Seguridad Socioeconómica Aeroportuaria en Honduras, en tiempo de COVID-19
Thesis Subjects > Social Sciences Europe University of Atlantic > Teaching > Final Master Projects Cerrado Español La industria aeroportuaria representa todas aquellas actividades o servicios relacionados con el transporte aéreo sea este civil o de carga, por lo que significa una fuente importante de ingresos para los distintos países, la industria aeroportuaria engloba operarios, líneas aéreas, establecimientos comerciales y empresas de carga y apoyo en tierra, la crisis del COVID-19 generó que disminuyera el flujo de pasajeros lo cual causa un impacto en esta industria. Esta investigación ha tenido como propósito analizar el impacto socio-económico que ocasionó el COVID-19 a la industria de la aviación en los Aeropuertos Internacionales de Honduras e identificar los factores que pueden contribuir a la reactivación de la economía en la industria. A través de un enfoque cualitativo, con alcance descriptivo se han realizado entrevistas a representantes de las empresas encargadas de administrar los aeropuertos Toncontín, Ramón Villeda Morales, Juan Manuel Gálvez y Golosón en Honduras, encontrando que la pandemia es un factor externo que afecta el desarrollo socioeconómico de los aeropuertos, entre los factores internos que pueden influir se encuentra la logística que se realiza para que el aeropuerto continúe operando ante la crisis y la industria es de gran importancia para la economía y la sociedad ya que esta genera empleo, es el portal para inversores y el medio por el cual ingresan turistas, por otro lado contribuye a la sostenibilidad de los hogares manteniendo contratos con los operarios y ayuda en situaciones de emergencia en el país. Ante la crisis del COVID-19 los aeropuertos se enfrentaron al desafío de generar nuevos ingresos y mantener medidas de bioseguridad, entre las estrategias para hacer frente a la pandemia recurrieron a seguimiento de protocolos de bioseguridad y digitalizar proceso para evitar contactos, por su parte las acciones del Estado que pueden contribuir a la reactivación es facilitar los proceso para el ingreso de nuevas aerolíneas y atender la salud de la población. Por lo que se concluye que la pandemia ha generado un impacto en los ingresos de las aerolíneas, pero el seguimiento de protocolos de bioseguridad ha permitido que se mantengan las operaciones y con ello el personal, por lo que no se recurrió a despidos, el papel del Gobierno ha sido positivo y se espera que se retomen los planes con el apoyo de este para obtener nuevas líneas aéreas dentro de las bases y que esto permita nuevas rutas atractivas para los pasajeros. metadata Coello Alvarado, Sheyla Suyapa mail lovingsheyla@hotmail.com (2022) Seguridad Socioeconómica Aeroportuaria en Honduras, en tiempo de COVID-19. Masters thesis, UNSPECIFIED.
Full text not available from this repository.Abstract
La industria aeroportuaria representa todas aquellas actividades o servicios relacionados con el transporte aéreo sea este civil o de carga, por lo que significa una fuente importante de ingresos para los distintos países, la industria aeroportuaria engloba operarios, líneas aéreas, establecimientos comerciales y empresas de carga y apoyo en tierra, la crisis del COVID-19 generó que disminuyera el flujo de pasajeros lo cual causa un impacto en esta industria. Esta investigación ha tenido como propósito analizar el impacto socio-económico que ocasionó el COVID-19 a la industria de la aviación en los Aeropuertos Internacionales de Honduras e identificar los factores que pueden contribuir a la reactivación de la economía en la industria. A través de un enfoque cualitativo, con alcance descriptivo se han realizado entrevistas a representantes de las empresas encargadas de administrar los aeropuertos Toncontín, Ramón Villeda Morales, Juan Manuel Gálvez y Golosón en Honduras, encontrando que la pandemia es un factor externo que afecta el desarrollo socioeconómico de los aeropuertos, entre los factores internos que pueden influir se encuentra la logística que se realiza para que el aeropuerto continúe operando ante la crisis y la industria es de gran importancia para la economía y la sociedad ya que esta genera empleo, es el portal para inversores y el medio por el cual ingresan turistas, por otro lado contribuye a la sostenibilidad de los hogares manteniendo contratos con los operarios y ayuda en situaciones de emergencia en el país. Ante la crisis del COVID-19 los aeropuertos se enfrentaron al desafío de generar nuevos ingresos y mantener medidas de bioseguridad, entre las estrategias para hacer frente a la pandemia recurrieron a seguimiento de protocolos de bioseguridad y digitalizar proceso para evitar contactos, por su parte las acciones del Estado que pueden contribuir a la reactivación es facilitar los proceso para el ingreso de nuevas aerolíneas y atender la salud de la población. Por lo que se concluye que la pandemia ha generado un impacto en los ingresos de las aerolíneas, pero el seguimiento de protocolos de bioseguridad ha permitido que se mantengan las operaciones y con ello el personal, por lo que no se recurrió a despidos, el papel del Gobierno ha sido positivo y se espera que se retomen los planes con el apoyo de este para obtener nuevas líneas aéreas dentro de las bases y que esto permita nuevas rutas atractivas para los pasajeros.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Industria aeroportuaria, impacto socioeconómico, factores, desafíos, COVID-19. |
Subjects: | Subjects > Social Sciences |
Divisions: | Europe University of Atlantic > Teaching > Final Master Projects |
Date Deposited: | 30 Oct 2023 23:30 |
Last Modified: | 30 Oct 2023 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/1324 |
Actions (login required)
![]() |
View Item |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
en
close
A novel machine learning-based proposal for early prediction of endometriosis disease
Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.
Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,
Enamorado-Díaz
en
close
Background The aging process leads to negative changes in various bodily systems, including the neuromuscular system. Strength training, is considered the best strategy to counteract these neuromuscular changes, preventing sarcopenia and frailty in older adults. Objective To compare the effects of strength training with elastic resistance and free weights on the muscle strength of knee extensors and flexors and functional performance in the older adults. Methods This was a randomised clinical study. Thirty-one participants of both sexes were allocated randomly into two groups: Training Group Free Weight (TGFW, n = 15) and Training Group with Elastic Resistance (TGER, n = 16). Two individuals were excluded and so, twenty-nine individuals were evaluated before and after eight weeks training protocol, which was performed three times a week. The determination of the training load was obtained using a protocol of 10 repetitions maximum. Results No significant differences were found in either the intra- or the inter-group comparisons, on functional performance and peak muscle strength. In the intra-groups (pre- and post-strength training), it was observed that both groups significantly increased the training load (10 RM) for the extensors (TGFW p = 0.0002; TGER p = 0.0001) and the knee flexors (TGFW p = 0.006; TGER p = 0.0001). Conclusion Both training protocols similarly were effective in increasing the training load observed by the 10 RM test of the extension and flexion movements of the knee.
Rafaela Zanin Ferreira mail , Antonio Felipe Souza Gomes mail , Marco Antonio Ferreira Baldim mail , Ricardo Silva Alves mail , Leonardo César Carvalho mail , Adriano Prado Simão mail ,
Ferreira
<a href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images
Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.
Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,
Tanveer
<a href="/15987/1/s41598-024-83147-3.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A novel and efficient digital image steganography technique using least significant bit substitution
Steganography is used to hide sensitive types of data including images, audio, text, and videos in an invisible way so that no one can detect it. Image-based steganography is a technique that uses images as a cover media for hiding and transmitting sensitive information over the internet. However, image-based steganography is a challenging task due to transparency, security, computational efficiency, tamper protection, payload, etc. Recently, different image steganography methods have been proposed but most of them have reliability issues. Therefore, to solve this issue, we propose an efficient technique based on the Least Significant Bit (LSB). The LSB substitution method minimizes the error rate in the embedding process and is used to achieve greater reliability. Our proposed image-based steganography algorithm incorporates LSB substitution with Magic Matrix, Multi-Level Encryption Algorithm (MLEA), Secret Key (SK), and transposition, flipping. We performed several experiments and the results show that our proposed technique is efficient and achieves efficient results. We tested a total of 165 different RGB images of various dimensions and sizes of hidden information, using various Quality Assessment Metrics (QAMs); A name of few are; Normalized Cross Correlation (NCC), Image Fidelity (IF), Peak Signal Noise Ratio (PSNR), Root Mean Square Error (RMSE), Quality Index (QI), Correlation Coefficient (CC), Structural Similarity Index (SSIM), Mean Square Error (MSE), Entropy, Contrast, and Homogeneity, Image Histogram (IH). We also conducted a comparative analysis with some existing methods as well as security analysis which showed better results. The achieved result demonstrates significant improvements over the current state-of-the-art methods.
Shahid Rahman mail , Jamal uddin mail , Hameed Hussain mail , Sabir Shah mail , Abdu Salam mail , Farhan Amin mail , Isabel de la Torre Díez mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx,
Rahman