Factores Determinantes Del Estado Depresivo En pacientes Adultos Mayores Que Acuden a la Consulta Del Centro de Primer Nivel Piña Vieja, Periodo Septiembre – Diciembre 2021

Tesis Materias > Psicología Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Cerrado Español A medida que pasa el tiempo nos damos cuentas que los adultos mayores sufren ciertos cambios a nivel psicológico, fisiológico y social, por los que el presente estudio estas guiado a dar una connotación más amplia sobre los factores que contribuyen a que surjan los problemas depresivos en la población de adulto mayor de la comunidad de Piña Vieja.Objetivo general: Determinar los factores que influyen en el Trastorno Depresivo de los adultos mayores que acuden a la consulta del Centro de Primer Nivel Piña Vieja.Métodos y técnicas: Fueron evaluados 156 adultos, mayores de 65 años del Centro de Primer Nivel Piña Vieja, Provincia Sánchez Ramírez, siendo una muestra probabilística, estratificada y de estudio descriptivo, de fuente primaria de corte transversal y un análisis realizado mediante el programa SPSS 21.0. Se aplicó la prueba de Ji (Chi), cuadrada para muestras independientes con el fin de comparar la posible asociación.Resultados: Según los datos obtenidos 117 pacientes no presentaron síntomas depresivos, lo que equivale a un 75% de los pacientes encuestados, un total de 23 pacientes, presentaron depresión leve para un 14.7%, mientras que 16 pacientes de los analizados presentaron depresión establecida lo que equivales aun 10.3 % respectivamente.Conclusiones: De los 156 pacientes estudiados, 39 presentaron síntomas depresivos para un total de un 25% del total de pacientes, el pico de mayor incidencia fue entre las edades de 75 a 84 años, con 57 pacientes de los cuales 18 presentaron depresión para un 31.5%, en cuanto al sexo fue más frecuente en el femenino con 84 pacientes, donde 24 presentaron depresión para un 28.5%, el estado civil más frecuentes fue el viudo con 66 pacientes, donde 15 presentaron depresión para un porcentaje de un 22.7% , la comorbilidades que se presentaron con mayor frecuencia fueron la HTA con 83 pacientes donde 18 presentaron depresión para un 21.6% y la DM con 46 de los cuales 7 arrojaron depresión para un 15.2%. Además, se visualiza que fueron más frecuentes los pacientes de baja escolaridad, con ingresos dependientes de los familiares y que no pertenecían a ningún grupo religioso. metadata Payano Ullola, Nuris Alberta mail drnurispayano@hotmail.com (2022) Factores Determinantes Del Estado Depresivo En pacientes Adultos Mayores Que Acuden a la Consulta Del Centro de Primer Nivel Piña Vieja, Periodo Septiembre – Diciembre 2021. Masters thesis, SIN ESPECIFICAR.

Texto completo no disponible.

Resumen

A medida que pasa el tiempo nos damos cuentas que los adultos mayores sufren ciertos cambios a nivel psicológico, fisiológico y social, por los que el presente estudio estas guiado a dar una connotación más amplia sobre los factores que contribuyen a que surjan los problemas depresivos en la población de adulto mayor de la comunidad de Piña Vieja.Objetivo general: Determinar los factores que influyen en el Trastorno Depresivo de los adultos mayores que acuden a la consulta del Centro de Primer Nivel Piña Vieja.Métodos y técnicas: Fueron evaluados 156 adultos, mayores de 65 años del Centro de Primer Nivel Piña Vieja, Provincia Sánchez Ramírez, siendo una muestra probabilística, estratificada y de estudio descriptivo, de fuente primaria de corte transversal y un análisis realizado mediante el programa SPSS 21.0. Se aplicó la prueba de Ji (Chi), cuadrada para muestras independientes con el fin de comparar la posible asociación.Resultados: Según los datos obtenidos 117 pacientes no presentaron síntomas depresivos, lo que equivale a un 75% de los pacientes encuestados, un total de 23 pacientes, presentaron depresión leve para un 14.7%, mientras que 16 pacientes de los analizados presentaron depresión establecida lo que equivales aun 10.3 % respectivamente.Conclusiones: De los 156 pacientes estudiados, 39 presentaron síntomas depresivos para un total de un 25% del total de pacientes, el pico de mayor incidencia fue entre las edades de 75 a 84 años, con 57 pacientes de los cuales 18 presentaron depresión para un 31.5%, en cuanto al sexo fue más frecuente en el femenino con 84 pacientes, donde 24 presentaron depresión para un 28.5%, el estado civil más frecuentes fue el viudo con 66 pacientes, donde 15 presentaron depresión para un porcentaje de un 22.7% , la comorbilidades que se presentaron con mayor frecuencia fueron la HTA con 83 pacientes donde 18 presentaron depresión para un 21.6% y la DM con 46 de los cuales 7 arrojaron depresión para un 15.2%. Además, se visualiza que fueron más frecuentes los pacientes de baja escolaridad, con ingresos dependientes de los familiares y que no pertenecían a ningún grupo religioso.

