as two neural networks 

Table 2 Approaches and results for the reference paper on various virtual histopathology

Reference Approach Results

Stain-invariant self-supervised 
learning for histopathology image 
analysis [39]

Utilizes self-supervised learning techniques to learn stain-
invariant features from histopathology images. Focuses 
on extracting features that are robust to staining variations 
and enhances generalization across different datasets 
and staining protocols

Enhanced model generalization across various 
staining conditions and tissue types. Improved 
robustness and reliability in histopathologi-
cal image analysis tasks such as segmentation 
and classification [40]

Deep learning-enabled virtual histo-
logical staining of biological samples

Implemented deep learning models to virtually stain biologi-
cal samples. Utilized CNN and possibly other advanced 
architectures to simulate staining processes and generate 
virtual stains from unstained images

Successfully generated high-quality virtual 
stains with an accurate representation of tissue 
structures and biomarkers. Enabled cost-effective 
and scalable histopathological analysis with-
out physical staining
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working together to offer the desired results. A genera-
tor creates images that look like the target domain, in 
this case, the stained images, while at the same time, a 
discriminator is required, which compares the authen-
ticity of the images created. This therefore pushes the 
adversarial process to generate high-quality and realis-
tic images [29, 41, 42].

Dual Contrastive Learning: This is a sophisticated 
methodology for the enhancement of realism and the 
diagnostic utility of virtual histopathology images. It 
includes the following two components:

Appearance Contrastive Learning: It ensures that 
the generated image will have very similar coloring and 
texture compared to the real image that is stained [43].

Content Contrastive Learning: This would preserve 
the integrity of the tissue structure and morphology, 
which is important for an accurate diagnosis [19, 28, 
44].

Preprocessing and Handling of Data: Thus, effec-
tive techniques in preprocessing, such as normaliz-
ing images and resizing, are applied to the data to get it 
GAN-ready. Model performance and accuracy are thus 
impacted by the quality of the input data. Table 3 shows 
the approaches and results of reference papers.

Clinical evaluation
Virtual histopathology clinical applicability assessment, 
done by various metrics and expert evaluations, includes 
the following:

Visual Quality and Realism: This generally involves 
visual fidelity assessment between generated images and 
traditional images of tissues, which are normally dyed 
with different dyes like hematoxylin [5]. Usually, visual 
quality and the degree of structural preservation of the 
images are quantified using metrics such as SSIM and 
PSNR [20], which provide a score for the similarity in 

Fig. 7 Overview of technical approach for virtual histopathology

Table 3 Approaches and results for the reference paper on various virtual histopathology

Reference Approach Results

Dual Contrastive Learning-Based Image-to-
Image Translation of unstained Skin tissue 
into Virtually Stained H&E Images

Utilizes dual-stream contrastive learning 
to translate unstained skin tissue images 
to virtually stained H&E images. Maintains visual 
appearance and structural coherence of tissue 
samples simultaneously

Achieved high diagnostic accuracy comparable 
to traditional H&E staining. Efficient generation 
of virtual stains suitable for clinical integra-
tion. Significant reduction in time and resource 
requirements compared to manual staining

Neural Stain-Style Transfer Learning using GAN 
for Histopathological Images

Employs GANs for stain-style transfer in histo-
pathological images. Learns to convert images 
from one staining style to another while preserv-
ing tissue structures and relevant features

Demonstrated effective stain- style transfer, 
enabling adaptation of stained images to differ-
ent staining protocols or enhancement of specific 
staining characteristics. Improved visual quality 
and interpretability of histopathological images
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appearance between the virtual and real histopathology 
slides.

Diagnostic Accuracy: The diagnosis against that 
made by the traditional method is used to measure the 
diagnostic utility of the virtually stained images [45]. 
High concordance between these methods would infer 
the potential for virtual histopathology applications 
to replace traditional staining procedures in clinical 
practice.

Clinical Workflows Efficiency: Virtual histopathol-
ogy can save considerable time spent on staining proce-
dures, thereby accelerating the diagnosis and, therefore, 
the treatment of patients. Exposure to toxic chemicals is 
also minimized while enhancing safety and sustainabil-
ity for the environment. By analyzing these key thematic 
areas, the literature analysis will provide a comprehensive 
understanding of images suitable for clinical use.

Machine Learning In Medical Imaging: Machine 
Learning has shown remarkable versatility across various 
imaging modalities, making it a valuable asset in medical 
imaging. One of its primary strengths lies in its capability 
to perform predictive analytics, enabling the early detec-
tion and monitoring of disease progression. Moreover, 
ML algorithms excel at extracting meaningful features 
from complex datasets, facilitating the identification of 
patterns that may not be evident to human observers. 
However, ML also faces significant challenges, particu-
larly the need for large, labeled datasets to train models 
effectively. The quality of the data is crucial, as poor-qual-
ity data can introduce biases and reduce the reliability of 
predictions. Furthermore, ML models often suffer from 
interpretability issues, with many functioning as “black 
boxes” where the decision-making process is not easily 
understood, posing challenges in clinical settings where 
transparency is essential.

Deep Learning In Medical Imaging: Deep learning 
has considerably outperformed the results in image rec-
ognition tasks, convincingly dominating the supremacy 
of medical imaging tasks. Compared with traditional 
ML, DL models can learn hierarchical features from raw 
data itself; hence, they offer an automated way of feature 
engineering and can probably discover new biomarkers. 
However, these strengths come with notable challenges: 
DL models are computationally intensive and need high 
computational resources for training and deployment. 
This can act to prevent diffusion in resource-limited set-
tings [46]. Moreover, DL models have the fatal flaw of 
overfitting, which can be very strong when trained only 
on small datasets. Generalization in real-world appli-
cations can be very poor. Other ethical concerns exist 
relative to patient data privacy and algorithmic bias that 
could arise, thus potentially acting to further the dispari-
ties that already exist in health care.

Visual Path Approach: Where medical imaging 
through the Visual Path approach makes a difference is in 
spatial resolution and clarity. This approach better visual-
izes tissue structures and, therefore, significantly assists 
histopathological studies. Other advantages of this tech-
nique are real-time monitoring and diagnosis, whereby 
the clinician can know the results immediately during 
the procedure. The integration with other modalities of 
imaging provides strength to the potential by providing a 
more holistic approach to analyzing medical conditions. 
The complications, however, kick in with the implemen-
tation of the techniques from Visual Path. That is com-
plex and calls for specialized knowledge and equipment 
to integrate these methods with existing systems. More-
over, the efficiency of Visual Path techniques depends 
much on the quality of imaging equipment, and variabil-
ity in image conditions may result in inconsistent results, 
hence limiting reliability in clinical practice.

Comparative Analysis of Approaches: Comparing 
ML to DL, one could say that there exist different plus 
sides and minus sides for these approaches, as discussed 
in Table 4. If the former is less resource-intensive and has 
applicability in a much wider range of tasks, then the lat-
ter provides superior performance in image interpreta-
tion, especially for more complex scenarios. At the same 
time, DL has an immense requirement for computational 
resources and large datasets, which are its major limita-
tions. Compared to ML and DL, the Visual Path focuses 
on quality and resolution but leaves the interpretation of 
the data to the physicians. It is therefore more special-
ized, with strengths in real-time application and integra-
tion with other modalities; nevertheless, it has a higher 
dependence on high-quality imaging equipment and 
may turn out to be less flexible than either ML or DL 
approaches.

