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Abstract
Background: Deep learning models assist ophthalmologists in early detection of diseases from retinal images and timely
treatment.
Aim: Owing to robust and accurate results from deep learning models, we aim to use convolutional neural network
(CNN) to provide a non-invasive method for early detection of eye diseases.
Methodology: We used a hybridized CNN with deep learning (DL) based on two separate CNN blocks, to identify multiple
Optic Disc Cupping, Diabetic Retinopathy, Media Haze, and Healthy images. We used the RFMiD dataset, which contains vari-
ous categories of fundus images representing different eye diseases. Data augmenting, resizing, coping, and one-hot encoding
are used among other preprocessing techniques to improve the performance of the proposed model. Color fundus images
have been analyzed by CNNs to extract relevant features. Two CCN models that extract deep features are trained in parallel.
To obtain more noticeable features, the gathered features are further fused utilizing the Canonical Correlation Analysis fusion
approach. To assess the effectiveness, we employed eight classification algorithms: Gradient boosting, support vector
machines, voting ensemble, medium KNN, Naive Bayes, COARSE- KNN, random forest, and fine KNN.
Results: With the greatest accuracy of 93.39%, the ensemble learning performed better than the other algorithms.
Conclusion: The accuracy rates suggest that the deep learning model has learned to distinguish between different eye
disease categories and healthy images effectively. It contributes to the field of eye disease detection through the analysis
of color fundus images by providing a reliable and efficient diagnostic system.
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Introduction

The human retina, a delicate and intricate neural tissue lin-
ing the back of the eye, plays a pivotal role in vision by

grasping and interpreting light signals. However, this vital
organ is susceptible to various pathologies that, if
undetected and untreated, can lead to irreversible vision
impairment. Among these, diabetic retinopathy (DR),
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media haze (MH), and optic disc cupping (ODC) stand out
as significant contributors to visual morbidity.

Globally, approximately 2.2 billion individuals experi-
ence either near or distance vision impairments. In at least
1 billion of these cases, vision impairment is either pre-
ventable or has not yet been addressed.1 DR, a common
complication of diabetes, poses a substantial threat to
vision health. The condition manifests as damage to the
blood vessels in the retina, leading to leakage and abnor-
mal growth.

DR has the potential to result in various severe eye
complications. Over time, approximately 1 in 15 indivi-
duals with diabetes will experience diabetic macular
edema (DME). DME occurs when blood vessels in the ret-
ina release fluid into the macula, a vital region of the retina
essential for clear central vision, leading to blurred vision.
The progressive and irreversible loss of sight caused by
glaucoma is caused by increased pressure within the eye-
ball.2 Additionally, DR can stimulate the growth of abnor-
mal blood vessels that extend from the retina, obstructing
the drainage of fluid from the eye and giving rise to a form
of glaucoma, a group of eye diseases known for causing
visual impairment and blindness.3 The identification of
DR through automated means is crucial, given that it
stands as the primary contributor to irreversible vision
impairment among the working-age populace in devel-
oped nations.4 Figure 1 shows the normal human eye
with various parts outlined.

MH, characterized by opacities in the ocular media, can
impede the clarity of fundus images, complicating the diag-
nosis of underlying retinal conditions. The opacity in the
eye caused by MH can serve as an indicator for the onset
of conditions such as cataracts, corneal swelling, vitreous
cloudiness, or constricted pupils. Therefore, it is crucial to
promptly and precisely diagnose MH to prevent potential
vision loss that may result if the condition is not treated
in a timely manner.5

ODC, often associated with glaucoma, involves the
excavation of the optic nerve head, causing progressive
damage to the optic nerve fibers. In humans, glaucoma is
the second leading cause of blindness, and the number of
cases is steadily increasing.6–8 Optic nerve cupping is
divided into two primary categories. The initial classifica-
tion is attributed to injury or trauma, whereas the second
arises from diverse medical conditions or diseases.9

Several medical conditions associated with optic nerve cup-
ping encompass

• Optic nerve head drusen
• Glaucoma
• Optic nerve atrophy
• Optic neuritis

The traditional methods of diagnosing retinal diseases have
been labor-intensive, and reliant on manual examination by

skilled ophthalmologists. However, with the emergence of
deep learning (DL) technologies, particularly within the
realm of convolutional neural networks (CNNs), there has
been a paradigm shift in the approach to retinal disease
diagnosis. It is promising that DL models are capable of
learning intricate patterns and features automatically based
on vast datasets, providing a route to accurate and efficient
diagnosis.

Variability in image quality, noise, and low-contrast con-
ditions can impair the ability of models to accurately cap-
ture disease-specific features, often limiting their
performance in real-world applications. Current methodolo-
gies for retinal disease classification primarily rely on single
CNN architectures, which, while effective in some cases,
may lack robustness across diverse datasets. Existing
approaches can struggle with feature extraction, particularly
in noisy or low-contrast images, resulting in inconsistent
accuracy. Furthermore, models that do not effectively inte-
grate multi-source features may fail to capture the complex-
ity of retinal diseases, reducing their ability to generalize
across cases.

To address these challenges, we propose a novel method-
ology utilizing dual CNNs for feature extraction, followed by
canonical correlation analysis (CCA) fusion to enhance fea-
ture representation. By employing two CNNs, the proposed
model captures a broader range of characteristics within ret-
inal images, and CCA fusion effectively combines these
complementary features, creating a comprehensive represen-
tation. This study initially focuses on evaluating the efficacy
of raw feature extraction and CCA fusion in classifying ret-
inal disease without the use of enhancement techniques such
as contrast adjustment or noise handling.

This foundational approach allows for a baseline assess-
ment of model performance under standard imaging

Figure 1. Normal human eye with various parts.
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conditions, providing a basis for future integration of con-
trast enhancement and noise-handling methods.
Ultimately, the methodology aims to improve the robust-
ness and accuracy of retinal disease classification, contrib-
uting to the development of more reliable diagnostic tools
for clinical applications.

Research objective
The following are the research objectives of the current
study

• To design and implement a hybrid CNN architec-
ture for extracting suitable features from retinal
fundus.

• To apply CCA for fusing features extracted by the
hybrid CNN. This fusion aims at capturing comple-
mentary information from multiple feature spaces.

• To make use of benchmark datasets RFMiD and
RFMiD 2.0 for model training and validation.
Testing is to analyze model’s robustness and general-
izability across different datasets.

• To evaluate the proposed model against existing
state-of-the-art models to demonstrate its superior
performance in terms of classification accuracy.

• To contribute to automated medical diagnosis by
providing a more accurate and reliable tool for the
classification of retinal diseases, aiding ophthalmolo-
gists in early detection and treatment.

Research contributions
The following key contributions are made in this study.

• A novel hybrid CNN architecture is introduced
that improves feature extraction from retinal fun-
dus images by capturing low-level and high-level
features more effectively than traditional CNN
models.

• TheCCA fusionmethod is utilized in this study for fea-
ture fusion. Features extracted using multiple CNN
models are combined for enhanced feature representa-
tion and improved classification performance.

• The proposed hybrid CNN model is used for experi-
ments on the latest RFMiD and RFMiD 2.0 datasets
for performance evaluation in comparison to existing
state-of-the-art approaches. A thorough evaluation of
the model is carried out concerning robustness and
ability to generalize across different datasets.

• The proposed model enhances the tools available for
the automated classification of retinal diseases,
potentially improving clinical workflows and patient
outcomes by aiding in the early and accurate diagno-
sis of retinal conditions.

The rest sections of the article include the following.
Section “Overview of existing literature” provides the sum-
mary of related work. Section “Materials and methods” pre-
sents the suggested method, covering aspects such as image
acquisition, preprocessing, data augmentation, feature
extraction, and classification. In Section “Results”, the sta-
tistics obtained post-training for the customized CNN mod-
els are outlined and classified using machine learning
models. The study is concluded in Section “Conclusion
and future direction”.

