Hybridizing Artificial Intelligence Algorithms for Forecasting of Sediment Load with Multi-Objective Optimization

Article Subjects > Engineering Europe University of Atlantic > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Abierto Inglés Forecasting of sediment load (SL) is essential for reservoir operations, design of water resource structures, risk management, water resource planning and for preventing natural disasters in the river basin systems. Direct measurement of SL is difficult, labour intensive, and expensive. The development of an accurate and reliable model for forecasting the SL is required. Sediment transport is highly non-linear and is influenced by a variety of factors. Forecasting of the SL using various conventional methods is not highly accurate because of the association of various complex phenomena. In this study, major key factors such as rock type (RT), relief (R), rainfall (RF), water discharge (WD), temperature (T), catchment area (CA), and SL are recognized in developing the one-step-ahead SL forecasting model in the Mahanadi River (MR), which is among India’s largest rivers. Artificial neural networks (ANN) in conjunction with multi-objective genetic algorithm (ANN-MOGA)-based forecasting models were developed for forecasting the SL in the MR. The ANN-MOGA model was employed to optimize the two competing objective functions (bias and error variance) with simultaneous optimization of all associated ANN parameters. The performances of the proposed novel model were finally compared to other existing methods to verify the forecasting capability of the model. The ANN-MOGA model improved the performance by 12.81% and 10.19% compared to traditional AR and MAR regression models, respectively. The results suggested that hybrid ANN-MOGA models outperform traditional autoregressive and multivariate autoregressive forecasting models. Overall, hybrid ANN-MOGA intelligent techniques are recommended for the forecasting of SL in rivers metadata Yadav, Arvind and Ali Albahar, Marwan and Chithaluru, Premkumar and Singh, Aman and Alammari, Abdullah and Kumar, Gogulamudi Vijay and Miró Vera, Yini Airet mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, aman.singh@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, yini.miro@uneatlantico.es (2023) Hybridizing Artificial Intelligence Algorithms for Forecasting of Sediment Load with Multi-Objective Optimization. Water, 15 (3). p. 522. ISSN 2073-4441

[img]
Preview
Text
water-15-00522-v2.pdf
Available under License Creative Commons Attribution.

Download (6MB) | Preview

Abstract

Forecasting of sediment load (SL) is essential for reservoir operations, design of water resource structures, risk management, water resource planning and for preventing natural disasters in the river basin systems. Direct measurement of SL is difficult, labour intensive, and expensive. The development of an accurate and reliable model for forecasting the SL is required. Sediment transport is highly non-linear and is influenced by a variety of factors. Forecasting of the SL using various conventional methods is not highly accurate because of the association of various complex phenomena. In this study, major key factors such as rock type (RT), relief (R), rainfall (RF), water discharge (WD), temperature (T), catchment area (CA), and SL are recognized in developing the one-step-ahead SL forecasting model in the Mahanadi River (MR), which is among India’s largest rivers. Artificial neural networks (ANN) in conjunction with multi-objective genetic algorithm (ANN-MOGA)-based forecasting models were developed for forecasting the SL in the MR. The ANN-MOGA model was employed to optimize the two competing objective functions (bias and error variance) with simultaneous optimization of all associated ANN parameters. The performances of the proposed novel model were finally compared to other existing methods to verify the forecasting capability of the model. The ANN-MOGA model improved the performance by 12.81% and 10.19% compared to traditional AR and MAR regression models, respectively. The results suggested that hybrid ANN-MOGA models outperform traditional autoregressive and multivariate autoregressive forecasting models. Overall, hybrid ANN-MOGA intelligent techniques are recommended for the forecasting of SL in rivers

Item Type: Article
Uncontrolled Keywords: multi-objective-based genetic algorithm; water discharge; artificial neural network; sediment load; Mahanadi River
Subjects: Subjects > Engineering
Divisions: Europe University of Atlantic > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Date Deposited: 06 Mar 2023 23:30
Last Modified: 06 Mar 2023 23:30
URI: https://repositorio.uneatlantico.es/id/eprint/6178

Actions (login required)

View Item View Item

<a href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/10290/1.hassmallThumbnailVersion/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Artículos y libros

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

en

close

Do ICT firms manage R&D differently? Firm-level and macroeconomic effects on corporate R&D investment: Empirical evidence from a multi-countries context

