Modelo para la planificación de la producción en micro viveros del Paraguay

Tesis Materias > Ingeniería Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster Cerrado Español Los pequeños y micro viveros del Paraguay normalmente son empresas familiares con poco personal que se desenvuelven en un entorno muy cambiante, cuya producción de plantines está muy influenciada por el clima y las demandas del mercado. Para sobrevivir en este entorno, los micro viveros deben ser capaces de predecir la demanda, donde la falta de plantines genera pérdida por falta de ventas además de generar una mala relación con los productores por no poder cumplir con los pedidos, y mientras que una sobreproducción generaría pérdidas al tener que desechar plantines no vendidos. El objetivo propuesto es crear un modelo para la planificación de la producción para pequeños y micro viveros basado en inteligencia artificial. Con el cual los viveros puedan esquematizar y estructurar la planificación de su producción sin depender completamente del personal con experiencia. Influye en la planificación de la producción de los micro viveros el espacio disponible en los distintos sectores del vivero, el tamaño de las plantas y el tiempo que deben permanecer los plantines en el vivero. El uso de la Inteligencia Artificial para predecir la producción complementará la experiencia del personal del vivero. De los algoritmos utilizados en Inteligencia Artificial, se considera el principal algoritmo, la regresión lineal que además es el ideal para realizar predicciones y utilizarlo en la planificación. La metodología CRISP-DM establece una estructura para trabajar con grandes volúmenes de datos definiendo fases que van desde el entendimiento del negocio, entendimiento de los datos, preparación de datos, modelado, evaluación e implementación. Esta metodología es útil para trabajar con Inteligencia Artificial generando varios modelos en el proceso hasta llegar al óptimo. El modelo propuesto para la planificación de la producción consiste en utilizar las características del vivero y de las plantas junto con los registros de producción, pedidos, ventas y desechos para realizar la planificación basado en Inteligencia Artificial. Posee 5 fases, los cuales son: Planificación, Recolección de datos, Entrenamiento de la IA, Validación de los resultados y la Implementación. El diseño de la investigación es descriptivo de corte longitudinal, se han registrado los datos de 9 meses de los cuales 6 meses fueron para recolectar datos y los últimos tres para realizar la predicción, comparando la predicción con los datos registrados, utilizando la validación del R2 que compara el resultado del algoritmo de IA y cuánto se ajusta a los datos. En el primer mes la predicción fue inferior a la producción del vivero, con valores de R2 para la lechuga, repollo, brócoli y coliflor, 85%, 81%, 71% 73% respectivamente. Para el tercer mes la predicción de la lechuga, repollo y coliflor del 85%, 92%, 86% y 90% respectivamente. El modelo propuesto a logrado predecir con bastante exactitud la producción del vivero. En el período analizado los datos fueron afectados por un período de sequía y de lluvias. Es muy importante que lo generado por el modelo sea revisado en última instancia por el responsable del vivero, para evitar posibles influencias no deseadas de los factores externos contemplados en el modelo. metadata Streuli Wanderer, Edgar Daniel mail edgarstreuli@gmail.com (2022) Modelo para la planificación de la producción en micro viveros del Paraguay. Masters thesis, SIN ESPECIFICAR.

Texto completo no disponible.

Resumen

Los pequeños y micro viveros del Paraguay normalmente son empresas familiares con poco personal que se desenvuelven en un entorno muy cambiante, cuya producción de plantines está muy influenciada por el clima y las demandas del mercado. Para sobrevivir en este entorno, los micro viveros deben ser capaces de predecir la demanda, donde la falta de plantines genera pérdida por falta de ventas además de generar una mala relación con los productores por no poder cumplir con los pedidos, y mientras que una sobreproducción generaría pérdidas al tener que desechar plantines no vendidos. El objetivo propuesto es crear un modelo para la planificación de la producción para pequeños y micro viveros basado en inteligencia artificial. Con el cual los viveros puedan esquematizar y estructurar la planificación de su producción sin depender completamente del personal con experiencia. Influye en la planificación de la producción de los micro viveros el espacio disponible en los distintos sectores del vivero, el tamaño de las plantas y el tiempo que deben permanecer los plantines en el vivero. El uso de la Inteligencia Artificial para predecir la producción complementará la experiencia del personal del vivero. De los algoritmos utilizados en Inteligencia Artificial, se considera el principal algoritmo, la regresión lineal que además es el ideal para realizar predicciones y utilizarlo en la planificación. La metodología CRISP-DM establece una estructura para trabajar con grandes volúmenes de datos definiendo fases que van desde el entendimiento del negocio, entendimiento de los datos, preparación de datos, modelado, evaluación e implementación. Esta metodología es útil para trabajar con Inteligencia Artificial generando varios modelos en el proceso hasta llegar al óptimo. El modelo propuesto para la planificación de la producción consiste en utilizar las características del vivero y de las plantas junto con los registros de producción, pedidos, ventas y desechos para realizar la planificación basado en Inteligencia Artificial. Posee 5 fases, los cuales son: Planificación, Recolección de datos, Entrenamiento de la IA, Validación de los resultados y la Implementación. El diseño de la investigación es descriptivo de corte longitudinal, se han registrado los datos de 9 meses de los cuales 6 meses fueron para recolectar datos y los últimos tres para realizar la predicción, comparando la predicción con los datos registrados, utilizando la validación del R2 que compara el resultado del algoritmo de IA y cuánto se ajusta a los datos. En el primer mes la predicción fue inferior a la producción del vivero, con valores de R2 para la lechuga, repollo, brócoli y coliflor, 85%, 81%, 71% 73% respectivamente. Para el tercer mes la predicción de la lechuga, repollo y coliflor del 85%, 92%, 86% y 90% respectivamente. El modelo propuesto a logrado predecir con bastante exactitud la producción del vivero. En el período analizado los datos fueron afectados por un período de sequía y de lluvias. Es muy importante que lo generado por el modelo sea revisado en última instancia por el responsable del vivero, para evitar posibles influencias no deseadas de los factores externos contemplados en el modelo.

