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Abstract: Wearable monitoring devices are in demand in recent times for
monitoring daily activities including exercise. Moreover, it is widely utilizing
for preventing injuries of athletes during a practice session and in few cases,
it leads to muscle fatigue. At present, emerging technology like the internet of
things (IoT) and sensors is empowering to monitor and visualize the physical
data from any remote location through internet connectivity. In this study,
an IoT-enabled wearable device is proposing for monitoring and identifying
the muscle fatigue condition using a surface electromyogram (sEMG) sensor.
Normally, the EMG signal is utilized to display muscle activity. Arduino
controller, Wi-Fi module, and EMG sensor are utilized in developing the
wearable device. The Time-frequency domain spectrum technique is employed
for classifying the three muscle fatigue conditions including mean RMS, mean
frequency, etc. A real-time experiment is realized on six different individuals
with developed wearable devices and the average RMS value assists to deter-
mine the average threshold of recorded data. The threshold level is analyzed
by calculating the mean RMS value and concluded three fatigue conditions
as >2 V: Extensive); 1–2 V: Moderate, and <1 V: relaxed. The warning alarm
system was designed in LabVIEW with three color LEDs to indicate the
different states of muscle fatigue. Moreover, the device is interfaced with
the cloud through the internet provided with a Wi-Fi module embedded in
wearable devices. The data available in the cloud server can be utilized for
forecasting the frequency of an individual to muscle fatigue.
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1 Introduction

Currently, people are utilizing wearable devices to monitor the physical condition of their bodies
during exercise and normal times. Generally, these wearable devices assist to track the number of steps,
heart rate, and sleep pattern with advanced analyzing features. Isokinetic training with the appropriate
equipment is generally utilized extensively for functional therapy and evaluation [1]. During isokinetic
training, the leg muscles of an individual undergo frequent dynamic contractions, in these cases if an
individual exercise excessively, their muscles may get stressed or injured [2]. As a result, learning to
exercise effectively is crucial for both healthy and sick people. Muscle fatigue is frequently assessed as
a fall inside the muscle’s extreme power or strength [3]. It is shown that certain tasks are not restricted
to main muscle exhaustion. Muscle physiologists frequently label muscle fatigue as a severe workout
tempted decline in muscles force [4]. Fatigue is also usually mentioned as a reduced capability for
maximal performance and the best relevant method to estimate fatigue would be straight using the
highest test of presentation in the competitive occurrence of the athlete [5].

The following are few studies that address the fatigue monitoring with distinct traditional methods
like Traditional system to monitor muscle fatigue is calculated from the median frequency of the sEMG
power spectrum and the power spectrum is calculated for the signals using fast Fourier transform
algorithm with the help of MATLAB [6]. After that, the median frequency for the recorded data is
calculated and plotted beside time. The drop in the mean value of median frequency indicates the
onset of fatigue. The median frequency calculation of the EMG signal is considered as the preeminent
and traditional indicator of the muscle fatigue status during the intended contraction of muscles
[7]. Spatiotemporal EMG signal analysis is also used to monitor the muscle status and plays a very
important role in rehabilitation platforms [8,9]. A simple and easy method to measure this fatigue
in rugby players is to the muscle by integrating Mechanomyogram (MMG) sensor for measuring the
muscle fatigue of rugby players during performance [10]. Fatigue progression measure (FPM) is a
measure to monitor muscle by calculating the electrical activity and median frequency per cycle of
round [11]. Multiple time window (MTB) is a technique used to monitor the surface electromyography
signals under muscle fatigue conditions and non-muscle fatigue conditions. Strain elastography and
shear-wave elastography are two different ultrasound elastography technologies that are useful study
muscle stiffness [12]. RMS regression slopes offered a noteworthy decrease after training biceps brachii
muscles [13]. Power spectral density calculation of sEMG is also used to analyze muscle function [14].
However, all these studies utilize non-wearable and portable devices for monitoring stress. Here the
wearable monitoring system for muscle contraction not only provides notification to the user on the
onset of fatigue but also needs to get information regarding relaxed muscle for minimizing the chance
of getting injured. The contribution of the study is as follows:

• Proposed architecture for implementing IoT-based wearable device with EMG sensor to
monitor muscle fatigue.