Overview of existing literature
In literature, retina disease classification using DL has been
extensively explored to improve diagnostic accuracy and
efficiency. Numerous studies have demonstrated the effi-
cacy of identifying and differentiating between various ret-
inal conditions.10

In study byDas et al.11 the author developed and evaluated
a compact CNN using four retinal image datasets: DRD,12

Messidor-2,13 IDRiD,14 and RFMiD,15 Employing a 12-fold
cross-validation technique, themodel achieved notable accur-
acy: 79.96% on DRD, 94.75% on Messidor-2, 96.74% on
IDRiD, and 89.10% on RFMiD. These results highlight the
model’s effectiveness andadaptability acrossvarious datasets,
providing a valuable tool for the early detection of retinal
diseases and improving patient care in ophthalmology.
The study16 explored the use of variousDLmodels to detect
eye diseases using fundus imaging. An automated system
was developed to process and enhance a dataset of 4697
images through brightness and contrast adjustments, fea-
ture extraction, data augmentation, and image classification
using CNN. Among the five models evaluated, ResNet152
proved the most effective, achieving an AUC score of
96.47%. The paper also includes visualizations of model
predictions, highlighting confidence scores and heatmaps
that indicate focal points, especially where lesions are
detected.

The study by Nagamani and Rayachoti17 aims to
develop a DL model using OCT images to enhance the clas-
sification and segmentation of retinal diseases. It classifies
volumetric OCT images, recognizing conditions such as
DME, CNV, AMD, and DN. The research introduces a
Modified ResNet-50 approach and uses a Bi-LSTM-based
deep recurrent CNN for image segmentation. The model,
tested on publicly available datasets, achieves 99.76%.
Similarly,18 introduces the Fundus-DeepNet system, an
automated multi-label DL classification system for identify-
ing multiple ocular diseases in fundus images. A compre-
hensive pre-processing process involves cropping,
resizing, enhancing contrast, removing noise, and enhan-
cing data. Deep feature representations are then extracted
using High-Resolution Network and Attention Block, fur-
ther enhanced by SENet Block to consolidate them into a
single representation. Finally, a discriminative restricted
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Boltzmann machine classification model, incorporating a
Softmax layer, generates a probability distribution for iden-
tifying eight ocular diseases.

The authors address the challenge of automatic detection
of retinal diseases, emphasizing the limitations associated
with low contrast, illumination inhomogeneity, conver-
gence rates, overfitting, and classification errors.19 The pro-
posed approach employs ensemble-based DL techniques
for enhanced retinal disease prediction, structured into pre-
processing, adaptive Gaussian kernel PDF-based matched
filtering, and post-processing for segmentation, and classifi-
cation stages. The classification stage employs three
approaches, EfficientNet B0, VGG16, and ResNet-15220

where the feature vectors are fused through an ensemble
approach. The proposed method demonstrates impressive
performance metrics, including 99.71% accuracy, 98.63%
precision, 98.25% recall, and 99.22% F-measure.

The authors21 introduce an automated DL-based frame-
work for the non-invasive diagnosis of multiple eye dis-
eases using color fundus images. The study utilizes a
multi-class eye disease dataset RFMiD15 to develop an effi-
cient diagnostic system. The framework involves extract-
ing multi-class fundus images from a multi-label dataset
and applying various augmentation techniques to enhance
real-time robustness. Amulti-layer neural network is devel-
oped to train and test images for the diagnosis of different
eye problems. The key component extracts relevant fea-
tures from the input color fundus image dataset, and these
processed features are used for prognostic diagnostic
determinations.

The study by Pan et al22 aims to enhance ophthalmic diag-
nostics through an automated deep-learning system. In total,
1032 fundus images were gathered from 516 patients using a
fundus camera. InceptionV3 and ResNet-50 DL models
were employed for classification. A 93.81% accuracy was
achieved for ResNet-50 and 91.76% accuracy was achieved
for Inception V3. The research serves as a reference for clin-
ical diagnosis or screening of DR and other eye diseases.
Along the same directions,23 addresses the challenge of auto-
matically detecting disease states of the retina by developing
a model VGG-1924 architecture. The model utilizes transfer
learning and is educated on an extensive dataset comprising
84,568 cases of OCT25 retinal images, covering four condi-
tions: CNV, DN, DME, and normal retinal form. The pro-
posed model achieves a remarkable classification accuracy
of 99.17%, with specificities of 0.995 and sensitivity of
0.99, surpassing existing models.

The research by Pandey et al.26 endeavors to develop an
algorithm for classifying various retinal pathologies in fun-
dus photographs. The researchers utilized a deep convolu-
tional ensemble comprising five CNNs to categorize
retinal images into DR, glaucoma, ARMD, and normal
eyes. The CNN architecture was based on the InceptionV3
model with pretraining on the ImageNet dataset, using
43,055 images from 12 datasets.They used DiaretDB,27

Drishti-GS,28 DRIVE,29 HRF,30 IDRiD,14 Kaggle-39,31

Kaggle-DR, ODIR,32 MESSDIDOR,33 ORIGA-light,34

REFUGE,35 and STARE36 datasets. The study found that
the DCE achieved a mean accuracy of 79.2%.

The research by Thanki et al.37 introduces an innovative
computer-aided triage system that incorporates a DL and
ML for the development and analysis of color retinal fundus
images, specifically aimed at classifying images indicative
of glaucoma. The methodology involves extracting deep
features from retinal images through a deep neural network,
then classification and analysis utilizing various ML classi-
fiers. The experimental findings demonstrate that the inte-
gration of a DL with a logistic regression-based classifier
surpasses the performance of existing glaucomatous triage
systems.

The study Almustafa et al.38 employs the STARE data-
set,36 comprising 385 retinal images with various defects.
Pre-processing techniques, including augmentation and nor-
malization, are applied to refine features for training DL algo-
rithms. The paper evaluates five DL models EfficientNet,
3-Layers CNN, VGG-16, InceptionV2, ResNet-50, and tun-
ing hyperparameters such as batch size. EfficientNet emerges
as the best-performing model, achieving 98.43% accuracy.
For each of these 14 retinal defects, unique model configura-
tions, hyperparameter tuning, and preprocessing techniques
are credited with its success.

To enhance clinical usability, the study by Ho et al.39

aimed to simultaneously detect multiple ophthalmic path-
ologies. The researchers utilized 2560 images from the
RFMiD, dividing them into training (1920) and validation
(640) sets. To predict the presence of any pathology and cat-
egorize 28 different pathologies, five CNN architectures
were selected and trained. To optimize training, models
were designed to minimize asymmetric loss, a modified ver-
sion of binary cross-entropy. As a result of the ensemble
network, an AUROC score of 0.9613 was demonstrated
for disease screening. Among the individual models, the
SE-ResNeXt architecture achieved the highest single net-
work score at 0.9586.

A CNN has been effectively applied to color fundus
images for automated glaucoma detection. On the
ACRIMA40 database, the method achieved high perform-
ance, with an accuracy of 96.64%, sensitivity of 96.07%,
specificity of 97.39%, and precision of 97.74%.41 The
research by Rodriguez et al.42 utilizes the MuReD dataset
constructed from publicly available fundus disease classifi-
cation datasets. Image data quality is enhanced through a
series of processing steps that encompass a broad range of
diseases. It shows improvements in AUC scores of 7.9%
for disease detection and 8.1% for disease classification
over state-of-the-art approaches for the same task.

The authors utilize customized particle swarm optimiza-
tion (CPSO) combined with four advanced machine-learning
classifiers to enhance glaucoma prediction performance. It
operates through five main phases preprocessing,
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segmentation, feature extraction, selection of the best-scored
features, and classification using the CPSO-based classifier.
The images are sourced from the publicly available Digital
Retinal Images for Optic Nerve Segmentation dataset.
These features are then employed for training and testing,
generating multiple result sets from various CPSO and super-
vised machine-learning classifier combinations.43

The author’s focus is on the development of an intelligent
algorithm using DL for the classification.44 A dataset com-
prising 501 images, including normal eyes and those with
RVO. Fundus disease specialists categorized the images
into four groups: healthy fundus, RVO, BRVO, CRVO,
and MBRVO. The ResNet1845 network model was
employed for diagnosis. The intelligent system exhibited a
specificity of 100% for healthy fundus. For the RVO groups,
various attention mechanisms yielded specificities ranging
from 0.45 to 0.91, with the ResNet18+ model achieving
the highest specificities and accuracy across all groups.

