Artificial Intelligence and Behavioral Economics: A Bibliographic Analysis of Research Field

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés Behavioral economics and artificial intelligence (AI) have been two rapidly growing fields of research over the past few years. While behavioral economics aims to combine concepts from psychology, sociology, and neuroscience with classical economic thoughts to understand human decision-making processes in the complex economic environment, AI on the other hand, focuses on creating intelligent machines that can mimic human cognitive abilities such as learning, problem-solving, decision-making, and language understanding. The intersection of these two fields has led to thrilling research theories and practical applications. This study provides a bibliometric analysis of the literature on AI and behavioral economics to gain insight into research trends in this field. We conducted this bibliometric analysis using the Web of Science database on articles published between 2012 and 2022 that were related to AI and behavioral economics. VOSviewer and Bibliometrix R package were utilized to identify influential authors, journals, institutions, and countries in the field. Network analysis was also performed to identify the main research themes and their interrelationships. The analysis revealed that the number of publications on AI and behavioral economics has been increasing steadily over the past decade. We found that most studies focused on customer and consumer behavior, including topics such as decision-making under uncertainty, neuroeconomics, and behavioral game theory, combined mainly with machine learning and deep learning techniques. We also identified several emerging themes, including the use of AI in nudging and prospect theory in behavioral finance, as well as undeveloped themes such as AI-driven behavioral macroeconomics. The findings suggests that there is a need for more interdisciplinary collaboration between researchers in behavioral economics and AI. We also suggest that future research on AI and behavioral economics further consider the ethical implications of using AI and behavioral insights in decision-making. This study can serve as a valuable resource for researchers interested in AI and behavioral economics. metadata Aoujil, Zakaria; Hanine, Mohamed; Soriano Flores, Emmanuel; Samad, Md Abdu y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, emmanuel.soriano@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR (2023) Artificial Intelligence and Behavioral Economics: A Bibliographic Analysis of Research Field. IEEE Access. p. 1. ISSN 2169-3536 (En Prensa)

Texto completo no disponible.

Resumen

Behavioral economics and artificial intelligence (AI) have been two rapidly growing fields of research over the past few years. While behavioral economics aims to combine concepts from psychology, sociology, and neuroscience with classical economic thoughts to understand human decision-making processes in the complex economic environment, AI on the other hand, focuses on creating intelligent machines that can mimic human cognitive abilities such as learning, problem-solving, decision-making, and language understanding. The intersection of these two fields has led to thrilling research theories and practical applications. This study provides a bibliometric analysis of the literature on AI and behavioral economics to gain insight into research trends in this field. We conducted this bibliometric analysis using the Web of Science database on articles published between 2012 and 2022 that were related to AI and behavioral economics. VOSviewer and Bibliometrix R package were utilized to identify influential authors, journals, institutions, and countries in the field. Network analysis was also performed to identify the main research themes and their interrelationships. The analysis revealed that the number of publications on AI and behavioral economics has been increasing steadily over the past decade. We found that most studies focused on customer and consumer behavior, including topics such as decision-making under uncertainty, neuroeconomics, and behavioral game theory, combined mainly with machine learning and deep learning techniques. We also identified several emerging themes, including the use of AI in nudging and prospect theory in behavioral finance, as well as undeveloped themes such as AI-driven behavioral macroeconomics. The findings suggests that there is a need for more interdisciplinary collaboration between researchers in behavioral economics and AI. We also suggest that future research on AI and behavioral economics further consider the ethical implications of using AI and behavioral insights in decision-making. This study can serve as a valuable resource for researchers interested in AI and behavioral economics.

Tipo de Documento: Artículo
Palabras Clave: Artificial intelligence, behavioral economics, behavioral finance, consumer behavior, investor behavior, decision making, neuroeconomics, machine learning, bibliometric analysis
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Europea del Atlántico > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Depositado: 12 Dic 2023 23:30
Ultima Modificación: 02 Ene 2024 23:30
URI: https://repositorio.uneatlantico.es/id/eprint/10069

Acciones (logins necesarios)

Ver Objeto Ver Objeto

en

close

Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice

The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.

Artículos y libros

Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,

Luo

<a href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

What works in financial education? Experimental evidence on program impact

Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.

Artículos y libros

Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,

García

en

close

LC-MS and GC–MS analyses reveal that amino acid-induced ammoniation of EGCG in different tea types enhances its structural stability

Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.

Artículos y libros

Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,

Zhao

<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence

Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.

Artículos y libros

Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,

Saleem

<a class="ep_document_link" href="/17843/1/s41599-025-05247-3.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Exploring the nexus: Hausman test application in tourism, globalization, and environmental sustainability- evidence of top 10 visited countries

Econometric analysis has long been integral to measuring sustainable environmental quality, with panel data methods, such as fixed and random effects models, becoming the focal point of modern research. Initially, such methods were used to simply investigate environmental issues, but recent years have seen a shift toward the study of random effects models, focusing on hypothesis testing and policy debates. However, several important aspects of the Hausman test have not been sufficiently investigated in the literature. This study seeks to evaluate the utility of the Hausman test using a real dataset from tourism and globalization, exploring their effects on sustainable environmental quality. Additionally, the study examines key factors contributing to environmental issues including economic growth and energy consumption, as critical explanatory variables. By investigating the relationship between tourism, globalization, economic growth, and energy use, the research focuses on the top 10 most visited economies: France, the USA, Spain, China, Turkey, Italy, Mexico, Germany, Thailand, and the UK. Using panel data and the cross-sectional random effects model for the period of 1998 to 2024, the study produces reliable estimations of these relationships. The empirical findings suggest that while the Hausman test favors the fixed effect model, the real-world characteristics of these countries point to the random effect model, highlighting the negative impact of economic growth, energy consumption, and globalization on sustainable environmental quality. It is also suggested that socio-environmental factors should be considered for each destination for sustainable environmental quality.

Artículos y libros

Saba Nourin mail , Ismat Nasim mail , Hafiz Muhammad Raza ur Rehman mail , Elisabeth Caro Montero mail elizabeth.caro@uneatlantico.es, Mirtha Silvana Garat de Marin mail silvana.marin@uneatlantico.es, Nagwan Abdel Samee mail , Imran Ashraf mail ,

Nourin