Applications
Improved workflow efficiency
Virtual histopathology eliminates the need for physical 
staining, allowing labs to conduct more rapid diagnosis.

Safety and environmental impact
The less use of dangerous staining chemicals means that 
the lab is safer and the environment is cleaner.

Telepathology and remote diagnostics
Virtual histopathology can help ensure consistent diag-
nosis across laboratories and can help make staining 
results more standardized and reproducible [47]. Moreo-
ver, it enables the electronic preservation of tissue sam-
ples, facilitating the storage of them for extended periods 
and conducting retrospective examinations.
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Standardization and archiving
Computational pathology can be advanced by utilizing 
large datasets of synthetic images to support the training 
and development of other AI-powered diagnostic tools.

Execution
It aims to address the challenges associated with the vari-
ability in staining techniques used in histopathology. This 
variability can hinder the performance of machine learn-
ing models due to differences in color and texture that 
are not related to the biological tissue being analyzed. 
Here’s a summary of the performance and impact of such 
methods 

 i. Stain Normalization:

• Stain normalization is crucial for reducing vari-
ability and improving the robustness of machine 
learning models [48].

• GANs are employed to learn the mapping between 
different staining styles, producing images that 
appear as if they were stained using a standard 
protocol [49].

 ii. Generative Adversarial Networks (GANs):

• GANs consist of a generator and a discriminator 
network.

• The generator creates images that resemble the 
target staining style, while the discriminator 
attempts to distinguish between real and gener-
ated images.

• Through this adversarial training process, GANs 
can produce high-quality, realistic images in the 
desired staining style.

The Performance Evaluation is as follows: 

 i. Visual Quality and Realism:

• GAN-based methods, particularly those using 
advanced architectures like CycleGAN [28] or 
StarGAN [21], have been shown to produce visu-
ally convincing stain-normalized images.

• Evaluations often involve expert pathologists who 
assess the realism and usability of the generated 
images for diagnostic purposes.

 ii. Quantitative Metrics:

• Structural Similarity Index (SSIM) and Peak Sig-
nal-to-Noise Ratio (PSNR) [20] are commonly 
used metrics.

• Studies have reported improvements in these met-
rics, indicating better preservation of tissue struc-
ture and higher image quality after stain normali-
zation.

 iii. Impact on Downstream Tasks:

• Classification: Improved stain normalization leads 
to better performance of classifiers trained on his-
topathological images [50].

• Segmentation: Enhanced consistency in staining 
improves the accuracy and reliability of segmenta-
tion algorithms.

• Detection: Object detection models, such as 
those identifying cancerous cells, benefit from the 
reduced variability introduced by different stain-
ing techniques [51].

 iv. Adaptability and Generalization:

• GANs [8,20] trained on diverse datasets tend to 
generalize better across different staining proto-
cols and types of histopathological images [52].

• Methods like CycleGAN [21, 28, 52], which can 
learn without paired examples, are particularly 
effective in handling diverse and unpaired data-
sets.

User experience
User experience is also a critical factor in the develop-
ment of ML models for medical image analysis. This 
becomes even more important when advanced tech-
niques such as GANs [28, 29, 53] are used. GANs are 
powerful tools for tasks like stain-style transfer learning 
in histopathological images [5, 20], but their complexity 
can impact user experience regarding implementation 
and practical application [54].

However, implementing GANs [21] can be resource-
intensive and complex. The training process for GANs 
requires significant computational power and large data-
sets. Despite these challenges, the benefits in terms of 
image quality and model performance are substantial. 
For example, CycleGAN [21, 28]] uses unpaired datasets 
to learn the transformation between different staining 
styles, making it highly adaptable and effective for diverse 
histopathological images.

The user experience with GANs is also influenced by 
the availability of resources such as pre-trained mod-
els and open-source code. These resources can greatly 
enhance the practical usability of GAN-based meth-
ods. Researchers have found that when such resources 
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are available, the adoption and implementation of these 
advanced techniques become much more feasible.

User feedback is crucial for evaluating the effective-
ness of stain normalization methods. Studies have shown 
that pathologists and medical professionals tend to prefer 
the quality of images processed using GANs over those 
processed by traditional methods. This preference is due 
to the higher fidelity and consistency provided by GAN-
based normalization.

Feedback from users regarding methods for virtual his-
topathology [55] has been quite positive, generally more 
so on the quality and consistency of the images produced. 
The quality of image fidelity is very high, especially for 
digitally stained images, reflecting the reality that pathol-
ogists and medical professionals could efficiently real-
ize accurate and reliable diagnoses. On top of this, some 
researchers also pointed to considerable benefits arising 
from the availability of open-source code and pre-trained 
models, which can help both researchers and practition-
ers adopt and implement such advanced techniques.

Although certain challenges exist in virtual histopa-
thology, it does give way to attendant benefits, among 
them an increase in diagnostic accuracy, greater effi-
ciency, and resource optimization in medical diagnostics. 
It underlines show that a positive user experience with 
this technology allows for transformative potential in 
the histopathological [19] practices toward better patient 
outcomes.

In conclusion, while traditional methods for stain nor-
malization in histopathological images [5] are easier 
and cheaper to implement, they often fall short in terms 
of quality and consistency. GAN-based methods [28], 
although more complex and resource-intensive, provide 
superior results that are highly valued in medical image 
analysis [56]. This suggests that the user experience with 
GANs, despite their complexity, is generally positive due 
to the significant improvements in image quality and 
model performance.

Performance
Visual quality and stain invariance
 

• Robustness to Variability: Self-supervised learn-
ing (SSL) techniques focus on learning robust [25, 
57] representations from data without the need for 
manual annotations. When applied to histopathology 
images, stain-invariant SSL methods effectively han-
dle the variability in staining protocols [45].

• Consistency: These methods produce consistent and 
high-quality features regardless of the staining vari-
ations, which are critical for accurate downstream 
analysis.

Quantitative metrics
 

• Accuracy and Sensitivity: Studies have demon-
strated that stain-invariant SSL [45] models achieve 
high accuracy and sensitivity in classification tasks. 
The learned representations capture relevant tissue 
features while being invariant to stain differences.

• Comparison with Supervised Methods: SSL meth-
ods [45] often approach or even exceed the perfor-
mance of traditional supervised learning methods, 
particularly when large labeled datasets are not avail-
able. Metrics such as F1-score, precision, and recall 
show significant improvements over baseline models 
trained on stained data.

Impact on downstream tasks
 

• Classification: Improved stain invariance leads to 
better performance in classifying histopathological 
images into different categories (e.g., cancerous vs. 
non-cancerous) [58]. Models trained with SSL [59] 
exhibit enhanced generalization across various stain-
ing conditions [60].

• Segmentation: Stain-invariant features enhance the 
accuracy and robustness of segmentation algorithms, 
leading to the precise delineation of tissue structures, 
[55] which is vital for diagnostic purposes.

• Detection: Object detection tasks, such as identify-
ing specific cellular structures or anomalies, benefit 
from the invariant features learned through SSL [45], 
resulting in higher detection rates and reduced false 
positives.

Adaptability and generalization
 

• Cross-Dataset Performance: SSL [45] methods show 
strong generalization across different datasets and 
staining protocols. This adaptability is crucial for 
deploying models in diverse clinical settings where 
staining variability is common.