The study by Elangovan and Nath46 introduces a deep
ensemble model using stacking ensemble learning for clas-
sifying glaucomatous and normal fundus images, lever-
aging 13 pre-trained CNN models in 65 configurations. A
two-stage ensemble selection with probability averaging
and support vector machine (SVM) final classification
achieves robust performance. Testing on modified data-
bases (DRISHTI-GS1-R, ORIGA-R, RIM-ONE2-R,
LAG-R, ACRIMA-R) shows accuracies of up to 99.6%.

The authors in Abitbol et al.47 aim to evaluate the capability
of a DL framework for differentiating between DR, SCR,
RVOs, and normal eyes using ultra-widefield color fundus
photography. The study employs cross-validation and augmen-
tation techniques for robust performance, utilizing an Adam
optimizer for training. The model achieves its best performance
at 10 epochs, yielding an accuracy of 88.4%. Specific disease-
wise assessments reveal notable results: For DR, an accuracy of
85.2%; for RVO, accuracy is 88.4%; for SCR, accuracy is
93.8%; and for Healthy, an accuracy of 86.2%.

The objective of Kumar and Bindu48 fundus imaging is
to examine eye-related anomalies. The framework involves
preprocessing steps such as contrast enhancement, over-
sampling, resizing, and normalization. Densenet201 and
EfficientNetB4 are employed for disease risk detection,
and ResNet105 is added for multi-disease classification.
The proposed framework is trained and validated on the
RFMiD and tested on the ODIR dataset. The systematic
review is given in Table 1.

Materials and methods
To identify retinal disorders using fundus images, we propose
DL and ML algorithms. Data is gathered from two datasets
RFMiD15 andRFMiD 2.0.49Multi-labeled and single-labeled
images are included in these datasets. Single-label diseases are
separated and diseases with more images are selected. The
suggested methodology is shown in Figure 2. The diseases

we select contain four classes given inTable 2.After acquiring
the dataset we perform preprocessing steps. Due to the differ-
ent sizes of images in the dataset, preprocessing involves
resizing them to the same size, augmentation to extend and
balance the dataset, then cropping the unwanted area to
increase the efficacy of the model and partitioning them into
training and testing sets. To reduce computing time, we con-
vert images into an array and perform one hot encoder.

Further, we implement two CNN models to extract fea-
tures for three retinal diseases and one healthy class. After
feature extraction from two CNNs CCA fusion is utilized
to concatenate the features and apply ML algorithms to
classify retinal images and healthy class. Results using
ML models are analyzed in the context of accuracy, recall,
sensitivity, precision, and F1 score.

Data acquisition
The dataset was compiled from RFMiD15 and RFMiD 2.0,49

with a focus on eye disease classes that contained over 100
fundus images. The process involved converting the origin-
ally multi-labeled dataset into a multi-class dataset, essen-
tially transforming it from a multi-label object detection
problem to a multi-class classification problem. In the final
dataset, images were chosen based on their affiliation with
a single class and having more than 100 images in their
respective categories. Excluding the normal category, three
specific diseases DR, MH, and ODC were singled out from
a pool of 49 diseases. The Total Number of images with
classes DR, MH, ODC, and WNL are 471, 334, 172, and
931, respectively as mentioned in Table 2.

A few sample images concerning each class from the
datasets are shown in Figure 3.

Preprocessing
Preprocessing is crucial for enhancing the quality of image
visualization, significantly impacting the success and accuracy
of subsequent stages in the proposed method. Medical images
often present additional challenges such as poor quality or
extraneous content, which can hinder effective visualization.
Addressing these issues is essential, as low-quality images
can result in unsatisfactory outcomes.50 By using histogram
equalization techniques to enhance images, details are lost
and the impression is artificial.51,52 In the preprocessing phase,
techniques such as data augmentation, resizing, cropping, and
one-hot encoding are employed to enhance model efficiency.

Resize. Upon analyzing images across all four classes DR,
MH, ODC, and WNL, the images’ shapes in the dataset var-
ied. To address this, all images were synthesized to have a
uniform shape of 224 × 224 × 3. This standardization
ensures that the model is less prone to errors. Training on
smaller images offers the advantage of quicker iterations
and more efficient experimentation during the development

Ejaz et al. 5



Table 1. Review of related studies.

Year Ref. Dataset Classes Method Results

2024 Das et al.11 DRD, Messidor, IDRiD, RFMiD 5 DL Accuracy: RFMiD 89.10% IDRiD 96.74
% Messidor-2 94.75% DRD 79.96%

2024 Nguyen et al.16 Kangbuk Samsung Hospital 2 DL ResNet152 Vision
Transformer
InceptionResNetV2 RegNet
ConVNext

Accuracy ResNet152 89.17% Vision
Transformer 87.26%
InceptionResNetV2 88.11% RegNet
88.54% ConVNext 89.08%

2024 Pandey et al.26 RFMiD, RFMiD 2.0 4 CNN Accuracy 88.72%

2024 Nagamani and
Rayachoti17

OCT 5 ResNet-50 Accuracy 99.76%

2024 Al-Fahdawi
et al.18

OIA-ODIR 8 Fundus-DeepNet AUC 99.86%

2023 Kumar and
Singh19

Fundus Images 11 ResNet-152 EfficientNet B0
VGG 16

Accuracy 99.71%

2023 Sengar et al.21 RFMiD 4 EyeDeep-Net Accuracy Validation 82.13% Testing
76.04%

2023 Pan et al.22 Hospital Shenzhen University 3 Pre-Trained DL Model
Inception V3 ResNet-50

Accuracy: ResNet 93.81% InceptionV3
91.76%

2023 Choudhary
et al.23

OCT 4 VGG-19 Accuracy 99.17%

2023 Pandey et al.26 DiaretDB, Drishti-GS, HRF,
DRIVE, IDRiD, Kaggle-39,
Kaggle-DR, STARE, ODIR,
MESSIDOR, ORIGA-light,
REFUGE

4 Deep convolutional Ensemble Accuracy 79.2%

2023 Thanki37 DRISTHI-GS 2 DNN (Features Extraction) ML
(Classification)

Accuracy 99.6%

2023 Almustafa
et al.38

STARE 15 DL RestNet-50 EfficientNet
3-Layer CNN VGG-16
InceptionV2

Accuracy RestNet-50 54.61%
EfficientNet 98.43% 3-Layer CNN
80.37% VGG-16 87.50% InceptionV2
96.87%

2022 Ho et al.39 RMFiD 29 Deep Ensemble Learning Sensitivity for all 29 class Range 0.00–
1.00

2022 Rodríguez
et al.42

MuReD 20 Transformer Give different Accuracy for 20 classes
ranging from 0.87–0.99

2022 Xu et al.44 Nanjing Medical University 4 DL RestNet-18 ResNet18+SE
ResNet18+CBAM
ResNet18+CA

Accuracy healthy 100% BRVO 94.64%
CRVO 98.21% MBRVO 96.43%

2022 Abitbol et al.47 Creteil University Hospital 4 DL Accuracy RVO 88.4% DR 85.2% CSR
93.8% Healthy 86.2%

2021 Kumar and
Bindu48

RFMiD 29 Ensemble CNN F1 Score 94.32%

2021 Elangovan and
Nath41

ACRIMA 2 CNN Accuracy 96.64%

DL: deep learning; CNN: convolutional neural network.
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process.53 This approach enables faster model training, facili-
tating a more streamlined and agile development process.

Data augmentation. Data augmentation is indeed a crucial
step in preprocessing for machine learning tasks, especially
in image classification. The Literary works21,54,55 use data
augmentation for classification. We gather 1908 images
from the dataset. We organized the dataset into four distinct
classes, namely DR, MH, ODC, and normal (WNL). At the
outset, the dataset includes 334 images depicting MH, 471
images depicting DR, 172 images depicting ODC, and 931
images of WNL as shown in Table 2. By applying various
transformations to the original data, such as flipping, rotat-
ing, scaling, or adding noise, we can increase the variety of
the dataset, thereby reducing overfitting probability and
helping the model generalize better to unseen data.

