
applied
sciences

Article

Towards Design and Feasibility Analysis of DePaaS: AI Based
Global Unified Software Defect Prediction Framework

Mahesha Pandit 1, Deepali Gupta 1 , Divya Anand 2,3 , Nitin Goyal 1,*, Hani Moaiteq Aljahdali 4,
Arturo Ortega Mansilla 3,5 , Seifedine Kadry 6 and Arun Kumar 7

����������
�������

Citation: Pandit, M.; Gupta, D.;

Anand, D.; Goyal, N.; Aljahdali, H.M.;

Mansilla, A.O.; Kadry, S.; Kumar, A.

Towards Design and Feasibility

Analysis of DePaaS: AI Based Global

Unified Software Defect Prediction

Framework. Appl. Sci. 2022, 12, 493.

https://doi.org/10.3390/app12010493

Academic Editor: José Carlos

Bregieiro Ribeiro

Received: 8 November 2021

Accepted: 4 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India;
mahesha.pandit@chitkara.edu.in (M.P.); deepali.gupta@chitkara.edu.in (D.G.)

2 Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India;
divyaanand.y@gmail.com

3 Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain;
arturo.ortega@uneatlantico.es

4 Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 37848, Saudi Arabia;
hmaljahdali@kau.edu.sa

5 Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
6 Faculty of Applied Computing and Technology, Noroff University College, 94612 Kristiansand, Norway;

skadry@gmail.com
7 Panipat Institute of Engineering and Technology, Samalkha 132102, India; ranaarun1.ece@piet.co.in
* Correspondence: dr.nitingoyal30@gmail.com

Featured Application: DePaaS has the potential to be used as a global, shared platform for avail-
ing software defects prediction services by choosing appropriate base project, defect prediction
model and prediction granularity. Over time, DePaaS can potentially become a rich source of
defects metadata and provide deep insights into developing efficient software defects prediction
models. It can promote inter-agency collaboration, data sharing, continuous improvement, and
further research into application of artificial intelligence, genetic programming, and other tech-
niques for solving key problems of software engineering.

Abstract: Using artificial intelligence (AI) based software defect prediction (SDP) techniques in
the software development process helps isolate defective software modules, count the number
of software defects, and identify risky code changes. However, software development teams are
unaware of SDP and do not have easy access to relevant models and techniques. The major reason
for this problem seems to be the fragmentation of SDP research and SDP practice. To unify SDP
research and practice this article introduces a cloud-based, global, unified AI framework for SDP
called DePaaS—Defects Prediction as a Service. The article describes the usage context, use cases
and detailed architecture of DePaaS and presents the first response of the industry practitioners to
DePaaS. In a first of its kind survey, the article captures practitioner’s belief into SDP and ability of
DePaaS to solve some of the known challenges of the field of software defect prediction. This article
also provides a novel process for SDP, detailed description of the structure and behaviour of DePaaS
architecture components, six best SDP models offered by DePaaS, a description of algorithms that
recommend SDP models, feature sets and tunable parameters, and a rich set of challenges to build,
use and sustain DePaaS. With the contributions of this article, SDP research and practice could be
unified enabling building and using more pragmatic defect prediction models leading to increase in
the efficiency of software testing.

Keywords: software defect prediction; cross-project defect prediction; DePaaS; defect prediction as a
service; cloud-based defect prediction; software defect prediction service

Appl. Sci. 2022, 12, 493. https://doi.org/10.3390/app12010493 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3207-5248
https://orcid.org/0000-0003-4915-8426
https://orcid.org/0000-0002-3692-2416
https://orcid.org/0000-0002-1939-4842
https://doi.org/10.3390/app12010493
https://doi.org/10.3390/app12010493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app12010493
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010493?type=check_update&version=3

Appl. Sci. 2022, 12, 493 2 of 26

1. Introduction

Studies have estimated that about 36 billion electronic devices would connect to the
internet by 2021 [1] and about 54% of the world population would be online using software
of various kinds [2]. The volume of software in terms of lines of code is estimated to be
remarkably high—for example, the size of a typical iPhone application is estimated to
be about 10–15 thousand lines of code, and the size of Google’s code base to be about
two billion lines of code [3]. Since the quality of human life has become dependent on
computing devices and the software they run, it becomes quite important to ensure high
quality within the high volume of software produced [3].

Building the software is a unique engineering effort and it involves four distinct
characteristics of complexity, conformity, changeability, and invisibility, each of which
has the potential to introduce defects in the software produced [4]. A research has listed
multiple adverse economic and social situations caused by defective software including–“a
software defect in converting measurement units” leading to the loss of NASA’s Mars
climate orbiter which was worth $125 million, “a numeric overflow error” crashing the
Ariane 5 rocket whose development cost was about $8 billion and “a software defect”
causing the largest non-nuclear explosion in the former Soviet Union [5]. A study shows
that software quality assurance (SQA), an activity that helps preventing software defects
such as the ones listed above, is quite expensive to deploy and operate [3]. Research
shows that in the year 2018, about $4 trillion were spent on IT and telecom systems
development [6] and about $2.84 trillion was attributed to the cost of poor software quality
in the USA region alone [3]. The same research estimated that about 37% of the cost of poor
quality is attributed to software failures and about 17% is to find and fix software defects [3].

