Modelo para la planificación de la producción en micro viveros del Paraguay

Tesis Materias > Ingeniería Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster Cerrado Español Los pequeños y micro viveros del Paraguay normalmente son empresas familiares con poco personal que se desenvuelven en un entorno muy cambiante, cuya producción de plantines está muy influenciada por el clima y las demandas del mercado. Para sobrevivir en este entorno, los micro viveros deben ser capaces de predecir la demanda, donde la falta de plantines genera pérdida por falta de ventas además de generar una mala relación con los productores por no poder cumplir con los pedidos, y mientras que una sobreproducción generaría pérdidas al tener que desechar plantines no vendidos. El objetivo propuesto es crear un modelo para la planificación de la producción para pequeños y micro viveros basado en inteligencia artificial. Con el cual los viveros puedan esquematizar y estructurar la planificación de su producción sin depender completamente del personal con experiencia. Influye en la planificación de la producción de los micro viveros el espacio disponible en los distintos sectores del vivero, el tamaño de las plantas y el tiempo que deben permanecer los plantines en el vivero. El uso de la Inteligencia Artificial para predecir la producción complementará la experiencia del personal del vivero. De los algoritmos utilizados en Inteligencia Artificial, se considera el principal algoritmo, la regresión lineal que además es el ideal para realizar predicciones y utilizarlo en la planificación. La metodología CRISP-DM establece una estructura para trabajar con grandes volúmenes de datos definiendo fases que van desde el entendimiento del negocio, entendimiento de los datos, preparación de datos, modelado, evaluación e implementación. Esta metodología es útil para trabajar con Inteligencia Artificial generando varios modelos en el proceso hasta llegar al óptimo. El modelo propuesto para la planificación de la producción consiste en utilizar las características del vivero y de las plantas junto con los registros de producción, pedidos, ventas y desechos para realizar la planificación basado en Inteligencia Artificial. Posee 5 fases, los cuales son: Planificación, Recolección de datos, Entrenamiento de la IA, Validación de los resultados y la Implementación. El diseño de la investigación es descriptivo de corte longitudinal, se han registrado los datos de 9 meses de los cuales 6 meses fueron para recolectar datos y los últimos tres para realizar la predicción, comparando la predicción con los datos registrados, utilizando la validación del R2 que compara el resultado del algoritmo de IA y cuánto se ajusta a los datos. En el primer mes la predicción fue inferior a la producción del vivero, con valores de R2 para la lechuga, repollo, brócoli y coliflor, 85%, 81%, 71% 73% respectivamente. Para el tercer mes la predicción de la lechuga, repollo y coliflor del 85%, 92%, 86% y 90% respectivamente. El modelo propuesto a logrado predecir con bastante exactitud la producción del vivero. En el período analizado los datos fueron afectados por un período de sequía y de lluvias. Es muy importante que lo generado por el modelo sea revisado en última instancia por el responsable del vivero, para evitar posibles influencias no deseadas de los factores externos contemplados en el modelo. metadata Streuli Wanderer, Edgar Daniel mail edgarstreuli@gmail.com (2022) Modelo para la planificación de la producción en micro viveros del Paraguay. Masters thesis, SIN ESPECIFICAR.

Texto completo no disponible.

Resumen

Los pequeños y micro viveros del Paraguay normalmente son empresas familiares con poco personal que se desenvuelven en un entorno muy cambiante, cuya producción de plantines está muy influenciada por el clima y las demandas del mercado. Para sobrevivir en este entorno, los micro viveros deben ser capaces de predecir la demanda, donde la falta de plantines genera pérdida por falta de ventas además de generar una mala relación con los productores por no poder cumplir con los pedidos, y mientras que una sobreproducción generaría pérdidas al tener que desechar plantines no vendidos. El objetivo propuesto es crear un modelo para la planificación de la producción para pequeños y micro viveros basado en inteligencia artificial. Con el cual los viveros puedan esquematizar y estructurar la planificación de su producción sin depender completamente del personal con experiencia. Influye en la planificación de la producción de los micro viveros el espacio disponible en los distintos sectores del vivero, el tamaño de las plantas y el tiempo que deben permanecer los plantines en el vivero. El uso de la Inteligencia Artificial para predecir la producción complementará la experiencia del personal del vivero. De los algoritmos utilizados en Inteligencia Artificial, se considera el principal algoritmo, la regresión lineal que además es el ideal para realizar predicciones y utilizarlo en la planificación. La metodología CRISP-DM establece una estructura para trabajar con grandes volúmenes de datos definiendo fases que van desde el entendimiento del negocio, entendimiento de los datos, preparación de datos, modelado, evaluación e implementación. Esta metodología es útil para trabajar con Inteligencia Artificial generando varios modelos en el proceso hasta llegar al óptimo. El modelo propuesto para la planificación de la producción consiste en utilizar las características del vivero y de las plantas junto con los registros de producción, pedidos, ventas y desechos para realizar la planificación basado en Inteligencia Artificial. Posee 5 fases, los cuales son: Planificación, Recolección de datos, Entrenamiento de la IA, Validación de los resultados y la Implementación. El diseño de la investigación es descriptivo de corte longitudinal, se han registrado los datos de 9 meses de los cuales 6 meses fueron para recolectar datos y los últimos tres para realizar la predicción, comparando la predicción con los datos registrados, utilizando la validación del R2 que compara el resultado del algoritmo de IA y cuánto se ajusta a los datos. En el primer mes la predicción fue inferior a la producción del vivero, con valores de R2 para la lechuga, repollo, brócoli y coliflor, 85%, 81%, 71% 73% respectivamente. Para el tercer mes la predicción de la lechuga, repollo y coliflor del 85%, 92%, 86% y 90% respectivamente. El modelo propuesto a logrado predecir con bastante exactitud la producción del vivero. En el período analizado los datos fueron afectados por un período de sequía y de lluvias. Es muy importante que lo generado por el modelo sea revisado en última instancia por el responsable del vivero, para evitar posibles influencias no deseadas de los factores externos contemplados en el modelo.

