Facial and Emotion Recognition Deficits in Myasthenia Gravis

Artículo Materias > Psicología Universidad Europea del Atlántico > Investigación > Artículos y libros Abierto Inglés Myasthenia gravis (MG) is a neuromuscular disease of autoimmune etiology and chronic evolution. In addition to the muscle weakness and fatigue that characterize MG, in some studies patients show an inferior performance in cognitive tasks and difficulties in recognizing basic emotions from facial expressions. However, it remains unclear if these difficulties are due to anxious–depressive symptoms that these patients present or related to cognitive abilities, such as facial recognition. This study had a descriptive cross-sectional design with a sample of 92 participants, 52 patients with MG and 40 healthy controls. The data collection protocol included measures to assess recognition of facial expressions (BRFT), facial emotional expression (FEEL), and levels of anxiety and depression (HADS). The MG group had worse performance than the control group in recognizing “fear” (p = 0.001; r = 0.344), “happiness” (p = 0.000; r = 0.580), “disgust” (p = 0.000; r = 0.399), “surprise” (p = 0.000; r = 0.602), and “anger” (p = 0.007; r = 0.284). Likewise, the MG group also underperformed in facial recognition (p = 0.001; r = 0.338). These difficulties were not related to their levels of anxiety and depression. Alterations were observed both in the recognition of facial emotions and in facial recognition, without being mediated by emotional variables. These difficulties can influence the interpersonal interaction of patients with MG. metadata García-Sanchoyerto, Maddalen; Salgueiro, Monika; Ortega, Javiera; Rodríguez, Alicia Aurora; Parada-Fernández, Pamela y Amayra, Imanol mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, pamela.parada@uneatlantico.es, SIN ESPECIFICAR (2024) Facial and Emotion Recognition Deficits in Myasthenia Gravis. Healthcare, 12 (16). p. 1582. ISSN 2227-9032

[img]
Vista Previa
Texto
healthcare-12-01582-v2.pdf
Available under License Creative Commons Attribution.

Descargar (313kB) | Vista Previa

Resumen

Myasthenia gravis (MG) is a neuromuscular disease of autoimmune etiology and chronic evolution. In addition to the muscle weakness and fatigue that characterize MG, in some studies patients show an inferior performance in cognitive tasks and difficulties in recognizing basic emotions from facial expressions. However, it remains unclear if these difficulties are due to anxious–depressive symptoms that these patients present or related to cognitive abilities, such as facial recognition. This study had a descriptive cross-sectional design with a sample of 92 participants, 52 patients with MG and 40 healthy controls. The data collection protocol included measures to assess recognition of facial expressions (BRFT), facial emotional expression (FEEL), and levels of anxiety and depression (HADS). The MG group had worse performance than the control group in recognizing “fear” (p = 0.001; r = 0.344), “happiness” (p = 0.000; r = 0.580), “disgust” (p = 0.000; r = 0.399), “surprise” (p = 0.000; r = 0.602), and “anger” (p = 0.007; r = 0.284). Likewise, the MG group also underperformed in facial recognition (p = 0.001; r = 0.338). These difficulties were not related to their levels of anxiety and depression. Alterations were observed both in the recognition of facial emotions and in facial recognition, without being mediated by emotional variables. These difficulties can influence the interpersonal interaction of patients with MG.

Tipo de Documento: Artículo
Palabras Clave: myasthenia gravis; facial emotion recognition; facial recognition; anxious–depressive symptoms
Clasificación temática: Materias > Psicología
Divisiones: Universidad Europea del Atlántico > Investigación > Artículos y libros
Depositado: 24 Sep 2024 23:30
Ultima Modificación: 24 Sep 2024 23:30
URI: https://repositorio.uneatlantico.es/id/eprint/14365

Acciones (logins necesarios)

Ver Objeto Ver Objeto

en

close

Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice

The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.

Artículos y libros

Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,

Luo

en

close

A novel machine learning-based proposal for early prediction of endometriosis disease

Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.