Tipo de Documento: Tesis (Masters)
Palabras Clave: Evaluar, Validez, Depresión, Ancianos, Escala geriátrica.
Clasificación temática: Materias > Psicología
Divisiones: Universidad Europea del Atlántico > Docencia > Trabajos finales de Máster
Universidad Internacional Iberoamericana México > Docencia > Trabajos finales de Máster
Depositado: 17 Nov 2023 23:30
Ultima Modificación: 17 Nov 2023 23:30
URI: https://repositorio.uneatlantico.es/id/eprint/2180

Acciones (logins necesarios)

Ver Objeto Ver Objeto

en

close

Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice

The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.

Artículos y libros

Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,

Luo

<a class="ep_document_link" href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

What works in financial education? Experimental evidence on program impact

Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.

Artículos y libros

Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,

García

en

close

LC-MS and GC–MS analyses reveal that amino acid-induced ammoniation of EGCG in different tea types enhances its structural stability

Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.

Artículos y libros

Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,

Zhao

<a class="ep_document_link" href="/17858/1/s41598-025-18979-8.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Detection and classification of brain tumor using a hybrid learning model in CT scan images

Accurate diagnosis of brain tumors is critical in understanding the prognosis in terms of the type, growth rate, location, removal strategy, and overall well-being of the patients. Among different modalities used for the detection and classification of brain tumors, a computed tomography (CT) scan is often performed as an early-stage procedure for minor symptoms like headaches. Automated procedures based on artificial intelligence (AI) and machine learning (ML) methods are used to detect and classify brain tumors in Computed Tomography (CT) scan images. However, the key challenges in achieving the desired outcome are associated with the model’s complexity and generalization. To address these issues, we propose a hybrid model that extracts features from CT images using classical machine learning. Additionally, although MRI is a common modality for brain tumor diagnosis, its high cost and longer acquisition time make CT scans a more practical choice for early-stage screening and widespread clinical use. The proposed framework has different stages, including image acquisition, pre-processing, feature extraction, feature selection, and classification. The hybrid architecture combines features from ResNet50, AlexNet, LBP, HOG, and median intensity, classified using a multilayer perceptron. The selection of the relevant features in our proposed hybrid model was extracted using the SelectKBest algorithm. Thus, it optimizes the proposed model performance. In addition, the proposed model incorporates data augmentation to handle the imbalanced datasets. We employed a scoring function to extract the features. The Classification is ensured using a multilayer perceptron neural network (MLP). Unlike most existing hybrid approaches, which primarily target MRI-based brain tumor classification, our method is specifically designed for CT scan images, addressing their unique noise patterns and lower soft-tissue contrast. To the best of our knowledge, this is the first work to integrate LBP, HOG, median intensity, and deep features from both ResNet50 and AlexNet in a structured fusion pipeline for CT brain tumor classification. The proposed hybrid model is tested on data from numerous sources and achieved an accuracy of 94.82%, precision of 94.52%, specificity of 98.35%, and sensitivity of 94.76% compared to state-of-the-art models. While MRI-based models often report higher accuracies, the proposed model achieves 94.82% on CT scans, within 3–4% of leading MRI-based approaches, demonstrating strong generalization despite the modality difference. The proposed hybrid model, combining hand-crafted and deep learning features, effectively improves brain tumor detection and classification accuracy in CT scans. It has the potential for clinical application, aiding in early and accurate diagnosis. Unlike MRI, which is often time-intensive and costly, CT scans are more accessible and faster to acquire, making them suitable for early-stage screening and emergency diagnostics. This reinforces the practical and clinical value of the proposed model in real-world healthcare settings.

Artículos y libros

Roja Ghasemi mail , Naveed Islam mail , Samin Bayat mail , Muhammad Shabir mail , Shahid Rahman mail , Farhan Amin mail , Isabel de la Torre mail , Ángel Gabriel Kuc Castilla mail angel.kuc@uneatlantico.es, Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx,

Ghasemi

en

close

(Re)connecting mind and body: Efficacy of mindfulness and self-compassion interventions for enhancing body image. A systematic review of randomized trials

Evidence suggests that first- and second-generation mindfulness-based interventions (MBIs) can improve body image concerns in adolescents and adults. However, a systematic review of such interventions is lacking. The aim of this study is to synthesize evidence from randomized controlled trials evaluating the efficacy of both first- and second-generation MBIs in reducing negative body image and enhancing positive body image. Database searches were conducted in PubMed, CoChrane, Proquest Thesis & Dissertations and ScienceDirect up to August 2025, identifying 3394 records. After screening, 43 studies met eligibility criteria (n = 7979) and were evaluated for methodological quality following PRISMA guidelines. Of them, 16 (37.2 %) evaluated first-generation MBIs, while the remaining 27 studies (55.8 %) examined second-generation MBIs, with self-compassion being the most commonly used intervention. Only one study used both generations. Both first- and second-generation interventions demonstrated moderate to large effect sizes in most studies, with 94 % reporting significant improvements in at least one body image outcome. The methodological quality, assessed using the JBI tool, was rated as having either low risk of bias or some concerns in nearly 70 % of the studies. These findings highlight the global efficacy of MBIs for reducing negative body image and improving positive body image, while also underscoring the need for future research to employ more methodologically rigorous designs, multidimensional outcome measures, and greater inclusion of diverse sex, gender, and ethnic groups.

Artículos y libros

Alba Gutiérrez Cabrero mail , Marian González-García mail marian.gonzalez@uneatlantico.es,

Gutiérrez Cabrero