The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis
Article Subjects > Comunication Europe University of Atlantic > Research > Articles and books Abierto Inglés The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled “International Natural Product Sciences Taskforce” (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. Methods In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week “2021 INPST Twitter Networking Event” (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. Results and Conclusion The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events. metadata Singla, Rajeev K. and De, Ronita and Efferth, Thomas and Mezzetti, Bruno and Sahab Uddin, Md. and Sanusi, X. and Ntie-Kang, Fidele and Wang, Dongdong and Schultz, Fabien and Kharat, Kiran R. and Devkota, Hari Prasad and Battino, Maurizio and Sur, Daniel and Lordan, Ronan and Patnaik, Sourav S and Tsagkaris, Christos and Sai, Chandragiri Siva and Tripathi, Surya Kant and Găman, Mihnea-Alexandru and Ahmed, Mosa E.O. and González-Burgos, Elena and Babiaka, Smith B. and Paswan, Shravan Kumar and Odimegwu, Joy Ifunanya and Akram, Faizan and Simal-Gandara, Jesus and Urquiza, Mágali S. and Tikhonov, Aleksei and Mondal, Himel and Singla, Shailja and Lonardo, Sara Di and Mulholland, Eoghan J and Cenanovic, Merisa and Maigoro, Abdulkadir Yusif and Giampieri, Francesca and Lee, Soojin and Tzvetkov, Nikolay T. and Louka, Anna Maria and Verma, Pritt and Chopra, Hitesh and Olea, Scarlett Perez and Khan, Johra and Alvarez Suarez, José M. and Zheng, Xiaonan and Tomczyk, Michał and Sabnani, Manoj Kumar and Medina, Christhian Delfino Villanueva and Khalid, Garba M. and Boyina, Hemanth Kumar and Georgiev, Milen I. and Supuran, Claudiu T. and Sobarzo-Sánchez, Eduardo and Fan, Tai-Ping and Pittala, Valeria and Sureda, Antoni and Braidy, Nady and Russo, Gian Luigi and Vacca, Rosa Anna and Banach, Maciej and Lizard, Gérard and Zarrouk, Amira and Hammami, Sonia and Orhan, Ilkay Erdogan and Aggarwal, Bharat B. and Perry, George and Miller, Mark JS and Heinrich, Michael and Bishayee, Anupam and Kijjoa, Anake and Arkells, Nicolas and Bredt, David and Wink, Michael and Fiebich, Bernd l. and Kiran, Gangarapu and Yeung, Andy Wai Kan and Gupta, Girish Kumar and Santini, Antonello and Lucarini, Massimo and Durazzo, Alessandra and El-Demerdash, Amr and Dinkova-Kostova, Albena T. and Cifuentes, Alejandro and Souto, Eliana B. and Zubair, Muhammad Asim Masoom and Badhe, Pravin and Echeverría, Javier and Horbańczuk, Jarosław Olav and Horbanczuk, Olaf K. and Sheridan, Helen and Sheshe, Sadeeq Muhammad and Witkowska, Anna Maria and Abu-Reidah, Ibrahim M. and Riaz, Muhammad and Ullah, Hammad and Oladipupo, Akolade R. and Lopez, Víctor and Sethiya, Neeraj Kumar and Shrestha, Bhupal Govinda and Ravanan, Palaniyandi and Gupta, Subash Chandra and Alzahrani, Qushmua E. and Dama Sreedhar, Preethidan and Xiao, Jianbo and Moosavi, Mohammad Amin and Subramani, Parasuraman Aiya and Singh, Amit Kumar and Chettupalli, Ananda Kumar and Patra, Jayanta Kumar and Singh, Gopal and Karpiński, Tomasz M. and Al-Rimawi, Fuad and Abiri, Rambod and Ahmed, Atallah F. and Barreca, Davide and Vats, Sharad and Amrani, Said and Fimognari, Carmela and Mocan, Andrei and Hritcu, Lucian and Semwal, Prabhakar and Shiblur Rahaman, Md. and Emerald, Mila and Akinrinde, Akinleye Stephen and Singh, Abhilasha and Joshi, Ashima and Joshi, Tanuj and Khan, Shafaat Yar and Balla, Gareeballah Osman Adam and Lu, Aiping and Pai, Sandeep Ramchandra and Ghzaiel, Imen and Acar, Niyazi and Es-Safi, Nour Eddine and Zengin, Gokhan and Kureshi, Azazahemad A. and Sharma, Arvind Kumar and Baral, Bikash and Rani, Neeraj and Jeandet, Philippe and Gulati, Monica and Kapoor, Bhupinder and Mohanta, Yugal Kishore and Emam-Djomeh, Zahra and Onuku, Raphael and Depew, Jennifer R. and Atrooz, Omar M. and Goh, Bey Hing and Andrade, Jose Carlos and