Artículos y libros

Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,

Enamorado-Díaz

<a href="/17788/1/s40537-025-01167-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Detecting hate in diversity: a survey of multilingual code-mixed image and video analysis

The proliferation of damaging content on social media in today’s digital environment has increased the need for efficient hate speech identification systems. A thorough examination of hate speech detection methods in a variety of settings, such as code-mixed, multilingual, visual, audio, and textual scenarios, is presented in this paper. Unlike previous research focusing on single modalities, our study thoroughly examines hate speech identification across multiple forms. We classify the numerous types of hate speech, showing how it appears on different platforms and emphasizing the unique difficulties in multi-modal and multilingual settings. We fill research gaps by assessing a variety of methods, including deep learning, machine learning, and natural language processing, especially for complicated data like code-mixed and cross-lingual text. Additionally, we offer key technique comparisons, suggesting future research avenues that prioritize multi-modal analysis and ethical data handling, while acknowledging its benefits and drawbacks. This study attempts to promote scholarly research and real-world applications on social media platforms by acting as an essential resource for improving hate speech identification across various data sources.

Artículos y libros

Hafiz Muhammad Raza Ur Rehman mail , Mahpara Saleem mail , Muhammad Zeeshan Jhandir mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Helena Garay mail helena.garay@uneatlantico.es, Imran Ashraf mail ,

Raza Ur Rehman

<a href="/17794/1/s41598-025-95836-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Evaluating the impact of deep learning approaches on solar and photovoltaic power forecasting: A systematic review

Accurate solar and photovoltaic (PV) power forecasting is essential for optimizing grid integration, managing energy storage, and maximizing the efficiency of solar power systems. Deep learning (DL) models have shown promise in this area due to their ability to learn complex, non-linear relationships within large datasets. This study presents a systematic literature review (SLR) of deep learning applications for solar PV forecasting, addressing a gap in the existing literature, which often focuses on traditional ML or broader renewable energy applications. This review specifically aims to identify the DL architectures employed, preprocessing and feature engineering techniques used, the input features leveraged, evaluation metrics applied, and the persistent challenges in this field. Through a rigorous analysis of 26 selected papers from an initial set of 155 articles retrieved from the Web of Science database, we found that Long Short-Term Memory (LSTM) networks were the most frequently used algorithm (appearing in 32.69% of the papers), closely followed by Convolutional Neural Networks (CNNs) at 28.85%. Furthermore, Wavelet Transform (WT) was found to be the most prominent data decomposition technique, while Pearson Correlation was the most used for feature selection. We also found that ambient temperature, pressure, and humidity are the most common input features. Our systematic evaluation provides critical insights into state-of-the-art DL-based solar forecasting and identifies key areas for upcoming research. Future research should prioritize the development of more robust and interpretable models, as well as explore the integration of multi-source data to further enhance forecasting accuracy. Such advancements are crucial for the effective integration of solar energy into future power grids.

Artículos y libros

Oussama Khouili mail , Mohamed Hanine mail , Mohamed Louzazni mail , Miguel Ángel López Flores mail miguelangel.lopez@uneatlantico.es, Eduardo García Villena mail eduardo.garcia@uneatlantico.es, Imran Ashraf mail ,

Khouili

<a class="ep_document_link" href="/17796/1/1-s2.0-S2773032825000070-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Cross-country analysis of sustainable innovation and female entrepreneurship and their influence on the presence of women in managerial positions

Despite the global increase of women in business, there is still a very small proportion of female business leaders, although the distribution varies greatly by region and sector. Considering innovation, in its many forms, as well as female entrepreneurship, both considered as a path towards sustainability, the question arises as to whether this drive for sustainability leads to a greater presence of female CEOs. Current studies predominantly examine the impact of women's presence on a company's economic and financial performance, as well as any potential effects on its innovation strategy. However, the examination of factors that help understand the economic and business context influencing the presence of women in leadership roles is often overlooked. This empirical study fills this gap by exploring the micro and macro context influencing the presence of female CEOs in innovative firms worldwide stressing the influence of female owners. The sample comprises 107,026 companies from manufacturing and service industries in 118 countries, from 2007 to 2023, data obtained from the World Bank Enterprise Surveys. The econometric model applied is logistic regression with clustered standard errors. The study contains six estimations generating strong evidence supporting most of the formulated hypotheses. Findings suggest women CEOs are likely to lead women-owned firms which promote (sustainable) innovation through developing new products for new markets, allocating less investment in R&D, product innovation and business processes, although with some nuances. Other important factors to consider are productivity, sales strategy, firm size, sector, and socio-economic context with a gender focus.

Artículos y libros

Inna Alexeeva-Alexeev mail , Pilar Guaita-Fernandez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,

Alexeeva-Alexeev