Diseño de un taller de Mindfulness para reducir los conflictos en un aula de tercero de primaria, en el CEIP Arias Montano de Sevilla
Thesis
Subjects > Psychology
Subjects > Social Sciences
Subjects > Teaching
Europe University of Atlantic > Teaching > Final Master Projects
Cerrado
Español
El aumento de conflictos interrelaciónales entre el alumnado es una realidad en el día a día de los centros educativos. Por ello mismo, cada vez son más los planes y proyectos que se llevan a cabo para intentan paliar la situación. Esta realidad, dado su carácter social, hace que no solo se de en el ámbito educativo, sino en todo el ámbito social, como el doméstico. Las causas que dan lugar a estos conflictos son numerosas, y la escuela debe ser consciente que debe ser partícipe de educar positivamente en este aspecto, otorgando así a los alumnos herramientas y estrategias que puedan aplicar no solo en la escuela, si no en su vida diaria. Tras la revisión exhausta de la bibliografía que se ha realizado, se sigue observando que este problema sigue persistiendo en las aulas, y que tras numerosos proyectos implantados, sigue haciendo falta alguno que pueda conseguir resultados efectivos y pueda bajar de forma inmediata los altos números que a día de hoy sigue existiendo de conflictividad en las aulas. Con este Trabajo Fin de Máster se pretende elaborar una propuesta de intervención, a través del Mindfulness con el objetivo de intentar mejorar el comportamiento y frenar las conductas disruptivas en un centro educativo de Sevilla. Se han observado numerosos beneficios que otorga el Mindfulness no solo a adultos si no a niños, y todo lo que esta técnica puede aportar no sólo al ámbito emocional si no al educativo en general. Con todo ello, se plantea un programa de talleres de Mindfulness de tres meses de duración, con la implantación de un taller por semana, donde a través de las diferentes técnicas del Mindfulness se pretende modificar o reducir el número de conflictos entre el alumnado. Tras el planteamiento del proyecto, se espera que se alcancen los objetivos propuestos y que, por lo tanto, se produzca una reducción del número de conflictos en el aula o que su resolución sea más pacífica que antes. Con ello conseguiríamos una mejor convivencia en el ámbito educativo, y, por lo tanto, una educación de calidad y éxito. A modo de conclusión, se espera que a través de diferentes técnicas del Mindfulness el alumnado consiga un estado de relajación y paz interior con los que poder afrontar su día a día, los conflictos y poder solucionarlos de manera calmada y pacífica.
metadata
Fernández López, María
mail
maria.fernandez.fbs@gmail.com
(2022)
Diseño de un taller de Mindfulness para reducir los conflictos en un aula de tercero de primaria, en el CEIP Arias Montano de Sevilla.
Masters thesis, UNSPECIFIED.
Abstract
El aumento de conflictos interrelaciónales entre el alumnado es una realidad en el día a día de los centros educativos. Por ello mismo, cada vez son más los planes y proyectos que se llevan a cabo para intentan paliar la situación. Esta realidad, dado su carácter social, hace que no solo se de en el ámbito educativo, sino en todo el ámbito social, como el doméstico. Las causas que dan lugar a estos conflictos son numerosas, y la escuela debe ser consciente que debe ser partícipe de educar positivamente en este aspecto, otorgando así a los alumnos herramientas y estrategias que puedan aplicar no solo en la escuela, si no en su vida diaria. Tras la revisión exhausta de la bibliografía que se ha realizado, se sigue observando que este problema sigue persistiendo en las aulas, y que tras numerosos proyectos implantados, sigue haciendo falta alguno que pueda conseguir resultados efectivos y pueda bajar de forma inmediata los altos números que a día de hoy sigue existiendo de conflictividad en las aulas. Con este Trabajo Fin de Máster se pretende elaborar una propuesta de intervención, a través del Mindfulness con el objetivo de intentar mejorar el comportamiento y frenar las conductas disruptivas en un centro educativo de Sevilla. Se han observado numerosos beneficios que otorga el Mindfulness no solo a adultos si no a niños, y todo lo que esta técnica puede aportar no sólo al ámbito emocional si no al educativo en general. Con todo ello, se plantea un programa de talleres de Mindfulness de tres meses de duración, con la implantación de un taller por semana, donde a través de las diferentes técnicas del Mindfulness se pretende modificar o reducir el número de conflictos entre el alumnado. Tras el planteamiento del proyecto, se espera que se alcancen los objetivos propuestos y que, por lo tanto, se produzca una reducción del número de conflictos en el aula o que su resolución sea más pacífica que antes. Con ello conseguiríamos una mejor convivencia en el ámbito educativo, y, por lo tanto, una educación de calidad y éxito. A modo de conclusión, se espera que a través de diferentes técnicas del Mindfulness el alumnado consiga un estado de relajación y paz interior con los que poder afrontar su día a día, los conflictos y poder solucionarlos de manera calmada y pacífica.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Mindfulness, conflictos, resolución de conflictos |
Subjects: | Subjects > Psychology Subjects > Social Sciences Subjects > Teaching |
Divisions: | Europe University of Atlantic > Teaching > Final Master Projects |
Date Deposited: | 20 Oct 2023 23:30 |
Last Modified: | 20 Oct 2023 23:30 |
URI: | https://repositorio.uneatlantico.es/id/eprint/893 |
Actions (login required)
![]() |
View Item |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
en
close
A novel machine learning-based proposal for early prediction of endometriosis disease
Background Endometriosis is one of the causes of female infertility, with some studies estimating its prevalence at around 10 % of reproductive-age women worldwide and between 30 and 50 % in symptomatic women. However, its diagnosis is complex and often delayed, highlighting the need for more accessible and accurate diagnostic methods. The difficulty lies in its diverse etiology and the variability of symptoms among those affected. Methods This study proposes a predictive model based on supervised machine learning for the early identification of endometriosis, providing support for decision-making by healthcare professionals. For this purpose, an anonymised dataset of 5,143 female patients diagnosed with endometriosis at the private fertility clinic Inebir was used. The model integrates clinical records and genetic analysis through supervised machine learning algorithms, focusing on clinical variables and pathogenic and potentially pathogenic genetic variants. Results The developed predictive model achieves high accuracy in identifying the presence of endometriosis, highlighting the importance of combining clinical and genetic data in diagnosis. The integration of this data into the DELFOS platform, a clinical decision support system, demonstrates the utility of machine learning in improving the diagnosis of endometriosis. Conclusions The findings underscore the potential of clinical and genetic factors in the early diagnosis of endometriosis using supervised machine learning algorithms. This study contributes to the classification of clinical variables that influence endometriosis, offering a valuable tool for clinicians in making therapeutic and management decisions for their female patients.