Konwar, Bikramjit and Shine, VJ and Ferreira, João Miguel Lousa Dias and Ahmad, Jamil and Chaturvedi, Vivek K. and Skalicka-Woźniak, Krystyna and Sharma, Rohit and Gautam, Rupesh K. and Granica, Sebastian and Parisi, Salvatore and Kumar, Rishabh and Atanasov, Atanas G. and Shen, Bairong mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, maurizio.battino@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, francesca.giampieri@uneatlantico.es, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED (2023) The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis. Phytomedicine, 108. p. 154520. ISSN 09447113
|
Text
1-s2.0-S0944711322006080-main.pdf Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (4MB) | Preview |
Abstract
The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled “International Natural Product Sciences Taskforce” (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. Methods In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week “2021 INPST Twitter Networking Event” (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. Results and Conclusion The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Natural productsOpen innovationSocial mediaHashtag analysisTwitter researchDigital tools |
Subjects: | Subjects > Comunication |
Divisions: | Europe University of Atlantic > Research > Articles and books |
Date Deposited: | 12 Dec 2022 23:30 |
Last Modified: | 21 Oct 2024 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/5021 |
Actions (login required)
![]() |
View Item |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
en
close
A novel machine learning-based proposal for early prediction of endometriosis disease
Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.
Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,
Enamorado-Díaz
<a href="/17569/1/Food%20Frontiers%20-%202025%20-%20Romero%E2%80%90Marquez%20-%20Olive%20Leaf%20Extracts%20With%20High%20%20Medium%20%20or%20Low%20Bioactive%20Compounds%20Content.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Alzheimer's disease (AD) involves β-amyloid plaques and tau hyperphosphorylation, driven by oxidative stress and neuroinflammation. Cyclooxygenase-2 (COX-2) and acetylcholinesterase (AChE) activities exacerbate AD pathology. Olive leaf (OL) extracts, rich in bioactive compounds, offer potential therapeutic benefits. This study aimed to assess the anti-inflammatory, anti-cholinergic, and antioxidant effects of three OL extracts (low, mid, and high bioactive content) in vitro and their protective effects against AD-related proteinopathies in Caenorhabditis elegans models. OL extracts were characterized for phenolic composition, AChE and COX-2 inhibition, as well as antioxidant capacity. Their effects on intracellular and mitochondrial reactive oxygen species (ROS) were tested in C. elegans models expressing human Aβ and tau proteins. Gene expression analyses examined transcription factors (DAF-16, skinhead [SKN]-1) and their targets (superoxide dismutase [SOD]-2, SOD-3, GST-4, and heat shock protein [HSP]-16.2). High-OL extract demonstrated superior AChE and COX-2 inhibition and antioxidant capacity. Low- and high-OL extracts reduced Aβ aggregation, ROS levels, and proteotoxicity via SKN-1/NRF-2 and DAF-16/FOXO pathways, whereas mid-OL showed moderate effects through proteostasis modulation. In tau models, low- and high-OL extracts mitigated mitochondrial ROS levels via SOD-2 but had limited effects on intracellular ROS levels. High-OL extract also increased GST-4 levels, whereas low and mid extracts enhanced GST-4 levels. OL extracts protect against AD-related proteinopathies by modulating oxidative stress, inflammation, and proteostasis. High-OL extract showed the most promise for nutraceutical development due to its robust phenolic profile and activation of key antioxidant pathways. Further research is needed to confirm long-term efficacy.