Flipping an image horizontally or vertically creates mir-
ror images while rotating an image at different angles intro-
duces additional variations. We use horizontal flips and
rotation at different angles such as 60◦, 65◦, 80◦, 90◦

Sengar et al.21 used for fundus images. Figure 4 shows the

original image of ODC and different augmented images.
After implementing data augmentation on the dataset to
address the problem addressing data overfitting. Moreover,
we encountered a significant class imbalance issue where
the WNL class had a substantially higher number of images
compared to the other classes. This created a challenge as it
could potentially introduce biases in the results. To tackle
this problem, we implemented data augmentation techniques
to balance the classes. For classification, we split the datasets
into 70:20:10 for training and testing, and validation sets.
This implies that 70% of randomly selected Images were
employed during the training phase, while 20% were set
aside for testing and 10% was used for validation.

Cropping. Cropping as a preprocessing step is essential in
many image-related tasks, helping to focus on the most rele-
vant parts of the data, improve model performance, and
reduce computational demands. It involves removing
unwanted outer areas from an image or signal to focus on
the region of interest. In terms of classification accuracy,
cropping-based image classification performed better than
non-cropping-based image classification.56

One-hot encoder. The one-hot encoder is used to transform
categorical labels into a numerical format that the ML
model can interpret. By converting each class label into a
binary vector with a single “1” representing the class and
“0”s elsewhere, one-hot encoding enables a clear and dis-
tinct representation of each class. This transformation sup-
ports compatibility with neural network architectures by
allowing the use of categorical cross-entropy as a loss func-
tion, which compares these one-hot encoded labels with
model predictions. Ultimately, this technique enhances the
model’s ability to differentiate between classes effectively,

Figure 2. Proposed approach’s architecture.

Table 2. Number of images in RFMiD and RFMiD 2.0 datasets.

Diseases RFMiD RFMiD 2.0 Total

DR 401 70 471

MH 315 19 334

ODC 155 17 172

WNL 669 262 931

DR: diabetic retinopathy; MH: media haze; ODC: optic disc cupping.
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improving its capacity to learn and generalize in multi-class
image classification tasks.

Experimental setup. The study used Python to conduct trials
on a 64-bit version of the Windows 10 operating system.
This system was powered by an Intel Core i5 7th
Generation CPU, contained 8GB of RAM, and offered a
237GB storage capacity.

Proposed deep learning architecture
DL is highly effective for image feature extraction due to its
capability to autonomously acquire hierarchical patterns

and representations from raw pixel data. CNN layers,
such as convolutional, pooling, and fully connected layers,
work together to detect and abstract features like edges, tex-
tures, and shapes, which are crucial for understanding
image content. Feature fusion is a pivotal technique in
leveraging the strengths of multiple feature sets derived
from different models or sources. In this study, we employ
CCA to fuse features extracted from two CNN models.
This approach aims to enhance the representation of data
by capturing the complementary information provided by
each model. Once features are extracted, traditional
machine learning algorithms, such as SVMs, random
forest (RF), etc. can be employed for image classification.

Figure 3. Sample images for, (a) Diabetic retinopathy, (b) Media haze, (c) Optic disc cupping, and (d) Healthy eye.

Figure 4. (a) Original (b) flipped (c) 60◦ rotation (d) 65◦ rotation (e) 80◦ rotation (f) 90◦ rotation.
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This hybrid approach leverages the strengths of CNNs in
feature extraction and the robustness of classical machine
learning methods for classification tasks, often resulting in
improved accuracy and performance in image analysis
applications.

Deep CNN architecture. Classification is a crucial step in
differentiating between disordered and healthy images.
Recent studies have proposed various schemes for utilizing
CNN models. One approach is to train the model using
extensive datasets, while another involves using a pre-
trained model through transfer learning. The proposed
method employs a hybrid CNN model, comprising two
main blocks: CNN-1 and CNN-2. These blocks first train
on a large dataset of images, and then transfer the learned
knowledge to subsequent blocks to assist in disease diagno-
sis. CNN-1 and CNN-2 contain 12 and 20 layers, respect-
ively, including 2-dimensional Conv2D layers, and batch
normalization layers. Additionally, they feature max pool-
ing, dropout, and dense layers. Table 3 provides configur-
ation details of both CNN models while Tables 4 and 5
provide a detailed overview of the layers for both CNN
models.

In the proposed approach, we used CCA fusion to con-
catenate features extracted from both CNN models. The
ensemble method’s primary advantage lies in its ability to
leverage the complementary strengths of individual models,
potentially leading to improved diagnostic accuracy com-
pared to using each model independently. The 20-layer
CNN, for instance, includes batch normalization and add-
itional layers that enhance feature extraction, while the
12-layer CNN may perform better in terms of computa-
tional efficiency.

Feature extraction. Feature extraction is a critical compo-
nent of the proposed model. In this study, we employed
two CNNs to extract complementary features from retinal
fundus images. CNN-1, structured with 12 layers, captures
fundamental image patterns through a series of convolu-
tional and pooling layers. Its output is a high-dimensional
feature map, which is then flattened into a one-dimensional
array for further processing. CNN-2, with its more complex
architecture of 20 layers, including batch normalization and
additional convolutional layers, is designed to capture more
intricate features that are crucial for identifying subtle indi-
cators of DR. Similar to CNN-1, the output of CNN-2 is
also flattened, ensuring a consistent format for feature
representation.

To effectively combine the features extracted from both
CNNs, we employed CCA fusion. This method aims to
identify linear combinations of the features from CNN-1
and CNN-2 that maximize their correlation, thereby enhan-
cing the overall feature representation. The flattened feature
vectors from both networks are input into the CCA algo-
rithm, which computes canonical variables that best
represent the combined features. The resulting fused feature
vector retains the most relevant information from both mod-
els, providing a comprehensive representation for the final
classification layer. This approach not only improves
diagnostic accuracy but also leverages the unique
strengths of each CNN in the detection of retinal diseases.

Table 3. Configuration of both convolutional neural network
(CNN) models.

Name Parameter

Input Fundus images from both dataset

Batch size 32

Optimization function Adam optimizer

Image size 224 × 224 × 3

Loss function Categorical cross-entropy

No of epochs 20

Activation function Relu, Softmax

Dropout 40%

Table 4. An overview of 12-layer convolutional neural network
(CNN).

Layer Output Size Parameters

Conv2D (None, 222, 222, 32) 896

MaxPooling2D (None, 111, 111, 32) 0

Conv2D-1 (None, 109, 109, 64) 18,496

MaxPooling2D-1 (None, 54, 54, 64) 0

Conv2D-2 (None, 52, 52, 128) 73,856

MaxPooling2D-2 (None, 26, 26, 128) 0

Conv2D-3 (None, 24, 24, 256) 295, 168

MaxPooling2D-3 (None, 12, 12, 256) 0

Flatten (None, 36864) 0

Dense (None, 128) 4,718,720

Dropout (None, 128) 0

Dense-1 (None, 4) 516
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Let F1 and F2 denote the feature matrices extracted from
these models

F1 ∈ RN×d1 (1)

where F1 is the feature matrix from CNN-1, where N is
the number of samples and d1 is the feature dimensional-
ity.

F2 ∈ RN×d2 (2)

where F2 is the feature matrix from CNN-2, where d2 is
the feature dimensionality.

Feature selection through CCA fusion. The features extracted
from the two CNNs are initially high-dimensional and contain

redundant information. To reduce redundancy and maximize
relevant information, CCA is applied for feature selection.
CCA works by identifying and preserving only those features
that are maximally correlated across the two CNNs. This pro-
cess selects a subset of features from each CNN output, ensur-
ing that the final feature set includes only the most informative
attributes of the retinal diseases. CCA fusion effectively cap-
tures disease-specific patterns by retaining features that show
a high mutual correlation. Mathematically, CCA seeks to
find transformation matrices W1 and W2 such that the trans-
formed features Z1 and Z2 are maximally correlated.

