Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules

Article Subjects > Biomedicine
Subjects > Nutrition
Europe University of Atlantic > Research > Articles and books Abierto Español Ever since coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, was declared a pandemic on March 11, 2020, by the WHO, a concerted effort has been made to find compounds capable of acting on the virus and preventing its replication. In this context, researchers have refocused part of their attention on certain natural compounds that have shown promising effects on the virus. Considering the importance of this topic in the current context, this study aimed to present a critical review and analysis of the main reports of plant-derived compounds as possible inhibitors of the two SARS-CoV-2 proteases: main protease (Mpro) and Papain-like protease (PLpro). From the search in the PubMed database, a total of 165 published articles were found that met the search patterns. A total of 590 unique molecules were identified from a total of 122 articles as potential protease inhibitors. At the same time, 114 molecules reported as natural products and with annotation of theoretical support and antiviral effects were extracted from the COVID-19 Help database. After combining the molecules extracted from articles and those obtained from the database, we identified 648 unique molecules predicted as potential inhibitors of Mpro and/or PLpro. According to our results, several of the predicted compounds with higher theoretical confidence are present in many plants used in traditional medicine and even food, such as flavonoids, carboxylic acids, phenolic acids, triterpenes, terpenes phytosterols, and triterpenoids. These are potential inhibitors of Mpro and PLpro. Although the predictions of several molecules against SARS-CoV-2 are promising, little experimental information was found regarding certain families of compounds. Only 45 out of the 648 unique molecules have experimental data validating them as inhibitors of Mpro or PLpro, with the most frequent scaffold present in these 45 compounds being the flavone. The novelty of this work lies in the analysis of the structural diversity of the chemical space among the molecules predicted as inhibitors of SARS-CoV-2 Mpro and PLpro proteases and the comparison to those molecules experimentally validated. This work emphasizes the need for experimental validation of certain families of compounds, preferentially combining classical enzymatic assays with interaction-based methods. Furthermore, we recommend checking the presence of Pan-Assay Interference Compounds (PAINS) and the presence of molecules previously reported as inhibitors of Mpro or PLpro to optimize resources and time in the discovery of new SARS-CoV-2 antivirals from plant-derived molecules. metadata Guerra, Yasel and Celi, Diana and Cueva, Paul and Perez-Castillo, Yunierkis and Giampieri, Francesca and Alvarez-Suarez, José Miguel and Tejera, Eduardo mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, francesca.giampieri@uneatlantico.es, UNSPECIFIED, UNSPECIFIED (2022) Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules. ACS Omega. ISSN 2470-1343

[img]
Preview
Text
acsomega.2c05766.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (8MB) | Preview

Abstract

Ever since coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, was declared a pandemic on March 11, 2020, by the WHO, a concerted effort has been made to find compounds capable of acting on the virus and preventing its replication. In this context, researchers have refocused part of their attention on certain natural compounds that have shown promising effects on the virus. Considering the importance of this topic in the current context, this study aimed to present a critical review and analysis of the main reports of plant-derived compounds as possible inhibitors of the two SARS-CoV-2 proteases: main protease (Mpro) and Papain-like protease (PLpro). From the search in the PubMed database, a total of 165 published articles were found that met the search patterns. A total of 590 unique molecules were identified from a total of 122 articles as potential protease inhibitors. At the same time, 114 molecules reported as natural products and with annotation of theoretical support and antiviral effects were extracted from the COVID-19 Help database. After combining the molecules extracted from articles and those obtained from the database, we identified 648 unique molecules predicted as potential inhibitors of Mpro and/or PLpro. According to our results, several of the predicted compounds with higher theoretical confidence are present in many plants used in traditional medicine and even food, such as flavonoids, carboxylic acids, phenolic acids, triterpenes, terpenes phytosterols, and triterpenoids. These are potential inhibitors of Mpro and PLpro. Although the predictions of several molecules against SARS-CoV-2 are promising, little experimental information was found regarding certain families of compounds. Only 45 out of the 648 unique molecules have experimental data validating them as inhibitors of Mpro or PLpro, with the most frequent scaffold present in these 45 compounds being the flavone. The novelty of this work lies in the analysis of the structural diversity of the chemical space among the molecules predicted as inhibitors of SARS-CoV-2 Mpro and PLpro proteases and the comparison to those molecules experimentally validated. This work emphasizes the need for experimental validation of certain families of compounds, preferentially combining classical enzymatic assays with interaction-based methods. Furthermore, we recommend checking the presence of Pan-Assay Interference Compounds (PAINS) and the presence of molecules previously reported as inhibitors of Mpro or PLpro to optimize resources and time in the discovery of new SARS-CoV-2 antivirals from plant-derived molecules.