• A LabVIEW-based data logger is implemented as an acquisition system for visualizing muscle
activity.

• The rectified amplitude value of the raw EMG signal is analyzed with the time-domain feature
extraction technique.

• The threshold level is analyzed by calculating the mean RMS value and concluded three fatigue
conditions as >2 V: Extensive); 1–2 V: Moderate, and <1 V: relaxed.

• A real experiment is implemented on six different individuals with IoT enabled devices and
analyzed in MATLAB
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The organization of the study is as follows, Section 2 covers the literature review, Section 3
covers proposed architecture; Section 4 covers hardware interfacing; Section 5 covers the methodology
regarding data acquisition and classification; Section 6 covers the results and current consumption
analysis.

2 Literature Review

This section gives an overview of the research methodologies done so far for monitoring or
observing muscle activity.

2.1 Electromyogram (EMG) Method

An electromyogram (EMG) is an electrical signal produced by muscles during contraction.
However, it demonstrates an interference pattern of action potentials generated by muscle fibers
underneath the measurement location [15]. EMG measurements can be taken by attaching conductive
components or electrodes to the skin’s surface or invasively into the muscle. Surface EMG is the most
often used method of testing since it is non-invasive and may be performed by personnel other than
medics or paramedics with low danger to the patient [16]. The characteristics of the electrodes and their
contact with the skin, amplifier design, and the conversion and subsequent storage of the EMG signal
from analog to digital form (A/D conversion) all play a role in measuring and properly capturing
the sEMG signal. The signal to noise ratio (SNR), which is the ratio between the recorded EMG
signal and undesired noise contributions from the environment, is frequently used to describe the
quality of the measured EMG. The objective is to increase signal amplitude while reducing noise,
providing that the amplifier design and A/D conversion method exceeds acceptable requirements.
However, extensive research has been carried out to overcome the noises generated by EMG signals.
The research analyzes two important areas; On the one hand, there is the pre-correction method to
eliminate probable noises by taking adequate precautions when recording muscle activity, and on the
other hand, a brief description of the different approaches to process EMG signals [17].

2.2 Mechanomyogram (EMG) Method

A mechanomyogram, on the other hand, has been offered as another method for studying muscle
mechanical activity. The term mechanomyography (MMG) refers to a method that detects muscle
mechanical activity by employing specialized transducers to capture muscle surface vibrations caused
by motor unit mechanical activity. MMG signals may be detected with a variety of transducers,
including piezoelectric contact sensors (PIZ) and microphones. MMG has certain distinct benefits
over sEMG [18]. First, because MMG sensors propagate via muscle tissue, their location does not need
to be accurate or particular. Second, because MMG is a mechanical signal, it is unaffected by changes
in skin impedance caused by perspiration. MMG can also be utilized in combination with sEMG
to investigate neuromuscular function. However, with the assistance of MMG, numerous researchers
have continued to investigate its application features. A mechanomyogram (MMG) sensor frame is
constructed in this study for the control of muscle conditions. The MMG banner indicates the mean
power recurrence (MPF) of the sensor yield, which is determined by the muscle ending rate of activity,
and the variation of the sensor yield that is determined by the activity of fast filaments and finished
inscription [19].