Z1 = F1W1 (3)

Z2 = F2W2 (4)

CCA solves the following optimization problem

max
W1,W2

corr(F1W1, F2W2) (5)

s.t.W⊤
1 F

⊤
1 F1W1 = I (6)

W⊤
2 F

⊤
2 F2W2 = I (7)

where corr denotes the correlation.
After determining the optimal transformation matrices

W1 and W2, we transform the original features.

Z1 = F1W1 (8)

Z2 = F2W2 (9)

The fused feature vector F fused is obtained by concatenating
Z1 and Z2

F fused = [Z1; Z2] (10)

where F fused ∈ RN×(d1+d2).

Classification with machine learning models. According to
Baig,54 the last step involves classifying testing images of fun-
dus images to determine the kind of disease. The input image
was defined in the proposed solution by selecting features and
applying the multi-class classification approach. The objective
in computing the categorization was to minimize computation
time, so we employed machine learning algorithms. The clas-
sifiers we have utilized in this study include voting RF,
COARSE-KNN, medium-KNN, fine-KNN, SVM, ensemble
learning, gradient boosting machines, and Naive Bayes
(NB). We utilized three machine learning algorithms as part
of an ensemble classifier: SVM, logistic regression (LR),
and decision tree (CT) classifier. Table 6 shows the hyperpara-
meters for each model used for ensemble learning.

Results
We have conducted experiments to evaluate the proposed
CNN model classification methodology, considering both
qualitative and quantitative aspects. The evaluation involved
testing the proposed method using the data we collected.

Table 5. An overview of 20-layer convolutional neural network
(CNN).

Layer Output size Parameters

Conv2D (None, 222, 222, 32) 896

BatchNormalization (None, 222, 222, 32) 128

MaxPooling2D (None, 111, 111, 32) 0

Conv2D-1 (None, 109, 109, 32) 9248

MaxPooling2D-1 (None, 54, 54, 32) 0

Conv2D-2 (None, 52, 52, 64) 18,496

MaxPooling2D-2 (None, 26, 26, 64) 0

Conv2D-3 (None, 24, 24, 64) 36,928

BatchNormalization-1 (None, 24, 24, 64) 256

MaxPooling2D-3 (None, 12, 12, 64) 0

Conv2D-4 (None, 10, 10, 128) 73,856

MaxPooling2D-4 (None, 5, 5, 128) 0

Conv2D-5 (None, 3, 3, 128) 147,584

BatchNormalization-2 (None, 3, 3, 128) 512

MaxPooling2D-5 (None, 1, 1, 128) 0

Flatten (None, 128) 0

Dense (None, 512) 66,048

BatchNormalization-3 (None, 512) 2048

Dropout (None, 512) 0

Dense-1 (None, 4) 2052
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Findings on feature extraction utilizing CNNs
After training, the CNN can be used for feature extraction
by feeding input data through the network and extracting
the output of one of the intermediate layers. These extracted
features can then be used as input to another machine-
learning model or for further analysis and processing.
This technique is often used in transfer learning, where a
pre-trained CNN is fine-tuned on a new dataset for a specific
task, leveraging the feature extraction capabilities learned
from a large dataset.

In this section feature extraction results are given in both
statistical as well as graphical form. In numerical form,
accuracy, sensitivity, precision, recall, F1 score, and support
are given using the formula given in equations (11) to (15).

Sensitivity = TP

TP + FN
(11)

Accuracy = TP+ TN

TP+ FP + TN + FN
(12)

Precision = TP

TP+ FP
(13)

Recall = TP

TP + FN
(14)

F1− Score = 2 ∗ Precision ∗ Recall
Precision+ Recall

( )
(15)

MCC = (TP ∗ TN )− (FP ∗ FN)������������������������������������������������
(TP + FP)(FP+ FN)(TN + FP)(TN + FN )

√
(16)

Accuracy, recall, and F1-score are crucial metrics for evalu-
ating the performance of retinal image classification models.

While accuracy provides a general sense of overall perform-
ance, it can be misleading in imbalanced datasets, where high
accuracy may result from simply identifying the majority
class. Recall emphasizes the model’s ability to correctly iden-
tify positive cases, which is vital in medical contexts to
ensure timely intervention for conditions that could lead to
vision loss. The F1-score balances precision and recall, offer-
ing a comprehensive measure that helps mitigate both false
negatives and false positives. Together, these metrics guide
model selection, optimize decision thresholds, and facilitate
continuous improvement, ultimately enhancing patient care
and diagnostic accuracy in retinal disease detection.

In addition, the Matthews correlation coefficient (MCC)
is also used for performance evaluation, as shown in equa-
tion (16). MCC estimates the correlation between predicted
and actual value and is considered an important perform-
ance metric.57

Feature extraction results using CNN-1. This section will
delve into the results of feature extraction using CNN-1.
The experiments employed the deep CNN base architecture
model with training validation and testing data. Table 7 pre-
sents the statistical results of Feature Extraction from the
CNN-1 model using data augmentation.

Figure 5 presents the accuracy and loss charts for
CNN-1. It is observable in the charts that the model initiates
with a starting training accuracy of zero, gradually advan-
cing with increasing epochs.

Feature extraction results using CNN-2. This section will
delve into the results of feature extraction using CNN-2.
The experiments employed the deep CNN base architecture
model with training validation and testing data. Table 8 pre-
sents the statistical results of Feature Extraction from the
CNN-2 model using data augmentation.

Figure 6 presents the accuracy and loss charts for
CNN-1. The plots show that the model starts with zero
training accuracy and improves with time as the number
of epochs increases.

Classification using machine learning model
The proposed methodology, which concatenates the fea-
tures extracted by CNN-1 and CNN-2 into a single
improved vector via CCA Fusion, was covered in earlier
Sections. The classifiers were then given the fused vectors
of the upgraded features to classify the input images. The
proposed methodology includes several classifiers:
Random forest, COARSE KNN, Medium KNN, Fine
KNN, SVM, Ensemble Learning, Gradient boosting, and
NB. In this step, several machine learning classifiers have
been implemented. The goal was to reduce the overall sys-
tem execution time as much as feasible.

Table 6. Parameters for machine learning.

Model Hyperparameter Value

Support vector
machine

Kernel Radial basis
function

C 1.0

Gamma “scale”

Logistic regression Solver “lbfgs” (default)

C 1.0

Max_iter 100

Decision tree
classifier

Criterion “gini” (default)

Splitter “best” (default)
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Results for CCA fusion using random forest. A Random Forest
classifier was used to categorize the abnormality from the
fused feature vector. In this study, the accuracy of the DR
class was 90.67%, the MH class was 91.18%, the ODC
class was 94.5%, and the WNL class was 92.12%. In
Table 9, different statical parameters are cited. A 92.12%
accuracy was achieved by this classifier.

Figure 7 illustrates the confusion matrix of RF showing
1520 correct predictions out of 1650 total predictions for
four classes. In total 130 are wrong predictions by the RF
model, with a higher number of wrong predictions for the
DR class.

Results for CCA fusion using coarse-KNN. A coarse-KNN
classifier was used to categorize the abnormality from the
fused feature vector. In this study, the accuracy of the DR
class was 88.28%, the MH class was 94.12%, the ODC class
was 91.87%, and theWNL class was 86.7%. In Table 10, dif-
ferent statical parameters are cited. A 90.24% accuracy was
achieved by the Coarse-KNN classifier.

Figure 8 illustrates the confusion matrix for the
Coarse-KNN. Results indicate that the performance of
coarse KNN is better compared to RF concerning the MH
class while poor for other classes. Overall, it correctly pre-
dicted 1489 instances while 161 instances were wrong
showing its poor performance compared to the RF model.