Tipo de Documento: Tesis (Masters)
Palabras Clave: Planificación de la siembra,Producción de plantines,Gestión de la germinación,Distribución de plantines,Micro Viveros
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Depositado: 25 Abr 2024 23:30
Ultima Modificación: 25 Abr 2024 23:30
URI: https://repositorio.uneatlantico.es/id/eprint/2929

Acciones (logins necesarios)

Ver Objeto Ver Objeto

en

close

Efficacy of liposomal amphotericin B for treating post-kala-azar dermal leishmaniasis (PKDL): A systematic review and single-arm meta-analysis

Background Post-kala-azar dermal leishmaniasis (PKDL) is a skin condition that can become a complication in about 15 % of patients who have had kala-azar. Despite its significance, treatment options for PKDL are still limited. This systematic review and meta-analysis aim to evaluate the efficacy of amphotericin B for this condition. Methods PubMed, Embase, Cochrane, and Web of Science databases were searched for randomized controlled trials (RCTs) that reported the efficacy of Liposomal Amphotericin B in the treatment of PKDL. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Events per 100 observations with 95 % confidence intervals were performed for outcomes. Results Nine studies with 639 patients were included, the treatment durations ranging from 7 to 60 days. The mean age ranged from 9.2 to 31.0 years, and 359 patients were male. The PKDL treatment with liposomal amphotericin B resulted in a cure rate of 91.36 % (95 % CI: 76.60-97.15). However, a relapse was observed in 11.42 % (95 % CI: 6.20-20.8) of patients. Adverse events were common, with hepatic enzyme elevation (ALT/AST) being the most frequent (61.75 %; 95 % CI: 21.81–90.33), followed by fever in 29.93 % of cases (95 % CI: 5.09–77.30). Among the more serious side effects, decreased serum potassium was observed in 19.27 % (95 % CI: 3.84–58.82), and increased serum creatinine, indicative of nephrotoxicity, occurred in 15.08 % (95 % CI: 3.97–43.27). Nausea or vomiting, although less severe, affected 12.36 % of patients (95 % CI: 4.81–28.25). Conclusions These findings highlight that while liposomal amphotericin B is a potent therapeutic option for PKDL, its administration requires careful management and clinical vigilance to optimize outcomes and minimize risks.

Artículos y libros

Deivyd Vieira Silva Cavalcante mail , Lilia Maria Lima de Oliveira mail , Noor Husain mail , Beatriz Ximenes Mendes mail , Ana Clara Felix de Farias Santos mail , Luciana Borrigueiro mail , Lyria de Oliveira Rosa mail , Christian Ndikuryayo mail , Sarah Soares Amorim mail , Lalit Mohan mail , Fabiana Castro Porto Silva Lopes mail ,

Cavalcante

en

close

Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice

The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.

Artículos y libros

Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,

Luo

<a class="ep_document_link" href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

What works in financial education? Experimental evidence on program impact

Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.

Artículos y libros

Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,

García

en

close

LC-MS and GC–MS analyses reveal that amino acid-induced ammoniation of EGCG in different tea types enhances its structural stability

Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.

Artículos y libros

Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,

Zhao

en

close

Single-cell omics for nutrition research: an emerging opportunity for human-centric investigations

Understanding how dietary compounds affect human health is challenged by their molecular complexity and cell-type–specific effects. Conventional multi-cell type (bulk) analyses obscure cellular heterogeneity, while animal and standard in vitro models often fail to replicate human physiology. Single-cell omics technologies—such as single-cell RNA sequencing, as well as single-cell–resolved proteomic and metabolomic approaches—enable high-resolution investigation of nutrient–cell interactions and reveal mechanisms at a single-cell resolution. When combined with advanced human-derived in vitro systems like organoids and organ-on-chip platforms, they support mechanistic studies in physiologically relevant contexts. This review outlines emerging applications of single-cell omics in nutrition research, emphasizing their potential to uncover cell-specific dietary responses, identify nutrient-sensitive pathways, and capture interindividual variability. It also discusses key challenges—including technical limitations, model selection, and institutional biases—and identifies strategic directions to facilitate broader adoption in the field. Collectively, single-cell omics offer a transformative framework to advance human-centric nutrition research.

Artículos y libros

Manuela Cassotta mail manucassotta@gmail.com, Yasmany Armas Diaz mail , Danila Cianciosi mail , Bei Yang mail , Zexiu Qi mail , Ge Chen mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Giuseppe Grosso mail , José L. Quiles mail , Jianbo Xiao mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,

Cassotta