• Unsupervised Pre-training: By leveraging large 
amounts of unlabeled data, SSL [45, 61] models 
can be pre-trained and later fine-tuned on smaller, 
labeled datasets. This approach significantly boosts 
performance and reduces the dependency on exten-
sive annotated data.
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Computational efficiency
 

• Training Time: While SSL [45] methods can be 
computationally intensive during the pre-training 
phase, the benefits in terms of reduced need for 
labeled data and improved model robustness often 
justify the initial computational cost.

• Inference Speed: Once trained, these models typi-
cally maintain efficient inference speeds, making 
them suitable for real-time or high-throughput 
analysis in clinical environments.

Technical approach
At the core of this research is a very advanced archi-
tecture the model with generators and discriminators 
to do image translation based on contrastive learn-
ing. The generators map images of unstained tissues 
to their corresponding virtually stained images, while 
the discriminators estimate their realness. The contras-
tive learning strategy ensures a high-fidelity translated 
image, which is a real virtual-stained image, by high-
lighting the changes between the paired samples in the 
source dataset.

Evaluation metrics
Quality evaluation for the virtually stained images gener-
ated by the model utilizes quantitative metrics. Some of 
the key metrics are the Frechet Inception Distance and 
[44] Kernel Inception Distance [62], which reflect a more 
realistic similarity between the images generated and real 
virtual images. Such metrics provide a numerical basis 
for the assessment of how much the virtual images most 
nearly approximate traditional staining [42] on samples 
so that processes of virtual staining meet high standards 
of accuracy and realism. Table 5 shows the performance 
results of various histopathology studies.

Augmentation of data preparation
The CAGAN [58] model is designed to be very simi-
lar to a dual-cycle architecture but with added atten-
tion mechanisms aimed at improving the quality of 
the generated images [69]. The generators translate in 
both directions: that from unstained to H and E-stained 
images [5, 70] and that from H and E-stained [5] to 
unstained images. The attention module in each gen-
erator ensures that crucial areas in tissue samples are 
focused on by the network for fine details to be repro-
duced. The discriminators are used to distinguish 
between the real and the generated images, whilst the 
cyclic loss enforces consistency in translation.

The CAGAN model is trained using a diverse data-
base consisting of images of skin tissue that are 
unstained as well as their corresponding H and E 
stained [71] images. In data preparation, there is a lot 
of care taken in preprocessing, the image’s main attrib-
utes such as size, brightness, and contrast, are normal-
ized and standardized. These steps are important for 
applying the model to various conditions in a sample 
and having more generalizable results. The augmenta-
tion techniques like rotation, flipping, and color jitter-
ing assist in preparing a dataset for training that helps 
the model to work better.

Pathologist validation
To perform a clinical validation, pathologists look at the 
reference images under the bright-field microscope and 
compare them with the Fabric GAN [21, 28] generated 
IHC stained images. Completely, the comparison will be 
made regarding diagnostic capability in terms of accu-
racy and interpretability of the key histological features 
and their practical usefulness in routine clinical settings. 
Such feedbacks inform the improvements made to the 
model and final preparations for its deployment for prac-
tical use. The dataset used to train the Fabric GAN con-
tains images from both unstained and stained IHC tissue 
sections. Basic image processing includes normalization 
of the image, resizing the image, and also augmenta-
tion of the images used before feeding the data into the 
computer. Processing is done in a way that gains better 
contrast of the image and lessens the presence of noise 
Signals such as contrast adjustment and noise reduction 
are used to improve the training data so that the model 
can mimic the staining process accurately [72].

To rate the presented Fabric GAN model, several indi-
ces are applied: Some of these are the Frechet Inception 
Distance (FID) and Peak Signal-to-Noise Ratio (PSNR) 
[20] that measures the similarity of the generated images. 
Higher results in the above-mentioned parameters 

Table 5 Performance comparison of methodologies for 
histopathology

Techniqie Performance

Image To Image Translation [63] Good performance

Transfer Learning [64] Good performance

Stain Invariant Self Supervised Learning [8, 39] Good performance

Deep Learning [48, 50] Moderate perfor-
mance, depends 
on model

Unsupervised Stain Normalization [65] Low performance

Fabric GAN [66, 67] Good performance

Cyclic Attention GAN [62, 68] Good performance
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describe that the virtual stained images look like actual 
stained images to a greater extent in terms of color and 
texture.

Role of deep learning and CNN in medical histopathology
Machine learning is a broader concept of making 
machines [73] learn without being explicitly pro-
grammed, and a subcategory of it is known as deep learn-
ing [59] where neural networks are employed to mimic 
important patterns of data. In medical imaging these 
approaches have redefined how histopathological images 
are analyzed and classified for identification of tumors or 
cancerous tissues [74–77].

Convolutional Neural Networks (CNNs) are consid-
ered a base for deep learning particularly in image pro-
cessing. In histopathology, CNNs can learn to establish 
correlations [78, 79] between tissue patterns and colo-
rectal cancer possibilities independently. Structural func-
tionalism like VGG, ResNet, and Inception have been 
used in increasing diagnostic accuracy. VGG, ResNet, 
AlexNet, GoogLeNet (Inception), and MobileNet are 
among the most widely applied CNN-based models for 
medical histopathology [80–82].

Freezing and fine-tuning models for histopathology has 
been useful as most of the time labeled data in histopa-
thology is scarce. When these models are trained on his-
topathological images, researchers [1] have learned that 
fine-tuning the latter models enhances the performance 
further, while shortening training times in the process. In 
the case of powerful deep learning models, data prepa-
ration plays a significant role that results in very high-
quality datasets. They gathered histopathological tissue 
examples in what were normal light fields, taken at x200 
and x400 magnification, labeled by pathologists, and 
preprocessed. Standard preprocessing procedures may 
involve normalization, augmentation, and stain nor-
malization to help overcome the issue of staining on the 
tissues.

Role of DL and ML virtual histological staining
The conventional staining technique is based on the 
use of chemical reagents and involves the application of 
dyes on biological tissues to enhance the visibility of the 
structures that are useful in diagnosis and investigation. 

Nevertheless, it can take relatively a long time and may 
also change the ensuing histological appearance of the 
tissue sample. Recent advances in deep learning offer a 
novel approach: virtual staining refers to the procedure in 
which histochemical staining is performed virtually with-
out a human staining agent.

Higher-level architectures such as CNNs [78] have 
demonstrated superb performance in the stain infer-
ence process from label-free microscope images to vir-
tual stains. These models learn to map the features of 
unstained samples to the features of the stained tissues 
by mimicking the pattern and nature of stains or features 
that have been previously provided.

The effectiveness of virtual staining models is depend-
ent on the comparison made between the virtual section 
of the stained tissue and the physically stained section of 
the same tissue. Structural similarity index (SSIM), peak 
signal-to-noise ratio (PSNR) [20] and other benchmark 
studies which are complemented by the examination and 
scrutiny of the results by expert pathologists are some of 
the measures that are used in this regard. Training is con-
ducted using the input of pairs of unstained and stained 
images to map them; backpropagation and optimization 
are involved [83]. Mean squared error (MSE) and percep-
tual loss have been used in predicting the stained images 
with the object of evaluating the difference between the 
predicted and the actual stained images within the learn-
ing process of the model. Table 6 shows various uses of 
CNN architectures.

Dual contrastive learning models
Dual contrastive learning models are a cutting-edge 
approach in virtual histopathology, leveraging the power 
of deep learning to enhance the accuracy and efficiency 
of histopathological analysis. These models use contras-
tive learning techniques to improve the differentiation 
between various histopathological features, leading to 
more precise diagnostic outcomes. Table  7 provides a 
summary of the advantages of dual contrastive learning. 
It has the following advantages.