1002 CMC, 2022, vol.72, no.1

2.3 Autonomic Nervous System (ANS)

Several investigations have shown that the dynamics of the autonomic nervous system (ANS) are
directly engaged involuntary muscle contractions. In particular, during such contractions, both the
sympathetic and parasympathetic branches of the ANS are engaged by brainstem activity, as well as
via chemo-, mechano-, and baroreceptor afferents [20,21]. When referring to cardiovascular dynamics,
the influence of ANS regulation during exhaustion is obvious, as pulse, breathing rate, and blood
pressure considerably alter during intensive exercise. Specifically, prolonged exercise was associated
with increased heart rate (HR), oxygen consumption, and EMG activity. Heart rate variability (HRV)
series, which are influenced by sympathetic and parasympathetic interaction, were also studied in this
context, with the idea of a sympathetic retreat or vagal tone restoration happening after maximum
exercise. amid the exhausting work [22]. Other indicators of ANS dynamics, such as electrodermal
activity (EDA) have not been studied in the context of muscular exhaustion produced by physical
exercise, to the best of our knowledge. EDA is a commonly utilized physiological marker that is
influenced by cognitive processes such as attention, emotion, and motivation. EDA is a biomarker of
emotional reactivity, stress, and mental weariness that is directly regulated by the sympathetic branch
of the ANS. An alternative non-invasive method is implemented for the detection of muscle fatigue
through two ANS correlates, i.e., the EDA and HRV series.

2.4 Machine Learning Technique

Many techniques for data-driven real-time forecasting of time series using machine learning are
available in the subject of ‘online learning,’ also known as ‘incremental learning’ or adaptive signal
processing (ASP) [23]. The concept of ASP is to update the model’s parameters over time as data is
streamed so that the model organically adapts to the most recent observations. There are two types
of models in this class: shallow learning and deep learning. Deep learning can be used to get around
this problem. Convolutional neural networks (CNN) built on a stack of causal dilated convolutional
layers, such as the WaveNet, have been demonstrated to give a state-of-the-art performance in a variety
of tasks, including glucose time-series prediction and audio synthesis [24]. Real-time forecasting is
especially useful for applications such as detecting the start of muscular exhaustion (between no
tiredness and fatigue) [25]. when the user has to be informed before entering the fatigue state to avoid
harm. Some research has been done to predict exhaustion in the biceps muscle by adding a novel
condition called transition to fatigue. Unfortunately, because the characteristics are not explicitly
represented, this technique cannot be used in other application areas that employ the same (or
comparable) features. A study is proposed for predicting the sEMG feature of trunk muscles using
adaptive algorithms with dShallow models and a deep convolutional neural network (CNN) in real-
time [26,27].

3 Proposed Architecture

Wearable devices have been gaining attention in the health care field and a large number of people
are using a wearable device to monitor their physical health. Advances in sensor and communication
technology have widely promoted the development of IoT-enabled wearable devices for monitoring
muscle health. The implementation of muscle fatigue monitoring using the Internet of Things and
the EMG sensor is suggested in Fig. 1. The proposed architecture is the integration of three different
functions, such as data acquisition, data processing, and visualization of sensor data. By collecting
data, the EMG sensor records the electrical activity of the muscles. The EMG sensor is connected as
an input to the microcontroller, where it receives the electrical activity of the muscles in analog form.
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In data processing, the Wi-Fi transmits the received sensory data to the cloud server for identifying
the muscle fatigue of an individual.

Figure 1: Proposed architecture

Except for the cloud server and app for data forecast, the remaining components of the architec-
ture are utilized to build the wearable device. The wearable device with an EMG sensor is interfaced
to the individual to identify muscle fatigue in real-time. Here, in the cloud server, the preset conditions
are set based on the sensory data. Depending on the sensory data and threshold conditions, the cloud
server sent an alert regarding muscle fatigue to the wearable device through internet connectivity. The
muscle fatigue conditions are visualized on the display unit and additionally the buzzer embedded in
the wearable device generates an alarm in case of severe muscle fatigue condition. Furthermore, the
user can predict the rate of muscle fatigue suffering of an individual by applying analytical techniques
on the cloud server.