Results for CCA fusion using medium-KNN. A Medium-KNN
classifier was used to categorize the abnormality from the
fused feature vector. In this study, the accuracy of the DR
class was 87.32%, the MH class was 95.34%, the ODC
class was 90.43%, and the WNL class was 86.95. In
Table 11, different statical parameters are cited. The model
obtains a 90% accuracy using the CCA fustion.

Figure 9 illustrates the confusion matrix for
Medium-KNN. Similar to coarse KNN, the performance
of the Medium-KNN is better for the MH class with 389
correct predictions while poor for other classes compared
to both Coarse-KNN and RF models. The model correctly
predicts 1485 instances while 165 instances are wrong
predictions.

Results for CCA fusion using fine-KNN. A Fine-KNN classi-
fier was used to categorize the abnormality from the fused
feature vector. In this study, the accuracy of the DR class
was 86.6%, the MH class was 96.32%, the ODC class
was 89.95%, and the WNL class was 86.95%. Table 12
shows various evaluation parameters for the Fine-KNN
model. The model shows an accuracy of 89.94%.
Compared to the RF model, it shows better performance
for the MH class with a 96.32% accuracy while other
classes have reduced values for accuracy, sensitivity, preci-
sion, and F1 score.

Table 7. Result for CNN-1 network.

Diseases Accuracy (%)

DR 87.09

MH 86.57

ODC 88.63

WNL 90.21

DR: diabetic retinopathy; MH: media haze; ODC: optic disc cupping; CNN:
convolutional neural network.

Figure 5. (a) Model accuracy graph for convolutional neural network (CNN)-1, and (b) Model loss graph for CNN-1.
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Figure 10 illustrates the confusion matrix for Fine-KNN.
Overall, 1484 instances are predicted correctly which is
lower than RF, as well as, other variants of the KNN clas-
sifier. However, the number for correct predictions for the
MH class is high which is 393. The model made 166 wrong
predictions showing its poor performance compared to
other models.

Results for CCA fusion using SVM. An SVM classifier was
used to categorize the abnormality from the fused feature
vector. In this study, the accuracy of the DR class was
89.95%, the MH class was 92.4%, the ODC class was
94.74%, and the WNL class was 91.63%. In Table 13, dif-
ferent statical parameters are cited. 92.18% accuracy was
achieved by this classifier.

Figure 11 illustrates the confusion matrix for SVM. With
the SVM classifier, results for the MH, ODC, and WNL are
better for all variants of KNN, as well as, the RF classifier
with better accuracy and other parameters. The model
made 1521 correct predictions, better than the previously
used models’ in this study while 129 predictions were
wrong.

Results for CCA fusion using ensemble learning. An ensemble
learning classifier was also used to categorize the abnormal-
ity from the fused feature vector. Using the ensemble clas-
sifier, the accuracy of the DR class was 92.34%, the MH
class was 93.38%, the ODC class was 92.36%, and the

Table 8. Result for CNN-2 network.

Diseases Accuracy (%)

DR 90.09

MH 91.56

ODC 89.53

WNL 91.21

DR: diabetic retinopathy; MH: media haze; ODC: optic disc cupping; CNN:
convolutional neural network.

Figure 6. (a) Model accuracy graph for convolutional neural network (CNN)-2, and (b) Model loss graph for CNN-2.

Table 9. Class-wise statistics for CCA fusion using random forest.

Class Accuracy Sensitivity Precision Recall F1 Score MCC

DR 90.67 90.67 94.75 90.67 92.66 90.14

MH 91.18 91.18 90.29 91.18 90.73 87.67

ODC 94.50 94.50 97.05 94.50 95.76 94.36

WNL 92.12 92.12 86.79 92.12 89.37 85.69

CCA: canonical correlation analysis; DR: diabetic retinopathy; MH: media haze; ODC: optic disc cupping; MCC: Matthews correlation coefficient.
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WNL class was 92.12%. In Table 14, different statical para-
meters are cited. 93.39% accuracy was achieved by this
classifier.

Figure 12 illustrates the confusion matrix for the ensem-
ble classifier. The ensemble model performs superiorly with
1541 corrects predictions, better than all variants of the
KNN, RF, and SVM classifier. The ensemble model makes
only 109 wrong predictions for four classes.

Results for CCA fusion using gradient boosting. In addition to
KNN, SVM, RF, and ensemble models, a gradient boost-
ing classifier was also used to categorize the abnormality
from the fused feature vector. In this study, the accuracy
of the DR class was 92.12%, the MH class was 91.67%,
the ODC class was 94.25%, and the WNL class obtained
an accuracy of 92.36%. In Table 15, different statical
parameters are cited. 92.36% accuracy was achieved by
this classifier.

Figure 13 illustrates the confusion matrix for the gradient
boosting classifier. With the correct prediction of 1528
instances, the model performs better than RF,
Coarse-KNN, Medium-KNN, Fine-KNN, and SVM classi-
fiers. The model has the second-best performance after the
ensemble model with 122 wrong predictions.

Results for CCA fusion using NB. An NB classifier was used
to categorize the abnormality from the fused feature vector.
In this study, the accuracy of the DR class was 78.71%, the
MH class was 84.07%, the ODC class was 85.17%, and the
WNL class was 52.71%. In Table 16, different statical para-
meters are cited. 75.27% accuracy was achieved by this
classifier.

Figure 14 illustrates the confusion matrix for the NB
classifier. The performance of the NB classifier is very
poor with only 1242 correct predictions and 408 wrong

Figure 7. Confusion matrix for CCA fusion using RF. CCA:
canonical correlation analysis; RF: random forest.

Figure 8. Confusion matrix for canonical correlation analysis
(CCA) fusion using coarse-KNN.

Table 10. Class-wise statistics for CCA fusion using coarse-KNN.

Class Accuracy Sensitivity Precision Recall F1 Score MCC

DR 88.28 88.28 94.37 88.28 91.22 88.46

MH 94.12 94.12 83.20 94.12 88.37 84.53

ODC 91.87 91.87 96.73 91.87 94.24 92.40

WNL 86.7 86.70 87.78 86.70 87.24 83.11

CCA: canonical correlation analysis; DR: diabetic retinopathy; MH: media haze; ODC: optic disc cupping; MCC: Matthews correlation coefficient.
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predictions which are the highest among all models used in
this study.

Performance comparison
This section compares the results of the suggested method
to earlier research. We carried out pre-processing after
obtaining the data, which included data augmentation to
increase the size of the image collection. A more accurate
model is trained as a result of this process, and overfitting
is less likely to occur. The dataset contained images ran-
ging in size from 512 × 512 × 3 to 2144 × 1424 × 3 to
4288 × 2848 × 3. Each image has been resized to 224 ×
224 × 3. Crop the image to remove unwanted areas.
Additionally, we utilized one-hot encoding during prepro-
cessing to make categorical datasets easier to classify
using CNN models by transforming them into numerical
format. Using this encoding, categorical data can be

effectively learned from while keeping the relationships
between them intact. Two CNN models are used to extract
features from fundus images. Detailed information about
the layers used in both CNN is provided in Tables 4 and
5. CNN-1 recorded a rather decent accuracy of about
89.52% for testing and approximately 89.85% for valid-
ation. The accuracy observed by CNN-2 for testing was
around 91.39%, and for validation, it was about
91.67%. As discussed in the previous section, we trained
two parallel CNN models to extract characteristics from
the dataset. Each CNN produced recovered feature vec-
tors, which we then turned on. Next, we used CCA fusion
to extract and concatenate the most promising featured
vector. Finally, for testing, we employ conventional
machine learning models.

The classification results using the ensemble learning
method reached 93.39%. For the computation complexity
of the proposed approach, we kept it to a minimum by
employing a conventional machine-learning model.
While training traditional machine learning models only
takes a few minutes, using a DL network at this stage
could take several hours or even days. Using conventional
machine learning techniques, we found that the ensemble
learning model with CCA fusion was the most effective
with an overall accuracy of 93.39%. Even so, out of all
the classifiers we utilized in this study, NB provided the
worst results. NB shows 75.27% accuracy using the
CCA fusion. The performance comparison of all models
is given in Table 17 without data augmentation.
Table 18 shows statistical results for all models with
data augmentation indicating better results when the mod-
els are trained using the augmented data.