Software quality assurance is a collection of activities performed by software develop-
ers to ensure that the software produced meets a specific quality standard. With research
highlighting a high cost of poor software quality, there is a need to prioritize SQA activities
to eliminate maximum number defects with a minimum spend on resources [7]. One such
activity would be to isolate parts of the software that is more prone to defects. Such a
process of determining areas of a software system that may contain software defects is
called software defect prediction (SDP) [7]. It is also called as defect prediction in software (DeP)
by some authors [8]. It should be noted that the ultimate objective of SDP is defect removal
and SDP is not the only defect removal method [7]. There are several other defect removal
methods including model checking [9], static analysis [10], fault localization [7], etc. The
main difference between them and SDP is that these methods help identifying defects in the
current codebase whereas SDP “ . . . warns about future defect-prone areas . . . ” as well [7].

SDP needs a dataset consisting of software features such as afferent coupling (Ca),
Class Leaf Depth (CLD), Coupling between Objects (CBO), Efferent Couplings (Ce), Lines
of Code (LOC), Number of Weighted Methods (WMC), Response for a Class (EFC), etc.
These features could be captured either at class level or method level. An SDP model is built
by selecting the best combinations of these software features. Employing a labelled training
dataset (having an indication whether the software module is defective or not), the SDP
model is trained to detect relation between input software features and the output defect
indication. A trained SDP model is run on the software feature dataset of the software
under development to classify software modules as defective or non-defective.

In earlier years, several statistical models were proposed to locate defect prone mod-
ules of software under development [11]. Recently, machine learning, search-based and
hybrid artificial intelligence techniques are commonly proposed for SDP.

There is a call to apply SDP techniques in the early stages of software development
lifecycle so that practitioners can prepare to test defect-prone modules with more rigor [12].
This is found to reduce software development and maintenance costs [13,14]. Some re-
searchers have also defined “an ideal DeP model” [15]. Yet, SDP has not yet become a part
of the software development process. The level of understanding of SDP models is low
among software practitioners and managers [7]. Reasons for such low awareness could be
attributed to multiple unsolved problems with SDP identified by researchers including Shi-

Appl. Sci. 2022, 12, 493 3 of 26

hab [7], Zhou [16], Bowes et al. [17], Porto et al. [18] and Son et al. [15]. However, the study
did not find any literature that directly attributes low usage of SDP to any specific subset
of SDP problems. However, the research found that in most cases, SDP was described as
a stand-alone technique. The research did not find any practical attempt to describe SDP
to software practitioners in a pragmatic, industry-friendly manner or allow easy access to
a testbed of ongoing SDP research. Lack of industry participation could also be a strong
reason for the fragmented state of SDP research.

To consolidate the ongoing fragmented SDP research, and to bring SDP closer to the
industry practitioners, a cloud-based, multi-model SDP framework has been proposed.
It is named as DePaaS—Defect Prediction as a Service. It is intended to serve as a global,
unified platform that serves both researchers who build SDP models and software industry
practitioners who consume defect prediction services provided by these SDP models. The
proposed framework has the potential to help overcoming issues related to SDP’s core
objectives, input data quality, cross-project usage, SDP model performance and practical
utilization by the software development community. The current research field-tested
the idea of cloud-based SDP in many contexts and gathered deep insights into the way
software practitioners perceive the defect prediction problem and the proposed DePaaS
solution. The complex process of SDP was better understood by software practitioners
when it was presented as a cloud-based service with a componentized architecture and a
process flowchart.

The current research has produced a strong, detailed vision for a global, unified,
AI based SDP framework called DePaaS. It has also obtained an early feedback on both
SDP and DePaaS from the software practitioners. This article explains both results in
Sections 3 and 4, respectively.

2. Research Design

This section explains the motivation for the research behind this article and key
research questions.

2.1. Motivation for Research

Literature survey shows that many researchers have proposed on-premises, localized
use of SDP models. Less than 10% of the literature shows that SDP models are deployed on
a public cloud [19]. Current research did not find any major system equivalent to DePaaS
except for one from IBM that proposed a software system called IGNITE to predict software
defects using dynamic regression-based model with k-fold validation [20].

An enhanced and expanded effort is needed to develop SDP framework that is pro-
vided as a “Software Defect Prediction Service” on a public cloud for the use by the wider
software development community.

2.2. Research Design

The current research was conducted to find answers for two research questions:

RQ1: What would be the design of DePaaS: a unified, global software defect prediction
model which could be used by both SDP researchers and the software industry
practitioners?
RQ2: Subsequent sections of this article present answers to these research questions.

Subsequent sections of this article present answers to these research questions.

3. DePaaS: Architecture and Design

This section explains use cases and the layered, modular architecture of DePaaS. It
also examines technical feasibility of implementing DePaaS.

