A Lightweight Trust-less Authentication Framework for Massive IoT Systems [preprint]

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Artículos y libros Abierto Inglés When we talk about the Internet of Things, we are referring to the connecting of things to a1 physical network that is embedded with software, sensors, and other devices that allow information2 to be exchanged between devices. It is possible that the interconnection of devices will present3 issues in terms of security, trustworthiness, reliability, and confidentiality, among other things.4 The proposed approach is effective at detecting intrusions into the Internet of Things network.5 Initially, the privacy-preserving technology was deployed utilising a Blockchain-based methodology6 to ensure that personal information was protected. Patients’ health records (PHR) security is the7 most crucial component of encryption over the Internet because of the value and importance of these8 records, particularly in the context of the Internet of Medical Things (IoMT). The search terms access9 mechanism is one of the most common approaches used to access personal health records from a10 database, but it is vulnerable to a number of security flaws. However, while blockchain-enabled11 healthcare systems provide increased security, they may also introduce weaknesses into the current12 state of the art. Blockchain-enabled frameworks have been proposed in the literature as a means13 of resolving those challenges. These solutions, on the other hand, are primarily concerned with14 data storage, with Blockchain serving as a database. To enable secure search and keyword-based15 access to a distributed database, this study proposes the use of blockchain technology as a distributed16 database, together with a homomorphic encryption mechanism. Aside from that, the suggested17 system includes a secure key revocation mechanism that can be used to automatically update various18 policies.As a result, our proposed approach provides greater security, efficiency, and transparency19 while also being more cost-effective. We have compared the findings of our proposed models with20 those of the benchmark models, if appropriate. Our comparison research demonstrates that our21 suggested framework provides a more secure and searchable mechanism for the healthcare system22 than the current state of the art. metadata Ali, Aitizaz; Delgado Noya, Irene; Ur Rehman, Ateeq; Ahmed, Mehmood; Singh, Aman y Anand, Divya mail SIN ESPECIFICAR, irene.delgado@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, aman.singh@uneatlantico.es, divya.anand@uneatlantico.es (2022) A Lightweight Trust-less Authentication Framework for Massive IoT Systems [preprint]. Preprints. (Inédito)

Texto completo no disponible.

Resumen

When we talk about the Internet of Things, we are referring to the connecting of things to a1 physical network that is embedded with software, sensors, and other devices that allow information2 to be exchanged between devices. It is possible that the interconnection of devices will present3 issues in terms of security, trustworthiness, reliability, and confidentiality, among other things.4 The proposed approach is effective at detecting intrusions into the Internet of Things network.5 Initially, the privacy-preserving technology was deployed utilising a Blockchain-based methodology6 to ensure that personal information was protected. Patients’ health records (PHR) security is the7 most crucial component of encryption over the Internet because of the value and importance of these8 records, particularly in the context of the Internet of Medical Things (IoMT). The search terms access9 mechanism is one of the most common approaches used to access personal health records from a10 database, but it is vulnerable to a number of security flaws. However, while blockchain-enabled11 healthcare systems provide increased security, they may also introduce weaknesses into the current12 state of the art. Blockchain-enabled frameworks have been proposed in the literature as a means13 of resolving those challenges. These solutions, on the other hand, are primarily concerned with14 data storage, with Blockchain serving as a database. To enable secure search and keyword-based15 access to a distributed database, this study proposes the use of blockchain technology as a distributed16 database, together with a homomorphic encryption mechanism. Aside from that, the suggested17 system includes a secure key revocation mechanism that can be used to automatically update various18 policies.As a result, our proposed approach provides greater security, efficiency, and transparency19 while also being more cost-effective. We have compared the findings of our proposed models with20 those of the benchmark models, if appropriate. Our comparison research demonstrates that our21 suggested framework provides a more secure and searchable mechanism for the healthcare system22 than the current state of the art.