3.1 Hardware Integration

The interfacing is presented here with three different components namely: Connecting the
electrodes, interface to the Arduino, and interface to the power supply as shown in Fig. 2. On defining
the target muscle (e.g., bicep, calf, forearm), clean the skin properly using some cotton. Abode one
electrode in the center of the muscle body, interface this electrode to the snap connector of the red
cable. Abode the next electrode at one end of muscle part, interface this electrode to snap connector of
the blue cable. Place the next electrode on the non-muscular area of the body near to targeted muscle,
interface this electrode to the snap connector of the black Cable. Interface to the Arduino: Interface
SIG pin on the sensor to an analog pin on A0 of Arduino. Interface the GND pin on the sensor to
a GND pin on Arduino. Fig. 2 presents the sensor interfacing with the microcontroller and to the
human arm. The ground of the muscle sensor is connected to the ground of the two 9 V batteries. +Vs
of the muscle sensor are connected to the +9 V battery and –Vs is connected to the −9 V battery. The
output signal pin of the sensor is connected to the A0 pin of the Arduino.

A cable port is available on the sensor through which connectors are interfaced with the surface
electrodes. The microcontroller (Arduino) is connected to the PC by a USB cable also the Arduino is
powered through this cable. A proteus simulation is performed after interfacing the EMG sensor with
the microcontroller and human arm.
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Figure 2: Interfacing of EMG sensor with Controller and human arm

4 Methodology

This research work aims to provide a portable and compact device to monitor muscle fatigue and
to make them aware of the onset of fatigue. The following three stages are for building the portable
device for monitoring muscle fatigue and they are data acquisition, signal processing, and classification
and application design. Data acquisition includes designing the EMG acquisition system which can
display muscle activity. Signal processing and classification include processing the signal through
LabVIEW and designing a recording panel for the system.

4.1 Data Acquisition

To acquire the EMG signals from the body disposable Ag/AgCl electrodes which are pre-gelled
are used since the amplitude of EMG signal range in millivolts, they are highly susceptible to different
noise sources as shown in Fig. 3. To surpass these RF noises and electromagnetic differences, shielded
wire comes into existence for connection to Ag/AgCl electrodes and also for data acquisition systems.
Protection from electrical shocks is the foremost concern for any biomedical system, this is why most
of the circuits run only by using two 9 V batteries.

Figure 3: Surface electrodeposition

Separately from this, Arduino based Data acquisition system shown in Fig. 4 is motorized by
resources of the USB terminal of the laptop, which was made to run in the battery-powered mode
so that the electrical safety of the subjects can be properly maintained. The Arduino Firmware is
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used to interface the Arduino IDE and LabVIEW. The data acquisition panel provides all the basic
information regarding the monitoring status like a graph of amplitude vs. several samples, com port
used by the microcontroller, baud rate, and table displaying EMG values recorded.

Figure 4: Data logger in LabVIEW

The Arduino firmware is used to interface the Arduino IDE and the LabVIEW. The data
acquisition system created displays the necessary information while recording the muscle status. It
presents the serial port to which the microcontroller is connected such as COM4, COM3, etc. Tab. 1
consists of the EMG data in volts with the date and time of recording the muscle data. Three
highlighted ovals depict the three conditions of the muscles which are Extensive, Fatigue (moderate),
and relaxed. Depending on the contracting capability of the muscles for a particular person, the
specific oval will be highlighted showing that particular condition of muscles. The data acquisition
system acquires the signal which is retrieved from the EMG sensor and this signal output is nursed
into the LabVIEW using Arduino Uno. The program used for the notification and monitoring of
muscle fatigue is designed such that depending on the threshold amplitude setting, the respective LED
glows on LabVIEW.

Table 1: Threshold value

Mode of contraction EMG amplitude (voltage)

Extensive Above 2 volts
Moderate Between 1 to 2 volts
Relaxed Below 1 volt

4.2 Classification of EMG Signal

Feature extraction techniques of bio-signals used are classified as: Feature extraction time-domain
spectrum, feature extraction in frequency domain spectrum, time-frequency domain spectrum. Mean,
standard deviation, EMG-integrated, averaging, correction are the approaches that are employed in
the time domain. A spectrum of power, the density of power of spectrum, Power spectrum density
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are some frequency domain techniques and short time transformations are time-frequency domain
approaches. Calculation in time domain analysis is straightforward and efficient. The EMG amplitude
is corrected and enveloped before extracting the feature in the time domain. Amplitude estimation is
performed on the time domain analysis, using several additional parameters such as mean RMS, mean
frequency, etc. The threshold level is split into three categories: large, moderate, and relaxed, based
upon the amplification of the interseal muscle.