• Enhanced Feature Extraction: Dual contrastive 
learning models excel at extracting intricate features 

Table 6 Use of CNN architectures for virtual staining

Architecture’s Methodologies

U-Net Known for its effectiveness in biomedical image segmentation and also it is popular for generating detailed and accurate virtual stains 
[84]

GAN’s GAN’s, particularly like Pix2Pix and Cyclic GAN, are employed to create high fidelity-stained images from label-free inputs [49, 66, 67]

Autoencoders These networks compress and reconstruct images, learning the essential features required for virtual staining [60]
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from histopathological images, facilitating more 
detailed and accurate analysis.

• Improved Diagnostic Accuracy: By contrasting dif-
ferent image pairs, these models reduce misclassifica-
tion rates, leading to higher diagnostic accuracy.

• Robustness to Variations: They are more robust to 
variations in staining, image quality, and other incon-
sistencies commonly found in histopathological data.

• Automated Learning: These models require less 
manual intervention during the training process, 
making them highly efficient and scalable.

Dual contrastive learning suffers from the following 
limitations:

• High Computational Cost: Training dual contrastive 
learning models requires significant computational 
resources, including high-performance GPUs.

• Data Dependency: The performance of these mod-
els is heavily dependent on the quality and quantity 
of the training data.

• Complex Implementation: Setting up and fine-tun-
ing these models can be complex and requires exper-
tise in deep learning and medical imaging.

• Interpretability Issues: Like many deep learning 
models, dual contrastive learning models can act as 
a “black box”, making it challenging to interpret how 
decisions are made.

Case studies and applications
Case Study 1:Breast Cancer Detection:

In research conducted at the National University of Sci-
ences and Technology, dual contrastive learning models 
were applied to histopathological images of the breast for 
adequate cancer detection [85, 86]. This showed a great 

deal of improvement in the differentiation of malignant 
from benign tissues, which arises at an accuracy rate of 
94 percent. This improved accuracy can be ascribed to 
how the model learns slight differences in morphology.

Case Study 2: Liver Disease Classification
A group of researchers from the University of Califor-

nia used contrastive learning models for the classification 
of various liver diseases against the background of his-
topathological slides [87]. The accuracy of classification 
was improved and the analysis time was reduced by these 
models [88]. According to the study, diagnostic speed 
increased by 20 percent, hence making the process much 
more efficient for pathologists. Results of case studies are 
given in Table 8.

Applications
 

• Cancer Diagnosis: Dual-contrastive learning mod-
els show very good performance in the diagnosis of 
cancer, where differentiation between malignant and 
benign tissues is of paramount importance.

• Automated Pathology: These models help in auto-
mated pathology workflows, hence decongesting the 
workload of pathologists, increasing the throughput 
[89].

Table 7 Advantages and limitations of dual contrastive learning model

Description

Advantages
 Enhanced Feature Extraction Extracts intricate features, aiding in detailed analysis

 Improved Diagnostic Accuracy Reduces misclassification rates

 Robustness To Variations Handles variations in staining and image quality effectively

 Automated Learning Requires minimal manual intervention

Limitations
 High Computational Cost Requires significant computational resources

 Data Dependency Performance is highly dependent on training data quality and quantity

 Complex Implementation Needs expertise in deep learning and medical imaging for setup and tuning

 Interpretability Issues Difficult to interpret model decisions

Table 8 Case studies on dual constrastive learning models

Case study Application Results

Breast cancer detection Differentiation 
of malignant 
and benign 
tissues

94% accuracy in detection

Liver disease detection Classification 
of various liver 
diseases

20% increase in diagnostic 
speed



Page 21 of 33Imran et al. BMC Medical Imaging          (2024) 24:318  

• Research and Development: They are very instru-
mental tools in medical research, as they aid in the 
development of new diagnostic techniques and the 
finding of treatments [90].

Image-to-image translation approaches
Image-to-image translation serves as a significant tool 
in virtual histopathology, consisting of the process of 
image transformation from one domain to another with 
the view of preserving essential characteristics. This 
approach is particularly useful in tasks like virtual stain-
ing, where an image of unstained tissue is translated 
into its stained counterpart image, thus enabling more 
accurate and efficient analysis. An overview of image-to-
image translation approaches is illustrated in Fig. 8.

Generative adversarial networks
On image-to-image translation, GANs are very popular. 
There exist two neural networks: one generating images 
and the other discriminating between the synthetic 
images. In other words, this struggle of the two networks 

against each other will come up with highly realistic 
translations.

CycleGANs
CycleGANs are specifically designed GANs aimed at an 
image-to-image translation task when paired training 
data is not available. They work by forcing a cycle-based 
consistency loss, which is usually implemented to ensure 
that translating an image in another domain and then 
back again brings back the original image.

Pix2Pix
Pix2Pix is a framework for conditional GANs and relies 
upon paired images during training. It learns a mapping 
from input to output images and a loss function to train 
this mapping. It is especially good when paired datasets 
are available.

Architectures based on U‑Nets
One of the major reasons U-Net architectures are vastly 
applied in medical imaging originates from the fact that 
image segmentation tasks are applied with elevated 

Fig. 8 Overview of image-to-image approaches for virtual histopathology

Table 9 Current methods in image-to-image translation

Method Description

Generative Adversarial Networks Consists of a generator and discriminator for creating and evaluating synthetic images

CycleGANS Uses cycle consistency loss to translate images without paired training data

Pix2Pix Relies on paired images for training, learning a direct mapping from input to output images

U-Net Based Architectures Combines U-Net efficiency in segmentation with translation techniques for high-quality images
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efficiency. Further complemented by image-to-image 
translation techniques, they provide a fineness to the 
details of the translated images. Table 9 provides a sum-
mary of image-to-image translation approaches.

Comparative analysis
All these techniques have some pros and cons that make 
them quite suitable for different applications of virtual 
histopathology. 

 i. Generative Adversarial Networks

• Advantages: Yield high-quality synthesized 
images, thus yielding high quality generated out-
put images; can be used on a wide number of 
translation tasks.

• Disadvantages: Need huge computational 
resources; can get very unstable and hard to train.

 ii. CycleGANs

• Advantages: Work quite well on unpaired data-
sets; high retention field-of-view through cycle 
consistency loss.

• Disadvantages: Might not retain fine details; 
computationally quite very expensive as it is a 
cyclic process.

 iii. Pix2Pix

• Advantages: Is very accurate if paired datasets are 
used. Direct and Efficient Mapping from Source to 
target.

• Disadvantages: Require paired training data 
which is usually not available in medical imaging. 
Less effective with unpaired data.

 iv. U-Net Based Architectures

• Strengths: Preserve well fine details. Good effi-
ciency for segmentation tasks.

• Disadvantages: It might need further modifica-
tion to work better for translation tasks. Has not 
been as widely used for translating images-to-
images, unlike GANs.

Comparative analysis of image-to-image translation 
methods is given in Table 10.

Applications
 

• Virtual Staining: Image-to-image translation meth-
ods abundantly apply to virtual staining in the 
domain of converting images of unstained tissue into 
their virtually stained counterparts for easier analy-
sis.

• Artifact Removal: Artifacts from histopathological 
images can be removed by the following to improve 
the quality of the image and improve diagnostic accu-
racy.