Performance concerning existing studies
The performance of the best-performing ensemble models
is discussed concerning existing studies that utilized the
same data. Table 19 shows the comparison of results
obtained from the current study with exciting literature.

Figure 9. Confusion matrix for canonical correlation analysis
(CCA) fusion using medium-KNN.

Table 11. Class-wise statistics for CCA fusion using medium-KNN classifier.

Class Accuracy Sensitivity Precision Recall F1 Score MCC

DR 87.32 87.32 94.81 87.32 90.91 85.31

MH 95.34 95.34 83.16 95.34 88.87 83.82

ODC 90.43 90.43 97.78 90.43 93.96 86.52

WNL 86.95 86.95 86.10 86.95 86.52 83.36

CCA: canonical correlation analysis; DR: diabetic retinopathy; MH: media haze; ODC: optic disc cupping; MCC: Matthews correlation coefficient.
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The study11 adopted a DL approach for fundus image clas-
sification using the RFMiD dataset and reported an accur-
acy of 89.10%. On the other hand,21 presented a CNN
model and obtained a validation accuracy of 82.13%. The
current study utilizes CNN models for feature extraction
which are later fused to formulate a superior feature vector,
thereby leading to an accuracy of 93.39% for RFMiD and
RFMiD 2.0 datasets.

Discussion
This study provides an approach for better classification of
fundus images using an ensemble model that combines
SVM, DT, and LR classifiers. For model training, features
obtained from two customized CNN models are used to
make a single feature vector for better training of ML mod-
els. Experiments involve the original, as well as, augmented
data. Extensive experimentation is carried out with a variety
of ML models indicating the superior performance of the

proposed ensemble model. In summary, this study provides
the following contributions.

• Improved Feature Representation:The use of
CCA for feature fusion effectively captured comple-
mentary information from the two CNNs, leading to
a more robust feature set. This improved the overall
classification performance compared to using indi-
vidual CNNs.

• Enhanced Classification Performance: By
employing machine learning classifiers on the fused
features, the proposed model achieved higher accur-
acy and better generalization on the RFMiD and
RFMiD 2.0 datasets. This demonstrates the potential
of combining DL-based feature extraction with trad-
itional machine learning classifiers.

• Comparison with Existing Methods: When com-
pared to state-of-the-art methods in the literature,
the proposed approach showed superior performance
in terms of accuracy, precision, recall, and F1 score.
This highlights the effectiveness of CCA fusion in
enhancing the discriminatory power of
CNN-derived features.

• Versatility Across Datasets: The model’s perform-
ance was consistently strong across both RFMiD and
RFMiD 2.0 datasets, suggesting that the proposed
approach generalizes well across different variations
of retinal fundus images.

In this study, we focused on feature extraction and fusion by
employing two CNN models and combining their features
using CCA fusion. The proposed methodology did not ini-
tially incorporate contrast enhancement or noise-handling
techniques, as the goal was to assess the CNNs’ raw feature
extraction capabilities and the effectiveness of CCA fusion
in retaining critical information for classification. The
designed model enhances the model’s ability to capture
complementary information from fundus images. We
implement an ensemble learning method that significantly
improves classification accuracy compared to traditional
methods, achieving an overall accuracy of 93.38%. The

Figure 10. Confusion matrix for canonical correlation analysis
(CCA) fusion using fine-KNN.

Table 12. Class-wise statistics for CCA fusion using fine-KNN classifier.

Class Accuracy Sensitivity Precision Recall F1 Score MCC

DR 86.60 86.60 95.77 86.60 90.95 88.82

MH 96.32 96.32 81.30 96.32 88.12 84.46

ODC 89.95 89.95 98.69 89.95 94.11 92.42

WNL 86.95 86.95 86.52 86.95 86.74 82.39

CCA: canonical correlation analysis; DR: diabetic retinopathy; MH: media haze; ODC: optic disc cupping; MCC: Matthews correlation coefficient.
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proposed model demonstrates superior performance in
detecting severe DR cases, with a precision of 94.37%,
recall of 92.34%, and an F1 score of 93.79%. The proposed

approach addresses class imbalance through advanced data
augmentation techniques, ensuring robust classification
across different severity levels. This method is inspired by
successful applications in other domains, such as lung can-
cer detection, where CNNs are used to extract spatial fea-
tures from medical images and ML classifiers improve
classification performance.37 Additionally, research in med-
ical imaging has demonstrated the effectiveness of using
DL for feature extraction and combining it with traditional
ML for classification, yielding more interpretable and com-
putationally efficient models.37 These contributions provide
a scalable and accurate solution for automated DR localiza-
tion and grading, facilitating early intervention and improv-
ing clinical outcomes.

Conclusion and future direction
The categorization of ocular illness is helpful in determin-
ing the eye’s present state of health, analyzing the results
of treatment, and choosing the best course of action.
Creating a completely automated system is essential to
enabling early identification and screening of people with
eye diseases. A system of that kind ought to be non-
invasive, reproducible, clinically dependable, and have a
controllable decision-making process. Medical imaging
and DL techniques present a viable way to provide compre-
hensive descriptions of diseases that have been identified.
While we recognize the importance of computational com-
plexity analysis, our focus in this manuscript is primarily on
demonstrating the effectiveness of our proposed method-
ology in terms of classification accuracy, feature extraction,
and overall model performance. However, several aspects
of the proposed approach naturally contribute to managing
computational complexity. First, during the preprocessing
stage, we reduce computational overhead by resizing and
cropping the images, which standardizes the input data
and removes unnecessary information, thereby lowering
the overall computational burden. Furthermore, we imple-
ment two CNN models, which are well-established for their
ability to perform feature extraction efficiently while balan-
cing accuracy and complexity. Additionally, by utilizing

Figure 11. Confusion matrix for CCA fusion using SVM. CCA:
canonical correlation analysis; SVM: support vector machine.

Table 13. Class-wise statistics for CCA fusion using SVM classifier.

Class Accuracy Sensitivity Precision Recall F1 Score MCC

DR 89.95 89.95 95.43 89.95 92.61 90.27

MH 92.40 92.40 90.22 92.40 91.3 88.39

ODC 94.74 94.74 94.51 94.74 94.62 92.80

WNL 91.63 91.63 88.76 91.63 90.17 86.93

SVM: support vector machine; CCA: canonical correlation analysis; DR: diabetic retinopathy; MH: media haze; ODC: optic disc cupping; MCC: Matthews
correlation coefficient.

Table 14. Class-wise statistics for CCA fusion using ensemble
classifier.

Class Accuracy Sensitivity Precision Recall
F1
Score MCC

DR 92.34 92.34 94.37 92.34 93.79 91.14

MH 93.38 93.38 92.03 93.38 91.33 90.28

ODC 95.45 95.45 97.55 95.45 95.40 95.33

WNL 92.36 92.36 89.69 92.36 89.92 88.05

CCA: canonical correlation analysis; DR: diabetic retinopathy; MH: media
haze; ODC: optic disc cupping; MCC: Matthews correlation coefficient.
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CCA fusion, we avoid concatenating raw features, which
could significantly increase the dimensionality of the fea-
ture space. Instead, CCA fusion optimally combines fea-
tures from both CNNs, reducing redundancy and
contributing to a more compact and manageable feature
set, which in turn reduces the computational load during
the classification phase. We also leverage traditional
machine learning algorithms for classification, many of
which are less computationally intensive compared to fully
DL-based methods. This hybrid approach strikes a balance
between complexity and performance, allowing us to bene-
fit from DL’s feature extraction capabilities without impos-
ing unnecessary computational costs during classification.

To assist in the diagnosis of various eye disorders, deep
neural networks can develop hierarchical representations of
images. However, due to the comparable look of fundus
images of diverse diseases, diagnosing several eye ailments
with a single neural network is difficult. Two CNNs are

Table 15. Class-wise statistics for CCA fusion using gradient
boosting.