4.3 Pre-processing of EMG Signal

In previous studies to produce an accurate and real EMG signal, several signal-processing
approaches are used on raw EMG. However, the wavelet transform (WT) is an effective mathematical
technique for the local analysis of nonstationary and rapid transient signals [28]. One of the most
important features of the wavelet transform is that it may be done using a discrete-time filter bank.

5 Experimental Setup and Results

In this section, we discuss the implementation of the proposed system in a real-time environment.
Initially, the system is implemented with MATLAB for visualizing the EMG signal in graphical
format. Later on, the visualization of the three muscle fatigue conditions using LabVIEW Finally,
the power consumption analysis of the system is also included in this section.

5.1 MATLAB Analysis

The device developed here will notify the user of his muscular ailment. For designing this system
firstly, the EMG data were recorded with six male subjects while exercising and the model of the
prototype is shown in Fig. 5. The recorded data was then analyzed in MATLAB to set a threshold.

Figure 5: Model of muscle fatigue monitoring

Research says that threshold values should be used to detect the muscle activity timing in EMG
signal analysis. However, for an accurate system, the threshold value should be different for various
muscles of the body because functions of all the muscles are different so the threshold point indicating
fatigue should also be different. In this study, fatigue of biceps brachii is monitored. So, to decide
the threshold, the mean RMS value was calculated on the recorded data. After getting the mean
RMS value the average threshold was evaluated this was then used to categorize the different fatigue
conditions to set the average threshold for the device mean RMS value was calculated for the recorded
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EMG data using Eq. (1). The root-mean-square level of a vector, X¬RMS is defined as the equation:

XRMS =
√√√√ 1

N

N∑
n=1

|xn|2 (1)

where N = length of the total sample of individual signal (10000) and Xn = EMG average signal length
(6500), Mean RMS is calculated as 2.1896 ≈ 2.2 volts (experimental) and Maximum output strength
of the signal = 5 volts (experimental).

Average threshold = 40% of max output = (5 ∗ 40)/100 = 2 volts (theoretical) which is near to the
experimental value.

Based on the time domain feature extraction technique in which rectified amplitude value of raw
EMG signal is analyzed after which threshold level is estimated by calculating the mean RMS value.
To detect three fatigue conditions i.e., extensive, moderate, and relaxed a system is designed which can
monitor as well as notify the condition of the subject. The fatigues conditions are detected by a sensor
concerning voltage presented in Tab. 1. The threshold level is defined to glow the respective LED based
on the muscle contraction, and here the threshold value of the device is set according to the sample
data collected.

Fig. 6 presents the muscle fatigue condition based on obtained sensor value. As defined the
threshold conditions are in Tab. 1, if the obtained sensor value is above the 2 V then it is concluded as
extensive muscle fatigue and red color LED blinks. In case, if the obtained sensor value is <1 V then
the condition of muscle fatigue is denoted as relax and green color LED blinks. In case, if they obtained
sensor values>1 & <2 V, then the muscle fatigue condition is moderate, and yellow light blinks.

Start

Initiate
sensor

If (threshold
value >2)

If (threshold
value <1)

If (threshold
value >1 & < 2)

Sensor value

Extensive Relax Moderate

Yes

No

Yes

No

Yes

No

Green
LED
‘ON’

Yellow
LED
‘ON’

Red
LED
‘ON’

Figure 6: Flow diagram of Muscle fatigue condition based on sensor value

Now when the subject starts exercising by placing the two electrodes on the biceps branchii and
one on the elbow and recording the muscle activity, the data acquisition panel keeps on recording the
data, and depending on the muscle potential, a particular LED depicting muscle condition will glow.