Item Type: Article
Uncontrolled Keywords: Flavonoids, Inhibitors, Molecules, Peptides and proteins, SARS-CoV-2
Subjects: Subjects > Biomedicine
Subjects > Nutrition
Divisions: Europe University of Atlantic > Research > Articles and books
Date Deposited: 05 Dec 2022 23:30
Last Modified: 12 Jul 2023 23:31
URI: https://repositorio.uneatlantico.es/id/eprint/4908

Actions (login required)

View Item View Item

en

close

Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice

The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.

Artículos y libros

Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,

Luo

en

close

A novel machine learning-based proposal for early prediction of endometriosis disease

Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.

Artículos y libros

Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,

Enamorado-Díaz

en

close

Effects of strength training with free weights and elastic resistance in older adults: A randomised clinical study

Background The aging process leads to negative changes in various bodily systems, including the neuromuscular system. Strength training, is considered the best strategy to counteract these neuromuscular changes, preventing sarcopenia and frailty in older adults. Objective To compare the effects of strength training with elastic resistance and free weights on the muscle strength of knee extensors and flexors and functional performance in the older adults. Methods This was a randomised clinical study. Thirty-one participants of both sexes were allocated randomly into two groups: Training Group Free Weight (TGFW, n = 15) and Training Group with Elastic Resistance (TGER, n = 16). Two individuals were excluded and so, twenty-nine individuals were evaluated before and after eight weeks training protocol, which was performed three times a week. The determination of the training load was obtained using a protocol of 10 repetitions maximum. Results No significant differences were found in either the intra- or the inter-group comparisons, on functional performance and peak muscle strength. In the intra-groups (pre- and post-strength training), it was observed that both groups significantly increased the training load (10 RM) for the extensors (TGFW p = 0.0002; TGER p = 0.0001) and the knee flexors (TGFW p = 0.006; TGER p = 0.0001). Conclusion Both training protocols similarly were effective in increasing the training load observed by the 10 RM test of the extension and flexion movements of the knee.

Artículos y libros

Rafaela Zanin Ferreira mail , Antonio Felipe Souza Gomes mail , Marco Antonio Ferreira Baldim mail , Ricardo Silva Alves mail , Leonardo César Carvalho mail , Adriano Prado Simão mail ,

Ferreira

<a class="ep_document_link" href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images

Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.

Artículos y libros

Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,

Tanveer

<a class="ep_document_link" href="/15987/1/s41598-024-83147-3.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

A novel and efficient digital image steganography technique using least significant bit substitution

Steganography is used to hide sensitive types of data including images, audio, text, and videos in an invisible way so that no one can detect it. Image-based steganography is a technique that uses images as a cover media for hiding and transmitting sensitive information over the internet. However, image-based steganography is a challenging task due to transparency, security, computational efficiency, tamper protection, payload, etc. Recently, different image steganography methods have been proposed but most of them have reliability issues. Therefore, to solve this issue, we propose an efficient technique based on the Least Significant Bit (LSB). The LSB substitution method minimizes the error rate in the embedding process and is used to achieve greater reliability. Our proposed image-based steganography algorithm incorporates LSB substitution with Magic Matrix, Multi-Level Encryption Algorithm (MLEA), Secret Key (SK), and transposition, flipping. We performed several experiments and the results show that our proposed technique is efficient and achieves efficient results. We tested a total of 165 different RGB images of various dimensions and sizes of hidden information, using various Quality Assessment Metrics (QAMs); A name of few are; Normalized Cross Correlation (NCC), Image Fidelity (IF), Peak Signal Noise Ratio (PSNR), Root Mean Square Error (RMSE), Quality Index (QI), Correlation Coefficient (CC), Structural Similarity Index (SSIM), Mean Square Error (MSE), Entropy, Contrast, and Homogeneity, Image Histogram (IH). We also conducted a comparative analysis with some existing methods as well as security analysis which showed better results. The achieved result demonstrates significant improvements over the current state-of-the-art methods.

Artículos y libros

Shahid Rahman mail , Jamal uddin mail , Hameed Hussain mail , Sabir Shah mail , Abdu Salam mail , Farhan Amin mail , Isabel de la Torre Díez mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx,

Rahman