Elena Enamorado-Díaz mail , Leticia Morales-Trujillo mail , Julián-Alberto García-García mail , Ana Teresa Marcos Rodríguez mail anateresa.marcos@uneatlantico.es, José Manuel Navarro-Pando mail jose.navarro@uneatlantico.es, María-José Escalona-Cuaresma mail ,
Enamorado-Díaz
en
close
Background The aging process leads to negative changes in various bodily systems, including the neuromuscular system. Strength training, is considered the best strategy to counteract these neuromuscular changes, preventing sarcopenia and frailty in older adults. Objective To compare the effects of strength training with elastic resistance and free weights on the muscle strength of knee extensors and flexors and functional performance in the older adults. Methods This was a randomised clinical study. Thirty-one participants of both sexes were allocated randomly into two groups: Training Group Free Weight (TGFW, n = 15) and Training Group with Elastic Resistance (TGER, n = 16). Two individuals were excluded and so, twenty-nine individuals were evaluated before and after eight weeks training protocol, which was performed three times a week. The determination of the training load was obtained using a protocol of 10 repetitions maximum. Results No significant differences were found in either the intra- or the inter-group comparisons, on functional performance and peak muscle strength. In the intra-groups (pre- and post-strength training), it was observed that both groups significantly increased the training load (10 RM) for the extensors (TGFW p = 0.0002; TGER p = 0.0001) and the knee flexors (TGFW p = 0.006; TGER p = 0.0001). Conclusion Both training protocols similarly were effective in increasing the training load observed by the 10 RM test of the extension and flexion movements of the knee.
Rafaela Zanin Ferreira mail , Antonio Felipe Souza Gomes mail , Marco Antonio Ferreira Baldim mail , Ricardo Silva Alves mail , Leonardo César Carvalho mail , Adriano Prado Simão mail ,
Ferreira
<a class="ep_document_link" href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images
Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.
Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,
Tanveer
<a href="/15987/1/s41598-024-83147-3.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A novel and efficient digital image steganography technique using least significant bit substitution
Steganography is used to hide sensitive types of data including images, audio, text, and videos in an invisible way so that no one can detect it. Image-based steganography is a technique that uses images as a cover media for hiding and transmitting sensitive information over the internet. However, image-based steganography is a challenging task due to transparency, security, computational efficiency, tamper protection, payload, etc. Recently, different image steganography methods have been proposed but most of them have reliability issues. Therefore, to solve this issue, we propose an efficient technique based on the Least Significant Bit (LSB). The LSB substitution method minimizes the error rate in the embedding process and is used to achieve greater reliability. Our proposed image-based steganography algorithm incorporates LSB substitution with Magic Matrix, Multi-Level Encryption Algorithm (MLEA), Secret Key (SK), and transposition, flipping. We performed several experiments and the results show that our proposed technique is efficient and achieves efficient results. We tested a total of 165 different RGB images of various dimensions and sizes of hidden information, using various Quality Assessment Metrics (QAMs); A name of few are; Normalized Cross Correlation (NCC), Image Fidelity (IF), Peak Signal Noise Ratio (PSNR), Root Mean Square Error (RMSE), Quality Index (QI), Correlation Coefficient (CC), Structural Similarity Index (SSIM), Mean Square Error (MSE), Entropy, Contrast, and Homogeneity, Image Histogram (IH). We also conducted a comparative analysis with some existing methods as well as security analysis which showed better results. The achieved result demonstrates significant improvements over the current state-of-the-art methods.
Shahid Rahman mail , Jamal uddin mail , Hameed Hussain mail , Sabir Shah mail , Abdu Salam mail , Farhan Amin mail , Isabel de la Torre Díez mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx,
Rahman