Pre-Trained Deep Neural Network-Based Features Selection Supported Machine Learning for Rice Leaf Disease Classification

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Artículos y libros
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Cerrado Inglés Rice is a staple food for roughly half of the world’s population. Some farmers prefer rice cultivation to other crops because rice can thrive in a wide range of environments. Several studies have found that about 70% of India’s population relies on agriculture in some way and that agribusiness accounts for about 17% of India’s GDP. In India, rice is one of the most important crops, but it is vulnerable to a number of diseases throughout the growing process. Farmers’ manual identification of these diseases is highly inaccurate due to their lack of medical expertise. Recent advances in deep learning models show that automatic image recognition systems can be extremely useful in such situations. In this paper, we propose a suitable and effective system for predicting diseases in rice leaves using a number of different deep learning techniques. Images of rice leaf diseases were gathered and processed to fulfil the algorithmic requirements. Initially, features were extracted by using 32 pre-trained models, and then we classified the images of rice leaf diseases such as bacterial blight, blast, and brown spot with numerous machine learning and ensemble learning classifiers and compared the results. The proposed procedure works better than other methods that are currently used. It achieves 90–91% identification accuracy and other performance parameters such as precision, Recall Rate, F1-score, Matthews Coefficient, and Kappa Statistics on a normal data set. Even after the segmentation process, the value reaches 93–94% for model EfficientNetV2B3 with ET and HGB classifiers. The proposed model efficiently recognises rice leaf diseases with an accuracy of 94%. The experimental results show that the proposed procedure is valid and effective for identifying rice diseases. metadata Aggarwal, Meenakshi; Khullar, Vikas; Goyal, Nitin; Singh, Aman; Tolba, Amr; Bautista Thompson, Ernesto y Kumar, Sushil mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, aman.singh@uneatlantico.es, SIN ESPECIFICAR, ernesto.bautista@unini.edu.mx, SIN ESPECIFICAR (2023) Pre-Trained Deep Neural Network-Based Features Selection Supported Machine Learning for Rice Leaf Disease Classification. Agriculture, 13 (5). p. 936. ISSN 2077-0472

[img]
Vista Previa
Texto
agriculture-13-00936.pdf
Available under License Creative Commons Attribution.

Descargar (1MB) | Vista Previa

Resumen

Rice is a staple food for roughly half of the world’s population. Some farmers prefer rice cultivation to other crops because rice can thrive in a wide range of environments. Several studies have found that about 70% of India’s population relies on agriculture in some way and that agribusiness accounts for about 17% of India’s GDP. In India, rice is one of the most important crops, but it is vulnerable to a number of diseases throughout the growing process. Farmers’ manual identification of these diseases is highly inaccurate due to their lack of medical expertise. Recent advances in deep learning models show that automatic image recognition systems can be extremely useful in such situations. In this paper, we propose a suitable and effective system for predicting diseases in rice leaves using a number of different deep learning techniques. Images of rice leaf diseases were gathered and processed to fulfil the algorithmic requirements. Initially, features were extracted by using 32 pre-trained models, and then we classified the images of rice leaf diseases such as bacterial blight, blast, and brown spot with numerous machine learning and ensemble learning classifiers and compared the results. The proposed procedure works better than other methods that are currently used. It achieves 90–91% identification accuracy and other performance parameters such as precision, Recall Rate, F1-score, Matthews Coefficient, and Kappa Statistics on a normal data set. Even after the segmentation process, the value reaches 93–94% for model EfficientNetV2B3 with ET and HGB classifiers. The proposed model efficiently recognises rice leaf diseases with an accuracy of 94%. The experimental results show that the proposed procedure is valid and effective for identifying rice diseases.

