Egobierno: sistema de información para el seguimiento de indicadores y su incidencia en la producción judicial - caso Perú
Article Subjects > Engineering Europe University of Atlantic > Research > Articles and books Abierto Inglés, Español El objetivo general fue determinar la eficacia de la implementación de un Sistema de Información para el Seguimiento de Indicadores de Gestión en el incremento de sentencias o autos finales de los juzgados civiles de la Corte Superior de Justicia de Tacna – 2019. El tipo de investigación según su función es cuantitativo, desde un diseño preexperimental con subcategoría cuasiexperimental y un corte de investigación longitudinal. Se tomaron la totalidad de expedientes judiciales en los juzgados civiles durante el período 2018 y 2019 para poder llevar a cabo la evaluación de la eficacia del Sistema de Información. Para la construcción de la propuesta de solución se utilizó una metodología simplificada del proceso de extracción, transformación y carga de datos y para la elaboración del Sistema de Información se aplicó la metodología del Proceso Unificado Ágil. La conclusión principal fue que la implementación de un Sistema de Información para el Seguimiento de Indicadores de Gestión como una medida de e-Gobierno, sirvió para resolver la necesidad de incremento en la emisión de Sentencias y Autos Finales, teniendo al final de la experimentación una reducción de 3% en el tiempo de calificación de los expedientes, y a pesar de que se incrementó el tiempo en trámite de los expedientes judiciales en un 4%, se demostró que la cantidad de sentencias y autos finales tuvieron un incremento de 165 en los Juzgados Civiles de la Corte Superior de Justicia de Tacna para el período 2019 en comparación con el período 2018. metadata Domingo Soriano, Saúl and Arambarri, Jon and Flor Rodríguez, Alberto Johnatan mail saul_domingo@funiber.org, jon.arambarri@uneatlantico.es, UNSPECIFIED (2022) Egobierno: sistema de información para el seguimiento de indicadores y su incidencia en la producción judicial - caso Perú. Project Design and Management, 4 (1). pp. 20-35. ISSN 2683-1597
Full text not available from this repository.Abstract
El objetivo general fue determinar la eficacia de la implementación de un Sistema de Información para el Seguimiento de Indicadores de Gestión en el incremento de sentencias o autos finales de los juzgados civiles de la Corte Superior de Justicia de Tacna – 2019. El tipo de investigación según su función es cuantitativo, desde un diseño preexperimental con subcategoría cuasiexperimental y un corte de investigación longitudinal. Se tomaron la totalidad de expedientes judiciales en los juzgados civiles durante el período 2018 y 2019 para poder llevar a cabo la evaluación de la eficacia del Sistema de Información. Para la construcción de la propuesta de solución se utilizó una metodología simplificada del proceso de extracción, transformación y carga de datos y para la elaboración del Sistema de Información se aplicó la metodología del Proceso Unificado Ágil. La conclusión principal fue que la implementación de un Sistema de Información para el Seguimiento de Indicadores de Gestión como una medida de e-Gobierno, sirvió para resolver la necesidad de incremento en la emisión de Sentencias y Autos Finales, teniendo al final de la experimentación una reducción de 3% en el tiempo de calificación de los expedientes, y a pesar de que se incrementó el tiempo en trámite de los expedientes judiciales en un 4%, se demostró que la cantidad de sentencias y autos finales tuvieron un incremento de 165 en los Juzgados Civiles de la Corte Superior de Justicia de Tacna para el período 2019 en comparación con el período 2018.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | autos finales, e-Gobierno, indicadores de gestión, sentencias, sistema de información |
Subjects: | Subjects > Engineering |
Divisions: | Europe University of Atlantic > Research > Articles and books |
Date Deposited: | 07 Jul 2022 23:30 |
Last Modified: | 12 Jul 2023 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/2612 |
Actions (login required)
View Item |
<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/10290/1.hassmallThumbnailVersion/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga
en
close
Technological firms invest in R&D looking for innovative solutions but assuming high costs and great (technological) uncertainty regarding final results and returns. Additionally, they face other problems related to R&D management. This empirical study tries to determine which of the factors favour or constrain the decision of these firms to engage in R&D. The analysis uses financial data of 14,619 ICT listed companies of 22 countries from 2003 to 2018. Additionally, macroeconomic data specific for the countries and the sector were used. For the analysis of dynamic panel data, a System-GMM method is used. Among the findings, we highlight that cash flow, contrary to the known theoretical models and empirical evidences, negatively impacts on R&D investment. Debt is neither the right source for R&D funding, as the effect is also negative. This suggests that ICT companies are forced to manage their R&D activities differently, relying more on other funding sources, taking advantage of growth opportunities and benefiting from a favourable macroeconomic environment in terms of growth and increased business sector spending on R&D. These results are similar in both sub-sectors and in all countries, both bank- and market based. The exception is firms with few growth opportunities and little debt.
Inna Alexeeva-Alexeev mail inna.alexeeva@uneatlantico.es, Cristina Mazas Pérez-Oleag mail cristina.mazas@uneatlantico.es,
Alexeeva-Alexeev
en
open
Assessment Of Lower Limb Asymmetries In Soccer Players According To The Stage Of The Season
PURPOSE: Muscle asymmetries can be associated with increased risk of injury. Using countermovement jump (CMJ) to analyze muscular asymmetries in the lower limbs of soccer players, according to the stage of the season.
Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Jeffrey Mjaanes mail , Angel Olider Rojas Vistorte mail , Julio Calleja-González mail ,
Velarde-Sotres
<a href="/14584/1/s41598-024-73664-6.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/14584/1.hassmallThumbnailVersion/s41598-024-73664-6.pdf" border="0"/></a>
en
open
The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.
Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,
de Santos Castro
<a href="/14915/1/s41598-024-74357-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/14915/1.hassmallThumbnailVersion/s41598-024-74357-w.pdf" border="0"/></a>
en
open
Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the body. If left undetected, it can lead to further complications involving organ damage such as heart, lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, however, existing approaches suffer from the use of limited datasets, lack of generalizability, and lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) models. Multiple datasets are combined to make a larger dataset for experiments and multiple features are utilized for investigating the efficacy of the proposed approach. Features from the extra tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy score. This performance is further validated by comparison with existing approaches and k-fold cross-validation which shows the proposed approach provides robust results.
Furqan Rustam mail , Ahmad Sami Al-Shamayleh mail , Rahman Shafique mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, J. Pablo Miramontes Gonzalez mail , Imran Ashraf mail ,
Rustam