• Modality transformation: This is the process of 
transforming images from one imaging modality to 
another, such as from MRI to CT scans, etc. so that 
all images can be analyzed comprehensively.

Training and education for pathologists
As methods of virtual histopathology keep improving, 
there is a necessity for training and education to enable 
pathologists to make proper use of innovative tech-
nologies. Hands-on proper training programs would be 
immensely instrumental in bridging the knowledge gap 
in using virtual histopathology tools.

Bridging the knowledge gap
The incorporation of virtual histopathology into clinical 
routine requires knowledge on the part of pathologists in 
terms of both theory and practice concerning these tech-
nologies. Three major elements for bridging this knowl-
edge gap are as follows:

Table 10 Comparative analysis of image-to-image translation methods

Methods Strengths Weaknesses

GANS High visual fidelity High computational cost

CycleGANS Effective with unpaired data Struggles with fine details, computationally intensive

Pix2Pix High accuracy with paired data, efficient mapping Requires paired data, and is less effective with unpaired data

U-Net Based Architecture Excellent detail preservation, efficient for segmen-
tation

May need modification for translation tasks, not as widely 
used in this context
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Theoretical training
That means educating rationalists about the basic foun-
dations of virtual histopathology, such as machine learn-
ing algorithms, techniques for image analysis, and digital 
pathology workflows [91].

Technical knowledge
This should ensure that pathologists have the requisite 
experience in using virtual histopathology software and 
hardware, from image acquisition and processing to anal-
ysis tools.

Clinical applications
Demonstrate the application of virtual histopathology 
within a clinical environment using case studies and 
practical examples. Table 11 provides a few components 
to bridge the knowledge gap.

Hands on training programs
Though bridging the knowledge gap primarily would 
require hands-on training programs, these should be 
designed to enable hands-on experience with arrange-
ments for an inbuilt deep understanding of the methods 
of virtual histopathology. 

 i. Workshops and Seminars: There can be a continu-
ous series of workshops and seminars on specific 
aspects of Virtual Histopathology. Such workshops 
and seminars should have an interactive segment 
mandatorily in the form of live demonstrations and 
an ordered Q and A session.

 ii. Simulation-Based Training: The use of virtual sim-
ulation platforms would provide a risk-free envi-

ronment for pathologists to practice and enhance 
their skills. Realistic scenarios may also be simu-
lated with practice performance feedback.

 iii. Mentorship programs: Setting up less-experi-
enced pathologists with more senior experts in the 
area of virtual histopathology can make knowledge 
transfer easier and arrange for continued support 
and advice on this matter.

 iv. Online Courses and Certifications: Full-fledged 
online certification programs in courses can quite 
reasonably offer flexible learning opportunities to 
pathologists for learning about virtual histopathol-
ogy at their convenience.

 v. Collaborative Learning: This training experience 
will be greatly enhanced by the much-needed col-
laborative learning built through group projects 
and peer-to-peer interactions, fostering commu-
nity among pathologists.

A few important components of the hands-on training 
program are provided in Table 12.

Implementation strategy
This is the strategy that can be adopted to success-
fully implement training and education programs about 
pathologists: 

 i. Needs Assessment: A needs assessment has to 
be carried out to identify the specific needs of the 
pathologists concerning their training in different 
settings.

Table 11 Components of bridging the knowledge gap

Component Description

Theoretical training Education on principles of virtual histopathology including machine learning 
and image analysis

Technical proficiency Training in software and hardware for image acquisition, processing, and analysis

Clinical applications Case studies and practical examples demonstrating clinical applications

Table 12 Components of the hands-on training program

Components Description

Workshops and Seminars In-depth training sessions with interactive components

Simulation-based Training Virtual simulations providing practice in a risk-free environment

Mentorship Programs Pairing with experienced experts for guidance and support

Online Courses and Certifications Flexible learning opportunities with structured courses and certifications

Collaborative Learning Group projects and peer-to-peer interactions for enhanced learning



Page 24 of 33Imran et al. BMC Medical Imaging          (2024) 24:318 

 ii. Curriculum Development:  A detailed curriculum 
on both the theoretical and practical aspects of vir-
tual histopathology.

 iii. Resource Allocation: Ensure adequate availability 
of resources in trainers, equipment, and funds to 
support the training programs.

 iv. Evaluation and Feedback: Checking the effective-
ness of the training programs at regular intervals, 
incorporating feedback for continual improvement 
in the process of training.

Table  13 provides steps needed for the implementation 
strategy for training and education.

By addressing the knowledge gap and providing hands-
on training, pathologists can effectively adopt and utilize 
virtual histopathology methods, ultimately improving 
diagnostic accuracy and patient outcomes.

Future research directions in virtual histopathology
With the continuous development of virtual histopa-
thology, some areas are ripe for future research. Those 
provide huge potential for improvements in the field of 
medical imaging, diagnostic accuracy, and most impor-
tantly, improvements in patient outcomes. The unex-
plored areas in virtual histopathology are enumerated 
below:

Real‑time image processing
 

• Description: Algorithm and system development for 
real-time processing of histopathological images.

• Potential Impact: Immediate diagnostic feedback in 
surgery leads to improved patient outcomes.

Multi‑modal image integration
 

• Description: Integration of multi-modality images, 
like MRI, CT, and PET images, with histopathology 
images.

• Potential Impact: It gives the minute details of tis-
sues, hence enhancing diagnosis accuracy.

Personalised medicine applications
 

• Description: Use of virtual histopathology in indi-
vidual treatment planning concerning a single histo-
pathological profile.

• Potential Impact: The treatments will be given 
according to the sufferer’s characteristics of the dis-
ease, hence its effectiveness is increased and side 
effects are reduced.

Advanced AI techniques
 

• Description: Investigation on the application of cut-
ting-edge AI techniques, such as reinforcement and 
federated learning, toward virtual histopathology.

• Potential Impact: Enhanced accuracy and robust-
ness of diagnostic algorithms.

A few important unexplored areas in virtual histopathol-
ogy are discussed in Table 14.

Case study: clinical application of virtual histopathology
One of the notable applications of virtual histopathol-
ogy has been in the diagnosis of breast cancer. In a study 
conducted by researchers at the University of Califor-
nia, a deep learning-based virtual staining technique 
was implemented to distinguish malignant from benign 
breast tissue samples. The team employed a convolu-
tional neural network (CNN) model to create virtually 
stained slides from unstained tissue images, accurately 
simulating the appearance of traditional histochemical 
stains used in breast cancer diagnostics.

Clinical Impact This virtual staining technique demon-
strated a high diagnostic accuracy comparable to that of 

Table 13 Implementation strategy for training programs

Steps Description

Needs Assessment Identifying specific training requirements

Curriculum Development Creating a comprehensive curriculum covering theoretical and practical aspects

Resource Allocation Ensuring availability of trainers, equipment, and funding

Evaluation and Feedback Regular evaluation and incorporation of feedback to improve training programs
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traditional methods, with a reported accuracy of over 94 
percent. This allowed pathologists to assess the same vis-
ual detail and cellular structure without requiring physi-
cal dyes. The virtual process reduced diagnostic time 
significantly, enabling more rapid treatment decisions. 
In clinical practice, the time efficiency and reduction in 
chemical reagents also contributed to lower operational 
costs and enhanced safety for laboratory staff.

Broader Implications The success of virtual histopa-
thology in breast cancer diagnostics has sparked further 
research into its use for other cancers, such as pros-
tate and lung cancer. Additionally, studies have begun 
to explore integrating these techniques into telemedi-
cine and remote diagnostics, which could make histo-
pathological assessment more accessible in underserved 
regions.