Tipo de Documento: Tesis (Masters)
Palabras Clave: Planificación de la siembra,Producción de plantines,Gestión de la germinación,Distribución de plantines,Micro Viveros
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Depositado: 25 Abr 2024 23:30
Ultima Modificación: 25 Abr 2024 23:30
URI: https://repositorio.uneatlantico.es/id/eprint/2929

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/10290/1.hassmallThumbnailVersion/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" border="0"/></a>

en

open

Influence of E-learning training on the acquisition of competences in basketball coaches in Cantabria

The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.

Artículos y libros

Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,

Alemany Iturriaga

<a href="/15625/1/s41598-024-74127-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops

Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.

Artículos y libros

Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,

Ali

en

close

Do ICT firms manage R&D differently? Firm-level and macroeconomic effects on corporate R&D investment: Empirical evidence from a multi-countries context

Technological firms invest in R&D looking for innovative solutions but assuming high costs and great (technological) uncertainty regarding final results and returns. Additionally, they face other problems related to R&D management. This empirical study tries to determine which of the factors favour or constrain the decision of these firms to engage in R&D. The analysis uses financial data of 14,619 ICT listed companies of 22 countries from 2003 to 2018. Additionally, macroeconomic data specific for the countries and the sector were used. For the analysis of dynamic panel data, a System-GMM method is used. Among the findings, we highlight that cash flow, contrary to the known theoretical models and empirical evidences, negatively impacts on R&D investment. Debt is neither the right source for R&D funding, as the effect is also negative. This suggests that ICT companies are forced to manage their R&D activities differently, relying more on other funding sources, taking advantage of growth opportunities and benefiting from a favourable macroeconomic environment in terms of growth and increased business sector spending on R&D. These results are similar in both sub-sectors and in all countries, both bank- and market based. The exception is firms with few growth opportunities and little debt.

Artículos y libros

Inna Alexeeva-Alexeev mail inna.alexeeva@uneatlantico.es, Cristina Mazas Pérez-Oleag mail cristina.mazas@uneatlantico.es,

Alexeeva-Alexeev

<a href="/15198/1/nutrients-16-03859.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/15198/1.hassmallThumbnailVersion/nutrients-16-03859.pdf" border="0"/></a>

en

open

Carotenoids Intake and Cardiovascular Prevention: A Systematic Review

Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.

Artículos y libros

Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,

Sumalla Cano

en

close

Establishment of 3D Cultures of Myometrium, Leiomyoma, and Leiomyosarcoma Cells: Advantages and Disadvantages of Two Different Models

Uterine leiomyomas are the most common benign, monoclonal, gynaecological tumors in a woman’s uterus, while leiomyosarcoma is a rare but aggressive condition caused by the malignant transformation of the myometrium. To overcome the common obstacles related to the methods usually used to study these pathologies, we aimed to devise three-dimensional models of myometrium, uterine leiomyoma and leiomyosarcoma cell lines, using two different types of biocompatible scaffolds. Specifically, we exploited the agarose gel matrix in common 6-well plates and the alginate matrix using Bioprinting INKREDIBLE + (CELLINK), a pneumatic extruded base equipped with a system with double printheads, and a UV printer LED curing system. Both methods allowed the development of 3D spheroids of all three cell types, that were also suitable for morphological investigations. We showed that all cell types embedded in both agarose and alginate formed spheroids in their growth medium. The spheroids successfully proliferated and self-organized into complex structures, developing a sustainable system that emulated the condition of the tissues through the accumulation of extracellular matrix. These models could be useful for a better understanding of pathophysiology, etiopathogenesis, and testing new methods or molecules from a preventive and therapeutic point of view.

Artículos y libros

Pamela Pellegrino mail , Stefania Greco mail , Abel Duménigo Gonzàlez mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Stefano Raffaele Giannubilo mail , Giovanni Delli Carpini mail , Franco Capocasa mail , Bruno Mezzetti mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Andrea Ciavattini mail , Pasquapina Ciarmela mail ,

Pellegrino