A Novel Large-Scale Stochastic Pushback Design Merged with a Minimum Cut Algorithm for Open Pit Mine Production Scheduling
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Traditional optimization of open pit mine design is a crucial component of mining endeavors and is influenced by many variables. The critical factor in optimization is the geological uncertainty, which relates to the ore grade. To deal with uncertainties related to the block economic values of mining blocks and the general problem of mine design optimization, under unknown conditions, the best ultimate pit limits and pushback designs are produced by a minimum cut algorithm. The push–relabel minimal cut algorithm provides a framework for computationally efficient representation and processing of the economic values of mining blocks under multiple scenarios. A sequential Gaussian simulation-based smoothing spline technique was created. To produce pushbacks, an efficient parameterized minimum cut algorithm is suggested. An analysis of Indian iron ore mining was performed. The developed mine scheduling algorithm was compared with the conventional algorithm, and the results show that when uncertainty is considered, the cumulative metal production is higher and there is an additional increase of about 5% in net present value. The results of this work help the mining industry to plan mines in such a way that can generate maximum profit from the deposits.
metadata
Joshi, Devendra; Chithaluru, Premkumar; Singh, Aman; Yadav, Arvind; Elkamchouchi, Dalia H.; Mazas Pérez-Oleaga, Cristina y Anand, Divya
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, aman.singh@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, cristina.mazas@uneatlantico.es, divya.anand@uneatlantico.es
(2022)
A Novel Large-Scale Stochastic Pushback Design Merged with a Minimum Cut Algorithm for Open Pit Mine Production Scheduling.
Systems, 10 (5).
p. 159.
ISSN 2079-8954
|
Texto
systems-10-00159-with-cover.pdf Available under License Creative Commons Attribution. Descargar (590kB) | Vista Previa |
Resumen
Traditional optimization of open pit mine design is a crucial component of mining endeavors and is influenced by many variables. The critical factor in optimization is the geological uncertainty, which relates to the ore grade. To deal with uncertainties related to the block economic values of mining blocks and the general problem of mine design optimization, under unknown conditions, the best ultimate pit limits and pushback designs are produced by a minimum cut algorithm. The push–relabel minimal cut algorithm provides a framework for computationally efficient representation and processing of the economic values of mining blocks under multiple scenarios. A sequential Gaussian simulation-based smoothing spline technique was created. To produce pushbacks, an efficient parameterized minimum cut algorithm is suggested. An analysis of Indian iron ore mining was performed. The developed mine scheduling algorithm was compared with the conventional algorithm, and the results show that when uncertainty is considered, the cumulative metal production is higher and there is an additional increase of about 5% in net present value. The results of this work help the mining industry to plan mines in such a way that can generate maximum profit from the deposits.
Tipo de Documento: | Artículo |
---|---|
Palabras Clave: | mine production scheduling; net present value; open pit mine; L-G algorithm; grade uncertainty; minimum cut algorithm |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Europea del Atlántico > Investigación > Artículos y libros Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Producción Científica |
Depositado: | 05 Dic 2022 23:30 |
Ultima Modificación: | 11 Jul 2023 23:31 |
URI: | https://repositorio.uneatlantico.es/id/eprint/4904 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
<a href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
What works in financial education? Experimental evidence on program impact
Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.
Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,
García
en
close
Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.
Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,
Zhao
en
close
Evidence suggests that first- and second-generation mindfulness-based interventions (MBIs) can improve body image concerns in adolescents and adults. However, a systematic review of such interventions is lacking. The aim of this study is to synthesize evidence from randomized controlled trials evaluating the efficacy of both first- and second-generation MBIs in reducing negative body image and enhancing positive body image. Database searches were conducted in PubMed, CoChrane, Proquest Thesis & Dissertations and ScienceDirect up to August 2025, identifying 3394 records. After screening, 43 studies met eligibility criteria (n = 7979) and were evaluated for methodological quality following PRISMA guidelines. Of them, 16 (37.2 %) evaluated first-generation MBIs, while the remaining 27 studies (55.8 %) examined second-generation MBIs, with self-compassion being the most commonly used intervention. Only one study used both generations. Both first- and second-generation interventions demonstrated moderate to large effect sizes in most studies, with 94 % reporting significant improvements in at least one body image outcome. The methodological quality, assessed using the JBI tool, was rated as having either low risk of bias or some concerns in nearly 70 % of the studies. These findings highlight the global efficacy of MBIs for reducing negative body image and improving positive body image, while also underscoring the need for future research to employ more methodologically rigorous designs, multidimensional outcome measures, and greater inclusion of diverse sex, gender, and ethnic groups.
Alba Gutiérrez Cabrero mail , Marian González-García mail marian.gonzalez@uneatlantico.es,
Gutiérrez Cabrero
<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence
Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.
Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,
Saleem