Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules
Artículo
Materias > Biomedicina
Materias > Alimentación
Universidad Europea del Atlántico > Investigación > Artículos y libros
Abierto
Español
Ever since coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, was declared a pandemic on March 11, 2020, by the WHO, a concerted effort has been made to find compounds capable of acting on the virus and preventing its replication. In this context, researchers have refocused part of their attention on certain natural compounds that have shown promising effects on the virus. Considering the importance of this topic in the current context, this study aimed to present a critical review and analysis of the main reports of plant-derived compounds as possible inhibitors of the two SARS-CoV-2 proteases: main protease (Mpro) and Papain-like protease (PLpro). From the search in the PubMed database, a total of 165 published articles were found that met the search patterns. A total of 590 unique molecules were identified from a total of 122 articles as potential protease inhibitors. At the same time, 114 molecules reported as natural products and with annotation of theoretical support and antiviral effects were extracted from the COVID-19 Help database. After combining the molecules extracted from articles and those obtained from the database, we identified 648 unique molecules predicted as potential inhibitors of Mpro and/or PLpro. According to our results, several of the predicted compounds with higher theoretical confidence are present in many plants used in traditional medicine and even food, such as flavonoids, carboxylic acids, phenolic acids, triterpenes, terpenes phytosterols, and triterpenoids. These are potential inhibitors of Mpro and PLpro. Although the predictions of several molecules against SARS-CoV-2 are promising, little experimental information was found regarding certain families of compounds. Only 45 out of the 648 unique molecules have experimental data validating them as inhibitors of Mpro or PLpro, with the most frequent scaffold present in these 45 compounds being the flavone. The novelty of this work lies in the analysis of the structural diversity of the chemical space among the molecules predicted as inhibitors of SARS-CoV-2 Mpro and PLpro proteases and the comparison to those molecules experimentally validated. This work emphasizes the need for experimental validation of certain families of compounds, preferentially combining classical enzymatic assays with interaction-based methods. Furthermore, we recommend checking the presence of Pan-Assay Interference Compounds (PAINS) and the presence of molecules previously reported as inhibitors of Mpro or PLpro to optimize resources and time in the discovery of new SARS-CoV-2 antivirals from plant-derived molecules.
metadata
Guerra, Yasel; Celi, Diana; Cueva, Paul; Perez-Castillo, Yunierkis; Giampieri, Francesca; Alvarez-Suarez, José Miguel y Tejera, Eduardo
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, francesca.giampieri@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2022)
Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules.
ACS Omega.
ISSN 2470-1343
|
Texto
acsomega.2c05766.pdf Available under License Creative Commons Attribution Non-commercial Share Alike. Descargar (8MB) | Vista Previa |
Resumen
Ever since coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, was declared a pandemic on March 11, 2020, by the WHO, a concerted effort has been made to find compounds capable of acting on the virus and preventing its replication. In this context, researchers have refocused part of their attention on certain natural compounds that have shown promising effects on the virus. Considering the importance of this topic in the current context, this study aimed to present a critical review and analysis of the main reports of plant-derived compounds as possible inhibitors of the two SARS-CoV-2 proteases: main protease (Mpro) and Papain-like protease (PLpro). From the search in the PubMed database, a total of 165 published articles were found that met the search patterns. A total of 590 unique molecules were identified from a total of 122 articles as potential protease inhibitors. At the same time, 114 molecules reported as natural products and with annotation of theoretical support and antiviral effects were extracted from the COVID-19 Help database. After combining the molecules extracted from articles and those obtained from the database, we identified 648 unique molecules predicted as potential inhibitors of Mpro and/or PLpro. According to our results, several of the predicted compounds with higher theoretical confidence are present in many plants used in traditional medicine and even food, such as flavonoids, carboxylic acids, phenolic acids, triterpenes, terpenes phytosterols, and triterpenoids. These are potential inhibitors of Mpro and PLpro. Although the predictions of several molecules against SARS-CoV-2 are promising, little experimental information was found regarding certain families of compounds. Only 45 out of the 648 unique molecules have experimental data validating them as inhibitors of Mpro or PLpro, with the most frequent scaffold present in these 45 compounds being the flavone. The novelty of this work lies in the analysis of the structural diversity of the chemical space among the molecules predicted as inhibitors of SARS-CoV-2 Mpro and PLpro proteases and the comparison to those molecules experimentally validated. This work emphasizes the need for experimental validation of certain families of compounds, preferentially combining classical enzymatic assays with interaction-based methods. Furthermore, we recommend checking the presence of Pan-Assay Interference Compounds (PAINS) and the presence of molecules previously reported as inhibitors of Mpro or PLpro to optimize resources and time in the discovery of new SARS-CoV-2 antivirals from plant-derived molecules.
Tipo de Documento: | Artículo |
---|---|
Palabras Clave: | Flavonoids, Inhibitors, Molecules, Peptides and proteins, SARS-CoV-2 |
Clasificación temática: | Materias > Biomedicina Materias > Alimentación |
Divisiones: | Universidad Europea del Atlántico > Investigación > Artículos y libros |
Depositado: | 05 Dic 2022 23:30 |
Ultima Modificación: | 12 Jul 2023 23:31 |
URI: | https://repositorio.uneatlantico.es/id/eprint/4908 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
<a class="ep_document_link" href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
What works in financial education? Experimental evidence on program impact
Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.
Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,
García
en
close
Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.
Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,
Zhao
<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence
Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.
Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,
Saleem
<a class="ep_document_link" href="/17843/1/s41599-025-05247-3.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Econometric analysis has long been integral to measuring sustainable environmental quality, with panel data methods, such as fixed and random effects models, becoming the focal point of modern research. Initially, such methods were used to simply investigate environmental issues, but recent years have seen a shift toward the study of random effects models, focusing on hypothesis testing and policy debates. However, several important aspects of the Hausman test have not been sufficiently investigated in the literature. This study seeks to evaluate the utility of the Hausman test using a real dataset from tourism and globalization, exploring their effects on sustainable environmental quality. Additionally, the study examines key factors contributing to environmental issues including economic growth and energy consumption, as critical explanatory variables. By investigating the relationship between tourism, globalization, economic growth, and energy use, the research focuses on the top 10 most visited economies: France, the USA, Spain, China, Turkey, Italy, Mexico, Germany, Thailand, and the UK. Using panel data and the cross-sectional random effects model for the period of 1998 to 2024, the study produces reliable estimations of these relationships. The empirical findings suggest that while the Hausman test favors the fixed effect model, the real-world characteristics of these countries point to the random effect model, highlighting the negative impact of economic growth, energy consumption, and globalization on sustainable environmental quality. It is also suggested that socio-environmental factors should be considered for each destination for sustainable environmental quality.
Saba Nourin mail , Ismat Nasim mail , Hafiz Muhammad Raza ur Rehman mail , Elisabeth Caro Montero mail elizabeth.caro@uneatlantico.es, Mirtha Silvana Garat de Marin mail silvana.marin@uneatlantico.es, Nagwan Abdel Samee mail , Imran Ashraf mail ,
Nourin