Academic and industry partnerships
 

 i. Joint Research Initiatives

• Description: Academic-industry collaborative 
research projects

• Impact: Integrates to link academic heft with 
industry resources to drive faster innovation and 
application.

 ii. Technology Transfer Programs

• Description: Programs that facilitate technology 
and knowledge transfer from academia into indus-
tries.

• Potential Impact: Fosters Commercialization of 
Research Done at the Academic Level; Real-world 
Applications Driven.

 iii. Industry-sponsored Fellowships

• Description: Funding from the industry sponsors 
for researchers in virtual histopathology

• Impact: Integration of business heft with aca-
demic, leading to accelerated innovations and 
applications. item Potential Impact: Provides 
financial support and sector access to researchers 
to innovate.

 iv. Collaborative Networks and Consortia

• Description: A special kind of network of con-
sortia consisting of several stakeholders coming 
together in a joint research setup.

• Potential Impact: Helps in knowledge sharing and 
pooling of resources, particularly the big ones.

Table  15 provides guidelines concerning industry and 
academia partnerships and their overall impact.

Table 14 Unexplored areas in virtual histopathology

Area Description Potential Impact

Real-time Image Processing Developing algorithms for real-time image processing Immediate diagnostic feedback during surgeries

Multi-modal Image Integration Integrating multiple imaging modalities with histo-
pathological images

Comprehensive tissue view for more accurate diagnoses

Personalized Medicine Applications Utilizing virtual histopathology for personalized treat-
ment planning

Tailored treatments for improved efficacy and reduced 
side effects

Advanced AI Techniques Exploring reinforcement and federated learning in vir-
tual histopathology

Enhanced accuracy and robustness of diagnostic 
algorithms

Table 15 Academic and industry partnerships

Partnership Description Potential Impact

Joint research initiatives Collaborative projects between academia and industry Accelerates innovation and application

Technology transfer programs Facilitating technology and knowledge transfer 
from academia to industry

Promotes commercialization of research

Industry-sponsored fellowships Fellowships funded by industry to support researchers Provides financial support and industry connections

Collaborative networks and consortia Networks bring together multiple stakeholders Enhances knowledge sharing and resource pooling
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Discussion of challenges
Discussions
Enhanced diagnostic accuracy
A huge step forward in diagnostic accuracy is the devel-
opment of dual contrastive learning models that can 
generate virtual stains that are as accurate as traditional 
staining. Models can be used to identify and diagnose 
problems with tissue samples and preserve both the 
visual and structural integrity of the samples.

Efficiency and scalability
Improved computational efficiency enables the quick 
generation of quality virtual stains, thereby reducing 
the time and resources consumed by manual staining 
and analyses. This streamlining improves workflow effi-
ciency and supports timely decision-making in clinical 
settings.

Resource optimization
Virtual staining is much more efficient and resource-
efficient than staining with physical reagents and skilled 
workers. Computational methods make diagnosing eas-
ier and cheaper.

Advantage of traditional machine learning approaches
In light of the aforementioned challenges associated 
with deep learning models, traditional machine learn-
ing approaches present a viable alternative, particularly 
when combined with intelligent data preprocessing 
strategies. Studies such as Kumar et al. [92], Guo et al. 
[93], and Shehab et al. [94] have demonstrated that tra-
ditional machine learning algorithms can outperform 
deep learning models in specific medical imaging tasks, 
achieving higher accuracy, sensitivity, and specificity. 
These approaches typically require less computational 
power and offer greater interpretability, facilitating 
their adoption in diverse clinical contexts.

Challenges
Integration into clinical practice
This will require attention to some regulatory consid-
erations, protocol standardization, and healthcare per-
sonnel training to be seamlessly integrated into routine 
clinical practice. Broad diffusion and effective use of 
virtual histopathology methods call for pragmatic steps.

Opportunities for improvement
Handlings of advanced neural network architec-
tures, such as generative adversarial networks [95] 
and self-supervised learning [96], are likely to realize 
future developments in virtual histopathology, further 

improving quality, robustness, and applicability of the 
envisioned techniques of virtual staining [12].

Collaborative efforts
Multidisciplinary collaboration between machine learn-
ing experts, pathologists, and biomedical engineers forms 
the bedrock of innovation in virtual histopathology. This 
will ensure that the models being developed are relevant 
clinically, robust, and implemented efficiently to benefit a 
patient [64, 78, 97].

Finally, while the virtual histopathology methods her-
ald exciting opportunities for better diagnostics and 
smoothening healthcare workflows, continued research 
efforts, collaboration, and technological advances are 
needed to surmount the challenges brought forward by 
these cutting-edge methodologies and to bring about 
their full clinical potential.

Dataset and preprocessing issues in virtual histopathology
The availability and quality of datasets are paramount for 
the successful deployment of machine learning and deep 
learning models in virtual histopathology. High-quality, 
well-annotated datasets enable models to perform accu-
rate tissue classification and disease detection. However, 
obtaining such datasets is challenging due to the com-
plexity of histopathological images and the extensive 
expert annotation required, which is both time-con-
suming and costly. Furthermore, variations in staining 
protocols, imaging equipment, and sample preparation 
methods introduce significant heterogeneity, complicat-
ing the standardization of datasets and potentially affect-
ing model performance.

To mitigate these issues, rigorous preprocessing steps 
such as stain normalization, image alignment, and arti-
fact removal are essential. While these processes aim to 
enhance data consistency, they also risk altering critical 
biological information necessary for accurate diagnosis. 
Data augmentation techniques like rotation, flipping, and 
scaling are commonly employed to artificially increase 
dataset size and improve model robustness. However, 
these methods may introduce unrealistic variations, 
leading to models that perform well on augmented data 
but poorly on real-world clinical data. This underscores 
the need for developing standardized and biologically 
informed preprocessing pipelines to ensure data quality 
and model generalizability.

GAN challenges related to algorithm complexity in virtual 
histopathology
Generative Adversarial Networks (GANs) have shown 
promise in generating high-resolution synthetic images 
that closely resemble real histopathological slides, offer-
ing potential applications in data augmentation and 
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virtual staining. Despite their capabilities, GANs present 
significant challenges related to algorithmic complexity 
and training stability. The adversarial training process 
between the generator and discriminator networks is 
delicate and prone to issues such as mode collapse and 
convergence instability. Additionally, GANs are sensitive 
to hyperparameter settings and require substantial com-
putational resources, limiting their accessibility and prac-
tical implementation in clinical settings.

Recent advancements, including the development of 
architectures like Wasserstein GANs and Cycle Gans, 
aim to address some of these stability and efficiency con-
cerns. However, further research is necessary to fully 
resolve these challenges and facilitate the reliable applica-
tion of GANs in routine clinical practice.

Algorithm computational complexity
Advanced deep learning models, particularly convolu-
tional neural networks (CNNs) and GANs, demand sig-
nificant computational resources for both training and 
inference. Processing high-resolution whole slide images 
(WSIs), which can contain billions of pixels, exacerbates 
this computational burden. Access to high-performance 
hardware such as GPUs or TPUs is often required, posing 
financial and logistical barriers, especially in resource-
limited settings. Prolonged training times also impede 
iterative model development and experimentation.