Fig. 7a presents that at a sample point 5824 on the Y-axis and amplitude value 1.89 volts, the
graph presents the steep decrease which indicates that subject’s muscle has started to approach fatigue
and is getting relaxed their after. Here a small portion of recorded data is displayed which contains
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useful information about fatigue. As it is clear from Fig. 7a that the amplitude slope is approaching
the axis ground which refers to the fatigue symptoms. The number of samples on the x-axis depends
on the subject’s capability to contract the muscles. Some subjects cannot perform a task for more
duration while some can extend it to long-duration so it’s all on the muscle capability. The only useful
information collected here is that after a particular time the amplitude is approaching ‘zero’ which
means the subject is sensing fatigue. The sample at which steep decrease commenced in subject 2 is
5700 and amplitude at this point is 0.6152 V and which is shown in Fig. 7b. This presents that after this
particular point the subject’s performance starts degrading. The number of samples in this subject’s
graph presents that, he was approaching fatigue very soon. The samples at which steep decrease
commenced in subject 3 is 9806 and amplitude at this point is 1.719 V.

Figure 7: EMG amplitude vs. the number of samples plotted in MATLAB for sample ‘1’ and sample ‘2’

As we can see from the waveform, the maximum amplitude of the muscle contraction recorded is
5 V and the minimum amplitude is recorded between 0 and 1 V. This data presents us that the 5 V is
the maximum contraction the subject has witnessed, and it presents us that 5 V is the condition, when
the subject feels the onset of fatigue and the waveform dropping below 1 V, depicts that the subject has
relaxed and is now in a relaxed position. When the EMG value is between 1 to 4 V, it means that the
subject is applying moderate force in contracting its muscle and is ideally on right movement.

Fig. 8a presents that the number of samples on the y axis is very high which means that subject
was able to carry the exercise for a longer duration and was approached to fatigue after exercising
longer. In the end, the slope is getting high which depicts that the subject is trying to regain muscle
strength after a short relaxation period. A short relaxing break can also help the muscles to restore their
original strength so that they can function normally. The sample at which steep decrease commenced
in subject 4 is 4176 and amplitude at this point is 1.523 V. Fig. 8b presents that the subject was not able
to withstand the exercise for a longer duration because the number of samples crossed by the subject
is not very high. The fluctuation before the steep decrease means that the subject forced its muscle
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to perform exercise but because of muscle fatigue the muscles could not restore it and after that, the
steep decrease is followed which means that subject has relaxed. The sample at which steep decrease
commenced in subject 5 is 5255 and amplitude at this point is 2.432 V.

Figure 8: EMG amplitude vs. a number of samples plotted in MATLAB for sample 3 and sample 4

Fig. 9a presents that the muscles were forced to exert force for a quite long duration, but muscles
could not withstand it and performance started to degrade. It also presents that the subject did not
take any break for the muscle to restore and directly stopped the workout. The sample at which steep
decrease commenced in subject 6 is 6860 and amplitude at this point is 2.271 volt. Fig. 9b presents that
after forcing the muscle for a workout the muscles started degrading and a steep decrease is followed
thereafter. The sampling rate of 1000 samples per second is recorded for the six distinct individuals.
The average RMS is 2.18V with the equation to determine the RMS value. Based on this finding, the
threshold value of EMG was established at about 40 percent, which is equivalent to the mean RMS
discovered by the study, at 25 percent, 35, and 45 percent, respectively. Therefore, we obtain 2 and 1 V
accordingly when selecting the threshold for the maximum and minimum of 40% and 20%. To exclude
motion objects and white signals, the minimum threshold value is 20 percent. It may be concluded
that when the amplitude of the EMG crosses the maximum level, the excessive exercise represents a
relaxed condition and that, when it is low or low, it is relaxed, meaning that the value or safe method
of exercise is moderated at 40 to 20 percent between the maximum and the lowest.