Jose M. Romero‐Marquez mail , María D. Navarro‐Hortal mail , Alfonso Varela‐López mail , Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Juan G. Puentes mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Cristina Sánchez‐González mail , Jianbo Xiao mail , Roberto García‐Ruiz mail , Sebastián Sánchez mail , Tamara Y. Forbes‐Hernández mail , José L. Quiles mail jose.quiles@uneatlantico.es,
Romero‐Marquez
<a href="/17570/1/eFood%20-%202025%20-%20Navarro%E2%80%90Hortal%20-%20Effects%20of%20a%20Garlic%20Hydrophilic%20Extract%20Rich%20in%20Sulfur%20Compounds%20on%20Redox%20Biology%20and.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Garlic is a horticultural product highly valued for its culinary and medicinal attributes. The aim of this study was to evaluate the composition of a garlic hydrophilic extract as well as the influence on redox biology, Alzheimer's Disease (AD) markers and aging, using Caenorhabditis elegans as experimental model. The extract was rich in sulfur compounds, highlighting the presence of other compounds like phenolics, and the antioxidant property was corroborated. Regarding AD markers, the acetylcholinesterase inhibitory capacity was demonstrated in vitro. Although the extract did not modify the amyloid β-induced paralysis degree, it was able to improve, in a dose-dependent manner, some locomotive parameters affected by the hyperphosphorylated tau protein in C. elegans. It could be related to the effect found on GFP-transgenic stains, mainly regarding to the increase in the gene expression of HSP-16.2. Moreover, an initial investigation into the aging process revealed that the extract successfully inhibited the accumulation of intracellular and mitochondrial reactive oxygen species in aged worms. These results provide valuable insights into the multifaceted impact of garlic extract, particularly in the context of aging and neurodegenerative processes. This study lays a foundation for further research avenues exploring the intricate molecular mechanisms underlying garlic effects and its translation into potential therapeutic interventions for age-related neurodegenerative conditions.
María D. Navarro‐Hortal mail , Jose M. Romero‐Marquez mail , Johura Ansary mail , Cristina Montalbán‐Hernández mail , Alfonso Varela‐López mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Jianbo Xiao mail , Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Cristina Sánchez‐González mail , Tamara Y. Forbes‐Hernández mail , José L. Quiles mail jose.quiles@uneatlantico.es,
Navarro‐Hortal
<a class="ep_document_link" href="/17573/1/s41598-025-96332-9.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel hybrid transfer neural network for wheat crop growth stages recognition using field images
Wheat is one of the world’s most widely cultivated cereal crops and is a primary food source for a significant portion of the population. Wheat goes through several distinct developmental phases, and accurately identifying these stages is essential for precision farming. Determining wheat growth stages accurately is crucial for increasing the efficiency of agricultural yield in wheat farming. Preliminary research identified obstacles in distinguishing between these stages, negatively impacting crop yields. To address this, this study introduces an innovative approach, MobDenNet, based on data collection and real-time wheat crop stage recognition. The data collection utilized a diverse image dataset covering seven growth phases ‘Crown Root’, ‘Tillering’, ‘Mid Vegetative’, ‘Booting’, ‘Heading’, ‘Anthesis’, and ‘Milking’, comprising 4496 images. The collected image dataset underwent rigorous preprocessing and advanced data augmentation to refine and minimize biases. This study employed deep and transfer learning models, including MobileNetV2, DenseNet-121, NASNet-Large, InceptionV3, and a convolutional neural network (CNN) for performance comparison. Experimental evaluations demonstrated that the transfer model MobileNetV2 achieved 95% accuracy, DenseNet-121 achieved 94% accuracy, NASNet-Large achieved 76% accuracy, InceptionV3 achieved 74% accuracy, and the CNN achieved 68% accuracy. The proposed novel hybrid approach, MobDenNet, that synergistically merges the architectures of MobileNetV2 and DenseNet-121 neural networks, yields highly accurate results with precision, recall, and an F1 score of 99%. We validated the robustness of the proposed approach using the k-fold cross-validation. The proposed research ensures the detection of growth stages with great promise for boosting agricultural productivity and management practices, empowering farmers to optimize resource distribution and make informed decisions.
Aisha Naseer mail , Madiha Amjad mail , Ali Raza mail , Kashif Munir mail , Aseel Smerat mail , Henry Fabian Gongora mail henry.gongora@uneatlantico.es, Carlos Eduardo Uc Ríos mail carlos.uc@unini.edu.mx, Imran Ashraf mail ,
Naseer