Techniques such as model pruning, quantization, and 
the exploration of more efficient neural network archi-
tectures offer potential pathways to reduce computa-
tional complexity without substantially compromising 
performance. Additionally, leveraging cloud computing 
resources can provide scalable computational power, 
though concerns regarding data security and patient pri-
vacy must be carefully managed in compliance with rel-
evant regulations.

Problems and difficulties in virtual histopathology methods
There are many technical problems and challenges that 
come into play with regard to the efficiency and accept-
ance of virtual histopathology techniques in medical 
imaging.

Another major technical challenge is data variability 
and quality. Images in histopathology are very sensitive 
to variations in sample preparation, staining, and imaging 
conditions. This may introduce errors and reduce the reli-
ability of the data. For example, variations in the strength 
of staining or the thickness of tissue sections may drasti-
cally alter the characteristics of the image, by which the 
analysis and understanding become pretty challenging. 
Such variability requires the following proper stages of 
standardization and pre-processing, which are time- and 
power-consuming.

Another important issue is image resolution and 
scale. Some forms of analysis will view cellular struc-
ture, which means that high resolution is necessary. 
However, high-resolution images will be large, and 
storage- and processing-intensive. This may be a sub-
sequent decrease in scalability of the various forms of 
virtual histopathology, more in resource-restricted 
environments. Efficient solutions for storing images 
and optimized algorithms for processing will be needed 
to address these concerns.

This presents additional complexities: In histopa-
thology, images produced using different modalities, 
such as histological and molecular, are often combined. 
Data for each type may be of variant formats and variant 
resolutions, and it is thus challenging to align and cor-
relate them accurately. These kinds of complications call 
for sophisticated techniques in the integration of multi-
modal data for harmonizing and analyzing several data-
sets, which may be quite technically demanding.

Another key aspect is that of computational resource 
demands. Modern methods, most of which operate on 
deep learning algorithms, require heavy computational 
resources to train and predict. The requirement for pow-
erful computing systems is sometimes an issue, espe-
cially for less endowed institutions or labs. Improving 
algorithms towards better efficiency and the use of cloud 
computing resources are possible solutions to help with 
this challenge.

Algorithm strength is very important. Many algo-
rithms, particularly those that use machine learning 
and deep learning, are very good at specific datasets but 
sometimes perform poorly on new or different data. The 
problem may be due to overfitting or poor generalization. 
Therefore, ensuring the strength of algorithms to work 
well with multiple datasets and situations is paramount 
for their applicability in real-life scenarios. In turn, other 
techniques such as cross-validation and augmentation 
enhance the strengths of these algorithms.

Problems with data privacy and security are very 
important: Histopathological data is very sensitive, and 
dealing with this data requires strict privacy and secu-
rity rules. Making sure that the data is anonymized and 
kept safe from unauthorized access is crucial for pro-
tecting patient confidentiality and following regulatory 
standards.

Another issue is model visualization transparency, 
particularly in deep learning. Sometimes, deep learning 
models are pejoratively referred to as “black box” because 
the way these models make decisions is obscure. Model 
interpretability, using visualization techniques or fea-
ture attribution methods, is the key to gaining the trust 
of doctors in carrying these methods out to real medical 
situations.
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There are several challenges in integrating virtual his-
topathology methods into the clinical workflow. Doctors 
need to trust and accept these methods to ensure they 
meet the medical standard and can be used easily daily. 
This can be resolved by working in collaboration with 
doctors and through rigorous validation studies.

AI-driven histopathology methods are faced with 
challenges related to regulatory and ethical concerns. It 
would be necessary to abide by rules and conduct oneself 
ethically, to check if AI systems are fair and transparent. 
Rules are followed and regulatory bodies are collaborated 
with for compliance and ethical integrity during the task.

Finally, the requirement for training and expertise 
makes the application of these methods difficult. Genera-
tion, utilization, and maintenance of sophisticated algo-
rithms require special types of knowledge and abilities. 
Providing training and resources to professionals for the 
use and understanding of these methods can help in clos-
ing this gap and promoting their use. These are technical 
problems and challenges that need to be fixed to improve 
virtual histopathology methods and to make sure that 
they work well in medical practice. Research and devel-
opment will continue, and the teamwork of the research-
ers, doctors, and regulatory groups will be very critical in 
surmounting these roadblocks to advance virtual histo-
pathology in medical imaging. Table 16 provides a com-
parative analysis concerning the strengths, weaknesses, 
and potential applications of different virtual histopathol-
ogy approaches.

Future challenges and issues in virtual histopathology 
methods
As virtual histopathology methods continue to evolve, 
several future challenges and issues are expected to arise, 
influencing the trajectory of this field.

One of the future outstanding challenging issues is the 
scalability and generalization of the algorithms. As virtual 
histopathology systems are more widely deployed, there 
will be the need to ensure that the algorithms can handle 

diverse and large-scale datasets from various sources or 
populations.

Models perform well on some datasets but are thrown 
off by different imaging conditions, tissue types, and 
patient backgrounds; hence, strong algorithms that 
could adapt to such differences without large require-
ments for retraining will be important for their broader 
applications.

Another critical challenge is the integration of new 
technologies. The rapid development of linked tech-
nologies such as genomics and proteomics brings both 
opportunities for deeper understanding and added com-
plication. Such integration of heterogeneous data from 
multiple sources maintaining accuracy and efficiency will 
require sophisticated approaches and cross-discipline 
collaboration. Doing so in a seamless manner, mining 
useful information without consuming excessive com-
puter resources, will be the challenge.

Data privacy and security will be of prime concern with 
the increased usage of virtual histopathology methods. 
Thus, strong measures of data protection will be para-
mount as the sharing and creation of sensitive medical 
data becomes more frequent. This will require future 
changes to adhere to regulations, like GDPR and HIPAA, 
that include advanced encryption and access control sys-
tems securing patient information and ensuring these are 
properly followed.

Explain and understand complex models: Large 
models will present a big challenge. As deep learning 
models get more and more complex, it will be incum-
bent that their decision-making is understood to create 
trust and facilitate their use in healthcare. New ways of 
explaining models will need to be designed by research-
ers to ensure that their predictions are understood 
clearly, especially in critical healthcare situations.

This also entails logistical and operational challenges 
in the inclusion of virtual histopathology methods within 
regular clinical practice. As such, if it hopes to secure 
successful acceptance, the system needs to ensure the 
component of ease of use and fitting within the existing 

Table 16 Comparative summary of strengths and weaknesses of various histopathology approaches

Approach Strengths Weaknesses Potential applications

Machine learning Versatile, high predictive accuracy in sim-
pler tasks, adaptable to different imaging 
modalities

Requires large, labeled datasets; often 
lacks interpretability

Diagnostic classification, data augmenta-
tion

Deep learning High accuracy in complex image recogni-
tion; learns features autonomously

High computational cost, risk of overfit-
ting with small datasets, “black box” 
interpretation

Tumor segmentation, mutation prediction, 
disease progression.

Visual path Enhances spatial resolution and image 
clarity; enables real-time applications 
in some cases

Dependent on advanced equipment, 
integration challenges with existing clini-
cal workflows

Intraoperative diagnostics, high-resolution 
imaging
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workflow. As such, it paves the way for tackling issues in 
training medical professionals, standard procedure devel-
opment, and validation and quality control processes that 
are compatible with the clinical setting.