Tipo de Documento: Artículo
Palabras Clave: rice leaf disease; machine learning; deep learning; ensemble learning; segmentation; pre-trained models
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Europea del Atlántico > Investigación > Artículos y libros
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Depositado: 17 Oct 2023 23:30
Ultima Modificación: 17 Oct 2023 23:30
URI: https://repositorio.uneatlantico.es/id/eprint/9237

Acciones (logins necesarios)

Ver Objeto Ver Objeto

en

close

Efficacy of liposomal amphotericin B for treating post-kala-azar dermal leishmaniasis (PKDL): A systematic review and single-arm meta-analysis

Background Post-kala-azar dermal leishmaniasis (PKDL) is a skin condition that can become a complication in about 15 % of patients who have had kala-azar. Despite its significance, treatment options for PKDL are still limited. This systematic review and meta-analysis aim to evaluate the efficacy of amphotericin B for this condition. Methods PubMed, Embase, Cochrane, and Web of Science databases were searched for randomized controlled trials (RCTs) that reported the efficacy of Liposomal Amphotericin B in the treatment of PKDL. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Events per 100 observations with 95 % confidence intervals were performed for outcomes. Results Nine studies with 639 patients were included, the treatment durations ranging from 7 to 60 days. The mean age ranged from 9.2 to 31.0 years, and 359 patients were male. The PKDL treatment with liposomal amphotericin B resulted in a cure rate of 91.36 % (95 % CI: 76.60-97.15). However, a relapse was observed in 11.42 % (95 % CI: 6.20-20.8) of patients. Adverse events were common, with hepatic enzyme elevation (ALT/AST) being the most frequent (61.75 %; 95 % CI: 21.81–90.33), followed by fever in 29.93 % of cases (95 % CI: 5.09–77.30). Among the more serious side effects, decreased serum potassium was observed in 19.27 % (95 % CI: 3.84–58.82), and increased serum creatinine, indicative of nephrotoxicity, occurred in 15.08 % (95 % CI: 3.97–43.27). Nausea or vomiting, although less severe, affected 12.36 % of patients (95 % CI: 4.81–28.25). Conclusions These findings highlight that while liposomal amphotericin B is a potent therapeutic option for PKDL, its administration requires careful management and clinical vigilance to optimize outcomes and minimize risks.

Artículos y libros

Deivyd Vieira Silva Cavalcante mail , Lilia Maria Lima de Oliveira mail , Noor Husain mail , Beatriz Ximenes Mendes mail , Ana Clara Felix de Farias Santos mail , Luciana Borrigueiro mail , Lyria de Oliveira Rosa mail , Christian Ndikuryayo mail , Sarah Soares Amorim mail , Lalit Mohan mail , Fabiana Castro Porto Silva Lopes mail ,

Cavalcante

en

close

Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice

The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.

Artículos y libros

Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,

Luo

<a class="ep_document_link" href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

What works in financial education? Experimental evidence on program impact

Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.

Artículos y libros

Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,

García

en

close

LC-MS and GC–MS analyses reveal that amino acid-induced ammoniation of EGCG in different tea types enhances its structural stability

Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.

Artículos y libros

Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,

Zhao

en

close

Single-cell omics for nutrition research: an emerging opportunity for human-centric investigations

Understanding how dietary compounds affect human health is challenged by their molecular complexity and cell-type–specific effects. Conventional multi-cell type (bulk) analyses obscure cellular heterogeneity, while animal and standard in vitro models often fail to replicate human physiology. Single-cell omics technologies—such as single-cell RNA sequencing, as well as single-cell–resolved proteomic and metabolomic approaches—enable high-resolution investigation of nutrient–cell interactions and reveal mechanisms at a single-cell resolution. When combined with advanced human-derived in vitro systems like organoids and organ-on-chip platforms, they support mechanistic studies in physiologically relevant contexts. This review outlines emerging applications of single-cell omics in nutrition research, emphasizing their potential to uncover cell-specific dietary responses, identify nutrient-sensitive pathways, and capture interindividual variability. It also discusses key challenges—including technical limitations, model selection, and institutional biases—and identifies strategic directions to facilitate broader adoption in the field. Collectively, single-cell omics offer a transformative framework to advance human-centric nutrition research.

Artículos y libros

Manuela Cassotta mail manucassotta@gmail.com, Yasmany Armas Diaz mail , Danila Cianciosi mail , Bei Yang mail , Zexiu Qi mail , Ge Chen mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Giuseppe Grosso mail , José L. Quiles mail , Jianbo Xiao mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,

Cassotta