Tipo de Documento: Artículo
Notas: Pre-print
Palabras Clave: security; privacy; blockchain; smartcontracts; IoT; encryption; transaction
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Europea del Atlántico > Investigación > Artículos y libros
Depositado: 31 Ene 2023 23:30
Ultima Modificación: 11 Jul 2023 23:31
URI: https://repositorio.uneatlantico.es/id/eprint/5634

Acciones (logins necesarios)

Ver Objeto Ver Objeto

en

close

Efficacy of liposomal amphotericin B for treating post-kala-azar dermal leishmaniasis (PKDL): A systematic review and single-arm meta-analysis

Background Post-kala-azar dermal leishmaniasis (PKDL) is a skin condition that can become a complication in about 15 % of patients who have had kala-azar. Despite its significance, treatment options for PKDL are still limited. This systematic review and meta-analysis aim to evaluate the efficacy of amphotericin B for this condition. Methods PubMed, Embase, Cochrane, and Web of Science databases were searched for randomized controlled trials (RCTs) that reported the efficacy of Liposomal Amphotericin B in the treatment of PKDL. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Events per 100 observations with 95 % confidence intervals were performed for outcomes. Results Nine studies with 639 patients were included, the treatment durations ranging from 7 to 60 days. The mean age ranged from 9.2 to 31.0 years, and 359 patients were male. The PKDL treatment with liposomal amphotericin B resulted in a cure rate of 91.36 % (95 % CI: 76.60-97.15). However, a relapse was observed in 11.42 % (95 % CI: 6.20-20.8) of patients. Adverse events were common, with hepatic enzyme elevation (ALT/AST) being the most frequent (61.75 %; 95 % CI: 21.81–90.33), followed by fever in 29.93 % of cases (95 % CI: 5.09–77.30). Among the more serious side effects, decreased serum potassium was observed in 19.27 % (95 % CI: 3.84–58.82), and increased serum creatinine, indicative of nephrotoxicity, occurred in 15.08 % (95 % CI: 3.97–43.27). Nausea or vomiting, although less severe, affected 12.36 % of patients (95 % CI: 4.81–28.25). Conclusions These findings highlight that while liposomal amphotericin B is a potent therapeutic option for PKDL, its administration requires careful management and clinical vigilance to optimize outcomes and minimize risks.

Artículos y libros

Deivyd Vieira Silva Cavalcante mail , Lilia Maria Lima de Oliveira mail , Noor Husain mail , Beatriz Ximenes Mendes mail , Ana Clara Felix de Farias Santos mail , Luciana Borrigueiro mail , Lyria de Oliveira Rosa mail , Christian Ndikuryayo mail , Sarah Soares Amorim mail , Lalit Mohan mail , Fabiana Castro Porto Silva Lopes mail ,

Cavalcante

en

close

Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice

The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.

Artículos y libros

Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,

Luo

<a class="ep_document_link" href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

What works in financial education? Experimental evidence on program impact

Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.

Artículos y libros

Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,

García

en

close

LC-MS and GC–MS analyses reveal that amino acid-induced ammoniation of EGCG in different tea types enhances its structural stability

Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.

Artículos y libros

Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,

Zhao

en

close

Single-cell omics for nutrition research: an emerging opportunity for human-centric investigations

Understanding how dietary compounds affect human health is challenged by their molecular complexity and cell-type–specific effects. Conventional multi-cell type (bulk) analyses obscure cellular heterogeneity, while animal and standard in vitro models often fail to replicate human physiology. Single-cell omics technologies—such as single-cell RNA sequencing, as well as single-cell–resolved proteomic and metabolomic approaches—enable high-resolution investigation of nutrient–cell interactions and reveal mechanisms at a single-cell resolution. When combined with advanced human-derived in vitro systems like organoids and organ-on-chip platforms, they support mechanistic studies in physiologically relevant contexts. This review outlines emerging applications of single-cell omics in nutrition research, emphasizing their potential to uncover cell-specific dietary responses, identify nutrient-sensitive pathways, and capture interindividual variability. It also discusses key challenges—including technical limitations, model selection, and institutional biases—and identifies strategic directions to facilitate broader adoption in the field. Collectively, single-cell omics offer a transformative framework to advance human-centric nutrition research.

Artículos y libros

Manuela Cassotta mail manucassotta@gmail.com, Yasmany Armas Diaz mail , Danila Cianciosi mail , Bei Yang mail , Zexiu Qi mail , Ge Chen mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Giuseppe Grosso mail , José L. Quiles mail , Jianbo Xiao mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,

Cassotta