Gamificación en la enseñanza docente: integración de la gamificación como estrategia metodológica en la creación de actividades didácticas mediante el uso de las TIC en la Licenciatura de Diseño Gráfico de la Universidad Mariano Gálvez de Guatemala.
Thesis Subjects > Teaching Europe University of Atlantic > Teaching > Final Master Projects Cerrado Español El presente trabajo tiene como objetivo investigar acerca del proceso de la gamificación y educación en la enseñanza docente, o sea, cómo se realiza el uso de la integración de la gamificación como estrategia metodológica en la creación de actividades didácticas mediante el uso de las TIC en el área de Licenciatura en Diseño Gráfico de la Universidad Mariano Gálvez de Guatemala. El punto de partida tiene lugar en la relevancia actual y la integración de las TIC en la educación de forma virtual por la necesidad de explorar el tema en el contexto de estudio. El objetivo general de esta investigación se centra en fundamentar el uso de guía facilitadora que integre la gamificación como estrategia metodológica en la creación de actividades didácticas mediante el uso de las TIC para mejorar el desempeño docente en la Licenciatura en Diseño Gráfico de la Facultad de Arquitectura de la Universidad Mariano Gálvez de Guatemala. Se toman en cuenta los programas y procesos de capacitación docente, para integrar la gamificación como estrategia metodológica en la creación de actividades didácticas mediante el uso de las TIC con el fin de mejorar el desempeño docente en esta institución de educación a nivel superior. La recogida de datos se realiza a través de distintos instrumentos cualitativos (cuestionarios, entrevistas) –al equipo docente, coordinadores, decano de facultad–, a través de observaciones de clase. Los resultados más relevantes indican que es necesario realizar actualización permanente de docentes para consolidar el uso de recursos tecnológicos, para implementar cambios en la modalidad y planificación docente, al pasar de modalidad presencial a virtual, además de implementar estrategias que generen una educación enfocada en los estudiantes para consolidar la labor docente. metadata Amézquita Mazariegos, Ada Linda mail admez.design@gmail.com (2022) Gamificación en la enseñanza docente: integración de la gamificación como estrategia metodológica en la creación de actividades didácticas mediante el uso de las TIC en la Licenciatura de Diseño Gráfico de la Universidad Mariano Gálvez de Guatemala. Masters thesis, UNSPECIFIED.
Full text not available from this repository.Abstract
El presente trabajo tiene como objetivo investigar acerca del proceso de la gamificación y educación en la enseñanza docente, o sea, cómo se realiza el uso de la integración de la gamificación como estrategia metodológica en la creación de actividades didácticas mediante el uso de las TIC en el área de Licenciatura en Diseño Gráfico de la Universidad Mariano Gálvez de Guatemala. El punto de partida tiene lugar en la relevancia actual y la integración de las TIC en la educación de forma virtual por la necesidad de explorar el tema en el contexto de estudio. El objetivo general de esta investigación se centra en fundamentar el uso de guía facilitadora que integre la gamificación como estrategia metodológica en la creación de actividades didácticas mediante el uso de las TIC para mejorar el desempeño docente en la Licenciatura en Diseño Gráfico de la Facultad de Arquitectura de la Universidad Mariano Gálvez de Guatemala. Se toman en cuenta los programas y procesos de capacitación docente, para integrar la gamificación como estrategia metodológica en la creación de actividades didácticas mediante el uso de las TIC con el fin de mejorar el desempeño docente en esta institución de educación a nivel superior. La recogida de datos se realiza a través de distintos instrumentos cualitativos (cuestionarios, entrevistas) –al equipo docente, coordinadores, decano de facultad–, a través de observaciones de clase. Los resultados más relevantes indican que es necesario realizar actualización permanente de docentes para consolidar el uso de recursos tecnológicos, para implementar cambios en la modalidad y planificación docente, al pasar de modalidad presencial a virtual, además de implementar estrategias que generen una educación enfocada en los estudiantes para consolidar la labor docente.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | gamificación, entornos virtuales, material didáctico, innovación pedagógica, actividad didáctica, TIC |
Subjects: | Subjects > Teaching |
Divisions: | Europe University of Atlantic > Teaching > Final Master Projects |
Date Deposited: | 16 Nov 2023 23:30 |
Last Modified: | 16 Nov 2023 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/1971 |
Actions (login required)
![]() |
View Item |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
en
close
A novel machine learning-based proposal for early prediction of endometriosis disease
Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.
Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,
Enamorado-Díaz
<a class="ep_document_link" href="/17788/1/s40537-025-01167-w.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Detecting hate in diversity: a survey of multilingual code-mixed image and video analysis
The proliferation of damaging content on social media in today’s digital environment has increased the need for efficient hate speech identification systems. A thorough examination of hate speech detection methods in a variety of settings, such as code-mixed, multilingual, visual, audio, and textual scenarios, is presented in this paper. Unlike previous research focusing on single modalities, our study thoroughly examines hate speech identification across multiple forms. We classify the numerous types of hate speech, showing how it appears on different platforms and emphasizing the unique difficulties in multi-modal and multilingual settings. We fill research gaps by assessing a variety of methods, including deep learning, machine learning, and natural language processing, especially for complicated data like code-mixed and cross-lingual text. Additionally, we offer key technique comparisons, suggesting future research avenues that prioritize multi-modal analysis and ethical data handling, while acknowledging its benefits and drawbacks. This study attempts to promote scholarly research and real-world applications on social media platforms by acting as an essential resource for improving hate speech identification across various data sources.