Technological firms invest in R&D looking for innovative solutions but assuming high costs and great (technological) uncertainty regarding final results and returns. Additionally, they face other problems related to R&D management. This empirical study tries to determine which of the factors favour or constrain the decision of these firms to engage in R&D. The analysis uses financial data of 14,619 ICT listed companies of 22 countries from 2003 to 2018. Additionally, macroeconomic data specific for the countries and the sector were used. For the analysis of dynamic panel data, a System-GMM method is used. Among the findings, we highlight that cash flow, contrary to the known theoretical models and empirical evidences, negatively impacts on R&D investment. Debt is neither the right source for R&D funding, as the effect is also negative. This suggests that ICT companies are forced to manage their R&D activities differently, relying more on other funding sources, taking advantage of growth opportunities and benefiting from a favourable macroeconomic environment in terms of growth and increased business sector spending on R&D. These results are similar in both sub-sectors and in all countries, both bank- and market based. The exception is firms with few growth opportunities and little debt.

Artículos y libros

Inna Alexeeva-Alexeev mail inna.alexeeva@uneatlantico.es, Cristina Mazas Pérez-Oleag mail cristina.mazas@uneatlantico.es,

Alexeeva-Alexeev

en

open

Assessment Of Lower Limb Asymmetries In Soccer Players According To The Stage Of The Season

PURPOSE: Muscle asymmetries can be associated with increased risk of injury. Using countermovement jump (CMJ) to analyze muscular asymmetries in the lower limbs of soccer players, according to the stage of the season.

Artículos y libros

Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Jeffrey Mjaanes mail , Angel Olider Rojas Vistorte mail , Julio Calleja-González mail ,

Velarde-Sotres

<a class="ep_document_link" href="/14206/1/mnm_2024_17-3_mnm-17-3-mnm240038_mnm-17-mnm240038.pdf"><img class="ep_doc_icon" alt="[img]" src="/14206/1.hassmallThumbnailVersion/mnm_2024_17-3_mnm-17-3-mnm240038_mnm-17-mnm240038.pdf" border="0"/></a>

en

open

Exploring body composition and somatotype profiles among youth professional soccer players

OBJECTIVE: This study aimed to analyze the body composition and somatotype of professional soccer players, investigating variations across categories and playing positions. METHODS: An observational, cross-sectional, and analytical study was conducted with 51 male professional soccer players in the U-19 and U-20 categories. Data about sex, age, height, and weight were collected between March and May 2023. Body composition analysis utilized the ISAK protocol for the restricted profile, while somatotype categorization employed the Heath and Carter formula. Statistical analysis was performed using IBM SPSS Statistics V.26, which involved the application of Mann-Whitney and Kruskal-Wallis tests to discern differences in body composition variables and proportionality based on categories and playing positions. The Dunn test further identified specific positions exhibiting significant differences. RESULTS: The study encompassed 51 players, highlighting meaningful differences in body composition. The average body mass in kg was 75.8 (±6.9) for U-20 players and 70.5 (±6.1) for U-19 players. The somatotype values were 2.6-4.6-2.3 for U-20 players and 2.5-4.3-2.8 for U-19 players, with a predominance of muscle mass in all categories, characterizing them as balanced mesomorphs. CONCLUSIONS: Body composition and somatotype findings underscore distinctions in body mass across categories and playing positions, with notably higher body mass and muscle mass predominance in elevated categories. However, the prevailing skeletal muscle development establishes a significant semblance with the recognized somatotype standard for soccer.

Artículos y libros

Raynier Zambrano-Villacres mail , Evelyn Frias-Toral mail , Emily Maldonado-Ponce mail , Carlos Poveda-Loor mail , Paola Leal mail , Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Alice Leonardi mail , Bruno Trovato mail , Federico Roggio mail , Alessandro Castorina mail , Xu Wenxin mail , Giuseppe Musumeci mail ,

Zambrano-Villacres

en

open

Aging, age-related diseases, oxidative stress and plant polyphenols: Is this a true relationship?

Aging is a physiological process characterized by a progressive deterioration of all the biological functions and a marked reduction in stress resistance, thus resulting in an increased susceptibility to several pathologies

Artículos y libros

Manuela Cassotta mail manucassotta@gmail.com, José L. Quiles mail jose.quiles@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es,

Cassotta