5.2 LABVIEW as a Data Logger

The real-time monitoring and notification of all the three conditions are shown below with their
pictorial diagram of EMG value. The graph in Fig. 10 presents the data logger designed in LabVIEW
indicating the user of the relaxed condition of muscles.
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Figure 9: EMG amplitude vs. the number of samples plotted in MATLAB for sample 5 and sample 6

Figure 10: Relax condition of muscles in LabVIEW

The panel presents the current recorded EMG with the date and time of monitoring muscle fatigue.
As seen in the table and graph, the EMG value recorded is below the threshold of relaxed muscles which
falls in the relaxed condition of the muscles. The graph in Fig. 11 presents the Datalogger designed in
LabVIEW indicating the moderate condition. As can be seen from Fig. 11 the EMG value is between
1 and 2, which falls under the moderate conditions of the muscles.
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Figure 11: Moderate condition of muscles in LabVIEW

The graph in Fig. 12 presents a screenshot image of Datalogger designed in lab VIEW indicating
the user of his relaxed condition. As we can see from Fig. 12 that the EMG value is >2, which was
earlier defined as the threshold condition for extensive contracted muscle.

Figure 12: Intense condition of muscles in LabVIEW

5.3 Power Consumption Analysis

Here we discuss the power consumption analysis of the system. To calculate the power consump-
tion, initially, we need to calculate the power consumption of individual components namely Arduino
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Uno and EMG sensor as shown in Tab. 2. Here the Arduino Uno consumes 200 mW and the EMG
sensor consumes 414 mW, so the total power consumption of the system is 614 mW.

Table 2: Power consumption Analysis

Component Power consumption

Arduino UNO 40 mA∗5 v
EMG sensor 46 mA∗9 v
Total power consumption 614 mW

Tab. 3 presents the comparative analysis to address the advancement of the proposed study
over previous studies for muscle fatigue detection. In the previous studies, the primary focus is on
implementing the device for muscle fatigue detection. Limited studies have identified threshold values
to define the different states of muscle fatigue conditions with the wireless hardware-enabled device.
The proposed studies implemented IoT enabled muscle fatigue detection with Bluetooth and Wi-Fi. A
customized hardware implementation is carried out for identifying the threshold value. In this study,
the threshold is identified by the mean RMS value of the recorded data. Once the mean RMS was
determined, the mean threshold was scored to categorize the various fatigue states to establish the
mean threshold for the mean RMS of the device. Moreover, the proposed system logs the sensor data
over the cloud server through Wi-Fi.

Table 3: Comparison of proposed study with previous studies

Ref. Function Data acquisition
system

Threshold value
identification

Data
visualization

[29] Wireless sEMG
measurement system for
muscle fatigue
monitoring

sEMG The hardware is
only implemented
for collecting for
EMG, no
threshold value
identification is not
carried out

Personal
computer for
data
visualization

[30] EMG patch is used on
muscle to detect muscle
condition in real-time
during exercise.

EMG patch Determine the
median frequency
of EMG, which
indicates muscle
condition.

MATLAB

[31] Muscle fatigue detection
is achieved with pulse
width modulation
(PWM) and ESP8266

pulse width
modulation

No threshold value
identification is
carried out

A graphic
interface is
designed

(Continued)
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Table 3: Continued
Ref. Function Data acquisition

system
Threshold value
identification

Data
visualization

[32] Galvanic skin response
(GSR) and EMG sensor
are used to detect muscle
fatigue through
Bluetooth

GSR and EMG
sensor

Classifiers are used
for defining a
threshold value

Wearable device

6 Conclusion

Muscle fatigue is a sign that your muscles’ ability to perform is weakening over time. This generally
occurs during vigorous exercise. However, at present, wearable devices are widely implemented by
everyone for monitoring their physical activities. Based on this an IoT-enabled wearable device with
Arduino controller, EMG sensor, and Wi-Fi module is proposed and implemented for monitoring
muscle fatigue in real-time. To classify and conclude the threshold value for the three muscle fatigue
conditions, the time-frequency domain spectrum technique is implemented along mean RMS and
mean frequency. The threshold value for three muscle fatigue conditions is determined by mean RMS
value as >2 V: Extensive); 1–2 V: Moderate, and <1 V: relaxed. The warning alarm system was designed
in LabVIEW with three color LEDs to indicate the different states of muscle fatigue.
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