Hafiz Muhammad Raza Ur Rehman mail , Mahpara Saleem mail , Muhammad Zeeshan Jhandir mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Helena Garay mail helena.garay@uneatlantico.es, Imran Ashraf mail ,
Raza Ur Rehman
<a class="ep_document_link" href="/17794/1/s41598-025-95836-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Accurate solar and photovoltaic (PV) power forecasting is essential for optimizing grid integration, managing energy storage, and maximizing the efficiency of solar power systems. Deep learning (DL) models have shown promise in this area due to their ability to learn complex, non-linear relationships within large datasets. This study presents a systematic literature review (SLR) of deep learning applications for solar PV forecasting, addressing a gap in the existing literature, which often focuses on traditional ML or broader renewable energy applications. This review specifically aims to identify the DL architectures employed, preprocessing and feature engineering techniques used, the input features leveraged, evaluation metrics applied, and the persistent challenges in this field. Through a rigorous analysis of 26 selected papers from an initial set of 155 articles retrieved from the Web of Science database, we found that Long Short-Term Memory (LSTM) networks were the most frequently used algorithm (appearing in 32.69% of the papers), closely followed by Convolutional Neural Networks (CNNs) at 28.85%. Furthermore, Wavelet Transform (WT) was found to be the most prominent data decomposition technique, while Pearson Correlation was the most used for feature selection. We also found that ambient temperature, pressure, and humidity are the most common input features. Our systematic evaluation provides critical insights into state-of-the-art DL-based solar forecasting and identifies key areas for upcoming research. Future research should prioritize the development of more robust and interpretable models, as well as explore the integration of multi-source data to further enhance forecasting accuracy. Such advancements are crucial for the effective integration of solar energy into future power grids.
Oussama Khouili mail , Mohamed Hanine mail , Mohamed Louzazni mail , Miguel Ángel López Flores mail miguelangel.lopez@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es, Imran Ashraf mail ,
Khouili
<a class="ep_document_link" href="/17569/1/Food%20Frontiers%20-%202025%20-%20Romero%E2%80%90Marquez%20-%20Olive%20Leaf%20Extracts%20With%20High%20%20Medium%20%20or%20Low%20Bioactive%20Compounds%20Content.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Alzheimer's disease (AD) involves β-amyloid plaques and tau hyperphosphorylation, driven by oxidative stress and neuroinflammation. Cyclooxygenase-2 (COX-2) and acetylcholinesterase (AChE) activities exacerbate AD pathology. Olive leaf (OL) extracts, rich in bioactive compounds, offer potential therapeutic benefits. This study aimed to assess the anti-inflammatory, anti-cholinergic, and antioxidant effects of three OL extracts (low, mid, and high bioactive content) in vitro and their protective effects against AD-related proteinopathies in Caenorhabditis elegans models. OL extracts were characterized for phenolic composition, AChE and COX-2 inhibition, as well as antioxidant capacity. Their effects on intracellular and mitochondrial reactive oxygen species (ROS) were tested in C. elegans models expressing human Aβ and tau proteins. Gene expression analyses examined transcription factors (DAF-16, skinhead [SKN]-1) and their targets (superoxide dismutase [SOD]-2, SOD-3, GST-4, and heat shock protein [HSP]-16.2). High-OL extract demonstrated superior AChE and COX-2 inhibition and antioxidant capacity. Low- and high-OL extracts reduced Aβ aggregation, ROS levels, and proteotoxicity via SKN-1/NRF-2 and DAF-16/FOXO pathways, whereas mid-OL showed moderate effects through proteostasis modulation. In tau models, low- and high-OL extracts mitigated mitochondrial ROS levels via SOD-2 but had limited effects on intracellular ROS levels. High-OL extract also increased GST-4 levels, whereas low and mid extracts enhanced GST-4 levels. OL extracts protect against AD-related proteinopathies by modulating oxidative stress, inflammation, and proteostasis. High-OL extract showed the most promise for nutraceutical development due to its robust phenolic profile and activation of key antioxidant pathways. Further research is needed to confirm long-term efficacy.
Jose M. Romero‐Marquez mail , María D. Navarro‐Hortal mail , Alfonso Varela‐López mail , Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Juan G. Puentes mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Cristina Sánchez‐González mail , Jianbo Xiao mail , Roberto García‐Ruiz mail , Sebastián Sánchez mail , Tamara Y. Forbes‐Hernández mail , José L. Quiles mail jose.quiles@uneatlantico.es,
Romero‐Marquez