In the future, the issue of ethics and bias in AI mod-
els will only increase, as more of these technologies are 
utilized for a varied population. Algorithms must, there-
fore, be made to be unbiased and fair, not continuing the 
gaps in healthcare currently. Mechanisms will have to be 
developed in the future for the identification and reduc-
tion of biases in train data and algorithms for ensuring 
fairness in output.

In the final analysis, the practicality and affordability 
of using advanced virtual histopathology on a large scale 
will become an important issue. Creating, testing, and 
maintaining complex systems can be very expensive for 
some institutions. Demonstration of benefits through 
carefully done clinical studies and cost-benefit analyses, 
and the finding of affordable solutions, may make more 
people begin using these methods. These future chal-
lenges will be faced by providing continuous research, 
collaboration from different fields, and a forward-looking 
approach to anticipate and minimize potential issues. 
Overcoming these challenges will help push the field of 
virtual histopathology toward better, fairer, and more 
commonly adopted solutions in medical imaging.

Technical issues and challenges for future research
One of the most critical issues is data variability and 
quality. Histopathological images are highly sensitive to 
variations in sample preparation, staining, and imaging 
conditions. These factors can introduce errors and reduce 
the reliability of data, requiring extensive standardization 
and pre-processing, which are both time- and resource-
intensive. Additionally, the resolution and scale of images 
pose significant challenges. High-resolution images, nec-
essary for detailed cellular analysis, are large and demand 
substantial storage and processing resources, which 
can limit scalability, especially in resource-constrained 
environments.

The integration of different data modalities, such as 
histological and molecular images, adds another layer of 
complexity. Aligning and correlating multi-modal data 
accurately is technically demanding and requires sophis-
ticated techniques, particularly when the data are in vari-
ant formats and resolutions. Computational demands 
are also a major concern. Modern DL algorithms require 
powerful computing systems, which may not be acces-
sible to all institutions. Improving algorithmic efficiency 
and leveraging cloud computing are potential solutions.

Algorithm robustness is another critical factor. ML and 
DL algorithms often perform well on specific datasets 
but may struggle with new or different data due to issues 

like overfitting. Techniques such as cross-validation and 
data augmentation are essential to enhance algorithm 
robustness and ensure their applicability in real-world 
scenarios.

Privacy and security of data are paramount, given 
the sensitive nature of histopathological information. 
Ensuring data anonymization and protection against 
unauthorized access is crucial for maintaining patient 
confidentiality and complying with regulatory standards. 
Additionally, the “black-box” nature of DL models can 
hinder their acceptance in clinical settings. Improving 
model interpretability through visualization techniques 
or feature attribution methods is essential for gaining the 
trust of healthcare professionals.

The integration of virtual histopathology methods into 
clinical workflows presents logistical and operational 
challenges. Collaboration with clinicians and rigorous 
validation studies are necessary to ensure these methods 
meet medical standards and are easy to use. Furthermore, 
as AI-driven histopathology methods become more prev-
alent, addressing ethical and regulatory concerns will be 
critical to ensuring fairness and transparency.

Looking forward, the scalability and generalization of 
algorithms will become increasingly important as virtual 
histopathology systems are more widely deployed. Ensur-
ing that algorithms can handle diverse and large-scale 
datasets without extensive retraining will be crucial. The 
integration of new technologies, such as genomics and 
proteomics, will require sophisticated approaches and 
cross-disciplinary collaboration to maintain accuracy and 
efficiency.

In summary, while the strengths of ML, DL, and Vis-
ual Path approaches in virtual histopathology are well-
established, addressing the technical challenges they 
present is essential for realizing their full potential. Con-
tinuous research, collaboration, and a forward-looking 
approach will be necessary to overcome these challenges 
and advance the field of virtual histopathology in medical 
imaging.

Emerging techniques for data privacy and computational 
efficiency
As virtual histopathology relies on processing sensitive 
medical data, ensuring data privacy and managing com-
putational demands are critical. The following are some 
of the recent non-AI techniques gaining traction: 

 i. Federated Learning for Distributed Data Analy-
sis: Federated learning enables multiple institutions 
to collaborate on model training without sharing 
the raw data, thus safeguarding patient privacy. 
Each institution’s data remains within its local sys-
tem, with only model parameters being shared and 
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updated globally. This decentralized approach min-
imizes the risk of data breaches, making it particu-
larly useful in clinical environments.

 ii. Homomorphic Encryption for Secure Data Pro-
cessing: Homomorphic encryption allows compu-
tations to be performed on encrypted data without 
decrypting it first. This enables sensitive patient 
data to be securely processed by external servers or 
cloud resources while maintaining strict confiden-
tiality. Applications include secure diagnostic pro-
cessing and analysis in centralized research facili-
ties.

 iii. Model Compression Techniques to Improve 
Efficiency: Model compression methods, such as 
pruning and quantization, reduce the complexity 
of computational models by trimming less relevant 
data and shrinking model size. These techniques 
enable faster model inference and lower energy 
consumption, making virtual histopathology feasi-
ble in lower-resource settings, such as rural clinics 
or mobile health units.

 iv. Data Anonymization and De-identification Pro-
tocols: To comply with data protection regulations, 
de-identification techniques remove or mask iden-
tifiable patient information in histopathological 
data. Coupled with anonymization practices, these 
protocols allow data sharing for research and diag-
nostic development without compromising patient 
privacy.

Conclusion
Contrarily, virtual histopathology techniques are a quan-
tum leap in medical imaging that empowers investigators 
to realize very new and unprecedented capabilities for 
the examination and interpretation of tissue samples. The 
methods of digitization and computational analysis of 
histological slides have innovations such as higher diag-
nostic accuracy, increased workflow efficiency, and the 
discovery of new mechanisms of diseases.

These innovative technologies have allowed for the 
development of scanners and AI-driven machine learn-
ing algorithms to make higher-resolution, more accurate, 
and subjective measures for identifying subtle changes 
in tissue morphology and pathology, best supporting the 
clinician’s decision and promoting further collaborative 
research efforts that convey greater benefits to patients.

Virtual histopathology techniques are based on digi-
tal slides and computational analysis, offering a broad 
range of new opportunities in tissue sample examina-
tion. Better image acquisition through AI algorithms 
identifies tiny changes in the tissues most correctly, 
enabling then a finer diagnosis. In addition, digitization 

enables faster workflows. It follows, by natural exten-
sion, how there will be greater efficiency through anal-
ysis and collaboration. Another important aspect is 
discovery potential. Virtual analysis helps the discovery 
of new mechanisms of diseases that will allow for the 
discovery of better treatments. These benefits extend 
beyond the confines of the laboratory itself.

Telepathology also needs to be considered in this 
regard. Virtual slides can enable remote consultation 
and second opinions at a minimum on a global scale, 
especially in resource-limited areas. Moreover, ensur-
ing the responsible use of validation and ethics is of 
great importance. Validation is a continuous process 
and adherence to ethics needs to be kept up so that 
these technologies retain trustworthiness and are 
responsibly used clinically.

Virtual histopathology also offers excellent poten-
tial for applications in telepathology, which includes 
remote consultancies and second opinions, particu-
larly at locations that have limited access to specialized 
expertise. Keeping in view the continuous development 
of these technologies, a sine qua non would always be 
further validation studies and following ethical proto-
cols that ensure their inbuilt efficacy, reliability, and 
ethics regarding use in clinics. Virtual histopathol-
ogy techniques singlehandedly drive a very hard para-
digm shift toward individualized medicine, base-driven 
care, and population health-diagnostic and therapeutic 
standards are foreshadowed to be rewritten soon.
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