Prevalencia de la anemia ferropénica y factores asociados en niños menores de 3 años atendidos en el Centro de Salud Tipo B de Nobol en el año 2019.
Thesis
Subjects > Biomedicine
Europe University of Atlantic > Teaching > Final Master Projects
Ibero-american International University > Teaching > Final Master Projects
Cerrado
Español
En el mundo la anemia avanza desmedidamente, según la organización mundial de la salud 1620 millones de personas en el mundo sufren de anemia ferropénica de este valor los niños en edad pre escolar tienen el 47,4%, de donde podemos observar que es prácticamente la mitad, es por esto que nuestro objetivo general es determinar la prevalencia de la anemia ferropénica y factores asociados en niños menores de tres años atendidos en el centro de salud de Nobol, con esto buscamos orientar los tratamientos y más que nada la prevención de esta patología ya que en el Ecuador esta enfermedad como en el mundo tiene un gran aumento y un crecimiento constante, ya que el origen de la anemia se lo considera multifactorial, no es menos cierto que dentro de esos factores la más frecuente es por la deficiencia de hierro, que puede ser el resultado de la disminución en la ingesta de la cantidad y más aun de la calidad del hierro en la dieta diaria, lo que es demostrable en la baja cantidad de hemoglobina, en nuestro Ecuador la prevalencia llego al 27,5% en niños menores de 5 años dentro de estos la etnia tiene mucho que ver ya que el grupo de niños indígenas mostro el 40,5% con esta enfermedad. Radicando aquí la importancia de nuestro tema de proyecto, pretendemos dar un mejor enfoque a la atención de la anemia ferropénica al saber y analizar sus valores de prevalencia y ver cuál es la nutrición de los infantes, como hemos dicho la nutrición tiene un valor fundamental en la adquisición de anemia ferropénica, pero es nuestro deber hacer más, que medicina curativa lo que debemos hacer es medicina preventiva siendo esta la única manera de vencer los niveles altos que se presentan en el Ecuador, teniendo una correcta nutrición basada en los gastos y necesidades del cuerpo, se aumentara o se producirá el hierro de una manera eficiente y habremos prevenido no solo la anemia ferropénica sino también todos las complicaciones que esta enfermedad provoca y haremos que la calidad de vida del niño mejore y no solo de él sino también la de su familia, nosotros nos encontramos con un bajo nivel nutricional en el cantón Nobol, siendo esto uno de los hallazgos más relevantes, de lo que concluimos que la nutrición es de suma importancia en el control de la anemia ferropénica, y más aún en su prevención.
metadata
Cerezo Carpio, Adriel Alexander
mail
md_cerezocarpio@hotmail.com
(2021)
Prevalencia de la anemia ferropénica y factores asociados en niños menores de 3 años atendidos en el Centro de Salud Tipo B de Nobol en el año 2019.
Masters thesis, UNSPECIFIED.
Abstract
En el mundo la anemia avanza desmedidamente, según la organización mundial de la salud 1620 millones de personas en el mundo sufren de anemia ferropénica de este valor los niños en edad pre escolar tienen el 47,4%, de donde podemos observar que es prácticamente la mitad, es por esto que nuestro objetivo general es determinar la prevalencia de la anemia ferropénica y factores asociados en niños menores de tres años atendidos en el centro de salud de Nobol, con esto buscamos orientar los tratamientos y más que nada la prevención de esta patología ya que en el Ecuador esta enfermedad como en el mundo tiene un gran aumento y un crecimiento constante, ya que el origen de la anemia se lo considera multifactorial, no es menos cierto que dentro de esos factores la más frecuente es por la deficiencia de hierro, que puede ser el resultado de la disminución en la ingesta de la cantidad y más aun de la calidad del hierro en la dieta diaria, lo que es demostrable en la baja cantidad de hemoglobina, en nuestro Ecuador la prevalencia llego al 27,5% en niños menores de 5 años dentro de estos la etnia tiene mucho que ver ya que el grupo de niños indígenas mostro el 40,5% con esta enfermedad. Radicando aquí la importancia de nuestro tema de proyecto, pretendemos dar un mejor enfoque a la atención de la anemia ferropénica al saber y analizar sus valores de prevalencia y ver cuál es la nutrición de los infantes, como hemos dicho la nutrición tiene un valor fundamental en la adquisición de anemia ferropénica, pero es nuestro deber hacer más, que medicina curativa lo que debemos hacer es medicina preventiva siendo esta la única manera de vencer los niveles altos que se presentan en el Ecuador, teniendo una correcta nutrición basada en los gastos y necesidades del cuerpo, se aumentara o se producirá el hierro de una manera eficiente y habremos prevenido no solo la anemia ferropénica sino también todos las complicaciones que esta enfermedad provoca y haremos que la calidad de vida del niño mejore y no solo de él sino también la de su familia, nosotros nos encontramos con un bajo nivel nutricional en el cantón Nobol, siendo esto uno de los hallazgos más relevantes, de lo que concluimos que la nutrición es de suma importancia en el control de la anemia ferropénica, y más aún en su prevención.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Anemia, salud, niños, hierro, nutrición |
Subjects: | Subjects > Biomedicine |
Divisions: | Europe University of Atlantic > Teaching > Final Master Projects Ibero-american International University > Teaching > Final Master Projects |
Date Deposited: | 02 Nov 2023 23:30 |
Last Modified: | 02 Nov 2023 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/1488 |
Actions (login required)
![]() |
View Item |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
en
close
A novel machine learning-based proposal for early prediction of endometriosis disease
Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.
Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,
Enamorado-Díaz
en
close
Background The aging process leads to negative changes in various bodily systems, including the neuromuscular system. Strength training, is considered the best strategy to counteract these neuromuscular changes, preventing sarcopenia and frailty in older adults. Objective To compare the effects of strength training with elastic resistance and free weights on the muscle strength of knee extensors and flexors and functional performance in the older adults. Methods This was a randomised clinical study. Thirty-one participants of both sexes were allocated randomly into two groups: Training Group Free Weight (TGFW, n = 15) and Training Group with Elastic Resistance (TGER, n = 16). Two individuals were excluded and so, twenty-nine individuals were evaluated before and after eight weeks training protocol, which was performed three times a week. The determination of the training load was obtained using a protocol of 10 repetitions maximum. Results No significant differences were found in either the intra- or the inter-group comparisons, on functional performance and peak muscle strength. In the intra-groups (pre- and post-strength training), it was observed that both groups significantly increased the training load (10 RM) for the extensors (TGFW p = 0.0002; TGER p = 0.0001) and the knee flexors (TGFW p = 0.006; TGER p = 0.0001). Conclusion Both training protocols similarly were effective in increasing the training load observed by the 10 RM test of the extension and flexion movements of the knee.
Rafaela Zanin Ferreira mail , Antonio Felipe Souza Gomes mail , Marco Antonio Ferreira Baldim mail , Ricardo Silva Alves mail , Leonardo César Carvalho mail , Adriano Prado Simão mail ,
Ferreira
<a href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images
Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.
Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,
Tanveer
<a class="ep_document_link" href="/15987/1/s41598-024-83147-3.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A novel and efficient digital image steganography technique using least significant bit substitution
Steganography is used to hide sensitive types of data including images, audio, text, and videos in an invisible way so that no one can detect it. Image-based steganography is a technique that uses images as a cover media for hiding and transmitting sensitive information over the internet. However, image-based steganography is a challenging task due to transparency, security, computational efficiency, tamper protection, payload, etc. Recently, different image steganography methods have been proposed but most of them have reliability issues. Therefore, to solve this issue, we propose an efficient technique based on the Least Significant Bit (LSB). The LSB substitution method minimizes the error rate in the embedding process and is used to achieve greater reliability. Our proposed image-based steganography algorithm incorporates LSB substitution with Magic Matrix, Multi-Level Encryption Algorithm (MLEA), Secret Key (SK), and transposition, flipping. We performed several experiments and the results show that our proposed technique is efficient and achieves efficient results. We tested a total of 165 different RGB images of various dimensions and sizes of hidden information, using various Quality Assessment Metrics (QAMs); A name of few are; Normalized Cross Correlation (NCC), Image Fidelity (IF), Peak Signal Noise Ratio (PSNR), Root Mean Square Error (RMSE), Quality Index (QI), Correlation Coefficient (CC), Structural Similarity Index (SSIM), Mean Square Error (MSE), Entropy, Contrast, and Homogeneity, Image Histogram (IH). We also conducted a comparative analysis with some existing methods as well as security analysis which showed better results. The achieved result demonstrates significant improvements over the current state-of-the-art methods.
Shahid Rahman mail , Jamal uddin mail , Hameed Hussain mail , Sabir Shah mail , Abdu Salam mail , Farhan Amin mail , Isabel de la Torre Díez mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx,
Rahman