Class Accuracy Sensitivity Precision Recall
F1
Score MCC

DR 92.12 92.11 95.53 92.11 93.79 91.76

MH 91.67 91.67 91.00 91.67 91.33 88.47

ODC 94.26 94.26 96.57 94.26 95.40 93.88

WNL 92.36 92.36 87.62 92.36 89.92 86.58

CCA: canonical correlation analysis; DR: diabetic retinopathy; MH: media
haze; ODC: optic disc cupping; MCC: Matthews correlation coefficient.

Figure 12. Confusion matrix for canonical correlation analysis
(CCA) fusion using ensemble learning.

Figure 13. Confusion matrix for canonical correlation analysis
(CCA) fusion using the GB classifier.

Table 16. Class-wise statistics for CCA fusion using NB
classifier.

Class Accuracy Sensitivity Precision Recall
F1

Score MCC

DR 78.71 78.71 85.17 78.71 81.83 76.26

MH 84.07 84.07 84.07 84.07 84.07 60.98

ODC 85.17 85.17 52.71 85.17 65.06 75.72

WNL 52.71 52.71 78.71 52.71 63.12 58.31

CCA: canonical correlation analysis; NB: Naive Bayes; DR: diabetic
retinopathy; MH: media haze; ODC: optic disc cupping; MCC: Matthews
correlation coefficient.

Figure 14. Confusion matrix for CCA fusion using NB classifier.
CCA: canonical correlation analysis; NB: Naive Bayes.
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Table 17. Class-wise statistics for all models using the original data.

Model Accuracy Classes Acc. (%) Sensit. (%) Prec. (%) Recall (%) F1 (%)

RF 77.22% DR 75.00 75.09 82.76 75.00 78.67

MH 67.65 67.65 75.41 67.65 71.33

ODC 30.00 30.00 52.94 30.00 38.46

WNL 89.36 89.36 77.42 89.36 82.98

Average 65.50 65.50 72.13 65.50 67.86

Coarse-KNN 71.72% DR 67.71 67.71 70.65 67.71 69.15

MH 69.12 69.12 61.84 69.12 65.29

ODC 26.67 26.67 44.44 26.67 33.33

WNL 81.91 81.91 78.57 81.91 80.19

Average 61.35 61.35 63.88 61.35 61.99

Medium-KNN 70.94% DR 67.71 67.71 77.38 67.71 72.16

MH 67.65 67.65 57.50 67.65 62.17

ODC 13.33 13.33 40.00 13.33 20.00

WNL 82.98 82.98 75.00 82.98 78.82

Average 57.92 57.92 62.47 57.92 58.29

Fine-KNN 70.94% DR 62.5 62.5 85.71 62.5 72.46

MH 73.53 73.53 55.56 73.53 63.32

ODC 10.00 10.00 50.00 10.00 16.67

WNL 84.04 84.04 73.15 84.04 78.28

Average 57.52 57.52 66.11 57.52 57.68

SVM 73.82% DR 70.83 70.83 78.16 70.83 74.33

MH 61.76 61.76 67.74 61.76 64.64

ODC 23.33 23.33 31.82 23.33 26.87

WNL 87.77 87.77 78.1 87.77 82.65

Average 60.92 60.92 63.95 60.92 62.12

GB 74.35 % DR 79.17 79.17 73.08 79.17 76.02

MH 57.35 57.35 68.42 57.35 62.3

ODC 36.67 36.67 40.74 36.67 38.57

WNL 84.04 84.04 81.44 84.04 82.72

(continued)
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Table 17. Continued.

Model Accuracy Classes Acc. (%) Sensit. (%) Prec. (%) Recall (%) F1 (%)

Average 64.31 64.32 65.92 64.31 64.90

NB 59.69% DR 41.67 41.67 74.07 41.67 53.19

MH 29.41 29.41 50.00 29.41 37.04

ODC 53.33 53.33 25.39 53.33 34.57

WNL 80.85 80.85 67.56 80.85 73.68

Average 51.32 51.32 54.25 51.31 49.62

Ensemble 75.92% DR 76.04 76.04 75.26 76.04 75.65

MH 67.65 67.65 69.69 67.65 68.65

ODC 26.67 26.67 44.44 26.67 33.33

WNL 86.70 86.70 81.10 86.70 83.81

Average 64.27 64.27 67.62 64.26 65.36

SVM: support vector machine; DR: diabetic retinopathy; MH: media haze; ODC: optic disc cupping

Table 18. Class-wise statistics for all models for augmented data.

Model Accuracy Classes Acc. (%) Sensit. (%) Prec. (%) Recall (%) F1 (%)

RF 92.12% DR 90.67 90.67 94.75 90.67 92.66

MH 91.18 91.18 90.29 91.18 90.73

ODC 94.50 94.50 97.05 94.50 95.76

WNL 92.12 92.12 86.79 92.12 89.37

Average 92.12 92.12 92.25 92.12 92.13

Coarse-KNN 90.24% DR 88.28 88.28 94.37 88.28 91.22

MH 94.12 94.12 83.2 94.12 88.37

ODC 91.87 91.87 96.73 91.87 94.24

WNL 86.70 86.70 87.78 86.70 87.24

Average 90.24 90.24 90.52 90.24 90.26

Medium-KNN 90% DR 87.32 87.32 94.81 87.32 90.91

MH 95.34 95.34 83.16 95.34 88.87

(continued)
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Table 18. Continued.

Model Accuracy Classes Acc. (%) Sensit. (%) Prec. (%) Recall (%) F1 (%)

ODC 90.43 90.43 97.78 90.43 93.96

WNL 86.95 86.95 86.10 86.95 86.52

Average 90.01 90.01 90.46 90.01 90.06

Fine-KNN 89.94% DR 86.6 86.6 95.77 86.6 90.95

MH 96.32 96.32 81.30 96.32 88.12

ODC 89.95 89.95 98.69 89.95 94.11

WNL 86.95 86.95 86.52 86.95 86.74

Average 89.955 89.955 90.57 89.95 89.98

SVM 92.12% DR 89.95 89.95 95.43 89.95 92.61

MH 92.40 92.40 90.22 92.40 91.3

ODC 94.74 94.74 94.51 94.74 94.62

WNL 91.63 91.63 88.76 91.63 90.17

Average 92.18 92.18 92.23 92.18 92.17

GB 92.61% DR 92.12 92.11 95.53 92.11 93.79

MH 91.67 91.67 91.00 91.67 91.33

ODC 94.26 94.26 96.57 94.26 95.40

WNL 92.36 92.36 87.62 92.36 89.92

Average 92.60 92.6 92.68 92.6 92.61

NB 75.25% DR 78.71 78.71 85.17 78.71 81.83

MH 84.07 84.07 84.07 84.07 84.07

ODC 85.17 85.17 52.71 85.17 65.06

WNL 52.71 52.71 78.71 52.71 63.12

Average 75.16 75.17 75.16 75.16 73.52

Ensemble 93.39% DR 92.34 92.34 94.37 92.34 93.79

MH 93.38 93.38 92.03 93.38 91.33

ODC 95.45 95.45 97.55 95.45 95.40

WNL 92.36 92.36 89.69 92.36 89.92

Average 93.38 93.38 93.41 93.38 92.61

DL: deep learning; CNN: convolutional neural network; SVM: support vector machine; DR: diabetic retinopathy; MH: media haze; ODC: optic disc
cupping; RF: random forest.
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used to extract the features. These derived features are conca-
tenated using the CCA fusion method. The fused feature vec-
tor from the CNN models is used to train machine-learning
models for better performance. By employing the ensemble
learning classifier for fundus images, a 93.39% accuracy is
obtained which is better than existing approaches. In the
future, different fusion methods like serial fusion and princi-
pal component analysis can be applied to concatenate the fea-
tures. We recognize the potential value of exploring contrast
enhancement techniques, such as contrast-limited adaptive
Histogram Equalization (CLAHE) or histogram equalization,
to further improve the model’s performance on low-contrast
images. These techniques could be investigated as a prepro-
cessing step to test their influence on feature extraction, par-
ticularly under suboptimal imaging conditions.
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