Appl. Sci. 2022, 12, 493 4 of 26

3.1. Users, Usage Contexts and Use Cases
3.1.1. Usage Contexts

The design of DePaaS enables conducting cross-project, cross-release, cross-version,
cross-company, and one-off software defect prediction.

3.1.2. Users

DePaaS is designed as a unified platform intended to be used by both SDP researchers
and software industry practitioners. On the SDP research side, authors of the SDP models
could use DePaaS to offer their SDP models for testing and industry use. Such users are
identified as “SDP Model Provider” on DePaaS. The platform supports “Dataset Provider”
who uploads public and private datasets onto DePaaS. Once SDP models and datasets
are uploaded to DePaaS, the industry practitioners, who are members of the software
project under development could use DePaaS for software defect prediction. Such users
are identified as “SDP Runners” on DePaaS. The platform has “DePaaS Admin” who
administers the DePaaS platform by taking care of security, model availability, dataset
availability and fine-tunes parameters of DePaaS workflow. The platform has a provision
for independent “SDP Researchers” to observe the performance of SDP models. This role
is intended to help spread awareness of SDP among both researchers and practitioners.

3.1.3. Use Cases

DePaaS provides services to both academic researchers and industry practitioners
through its use cases. The initial design of DePaaS supports the following five use cases.

(1) User Registration: All roles, except “DePaaS Admin”, register themselves into DePaaS.
The “DePaaS Admin” comes as a built-in feature of the DePaaS platform. With this
use case, academic researcher and industry practitioner will get a unique identity
within DePaaS using which DePaaS services could be accessed.

(2) Uploading SDP Models: The “SDP Model Provider” uploads the SDP model by pro-
viding details such as model description, suitable usage contexts, suggested datasets,
tunable parameters, model performance values, known issues, etc. The user also
uploads the executable files of the SDP model.

With the help of this use case, DePaaS would provide an opportunity for the SDP
Model Provider to showcase the novel SDP model. Simultaneously, the use case meets the
industry demand for novel and improved SDP models.

(3) Uploading Datasets: The “Dataset Provider” uploads the defect dataset by providing
details such as the description, information about the source of the dataset, available
software features, suggested feature combinations, known issues with the dataset, etc.

With the help of this use case, DePaaS meets the data-demand of the software research
community and the software industry. As the volume and diversity of the dataset increases,
better SDP models could be developed.

(4) Performing (or running) SDP and looking at results: The “SDP Runner” runs the SDP
workflow. The platform handholds the journey of the user through the SDP process.

With the help of this use case, DePaaS serves the software industry with vital infor-
mation about software defects. It also serves the author of the SDP model by providing
feedback about the quality of the SDP model.

(5) Improving DePaaS: At the end of each SDP run, the model performance is evaluated.
The source dataset, feature sets, values of the tunable parameters, performance pa-
rameters are preserved for future analysis and improvements. “SDP Researchers”
can analyse the historical SDP data and suggest new values for tunable parameters
or suggest new combination of feature sets. They can also suggest ways to clean-up
datasets and call for uploading/creation of novel SDP models. Such activities would
improve the DePaaS platform, which serves the interests of both the academicians
and the practitioners.

Appl. Sci. 2022, 12, 493 5 of 26

3.2. Functional Description

A functional description of the DePaaS platform is shown in Figure 1. It was developed
to describe DePaaS to industry practitioners.

Figure 1. Functional diagram of DePaaS.

DePaaS shall be hosted on a public cloud as a publicly consumable service. It shall
consist of a set of SDP models that can be accessed by software development teams using
a front-end application. SDP models are built on feature sets from public datasets and
cross-project/cross-version/cross-release defects data held on DePaaS. SDP models offer
several AI based prediction techniques including–machine learning or search-based or
hybrid techniques [8] and produce results of varying accuracy.

A model selector algorithm shall help selecting the most suitable SDP model matching
the project on hand and such an algorithm might resemble the meta-learning solution
proposed by Porto et al. [18]. DePaaS shall also have a model tuner application that shall
help fine-tuning parameters of the chosen prediction model and to train-the model on a
new dataset in near-real-time.

Software project teams, with the help of the front-end application, upload the meta-
data of their current project including values for select software metrics. The front-end
application hand holds the software development team through the SDP process which
produces various outputs such as list of defective modules, module wise count of defects,
severity of defects, etc. These results are offered to software development teams and are
also stored in the DePaaS database.

DePaaS shall also contain SDP model improvement application that could be built
to continuously improve the performance of DePaaS including the SDP model collec-
tion. It shall enable evolutionary learning within SDP techniques used in DePaaS and its
continuous improvements shall help users to get the best performance over time.

As this schematic was developed for the consumption of software practitioners, other
users such as SDP Model Provider, Dataset Uploader, DePaaS Admin, etc., are not depicted
in this diagram.

3.3. SDP Models Provided by DePaaS

The literature of software defect prediction includes more than eighty (80) SDP models
grouped into five classes: statistical, traditional machine learning, novel machine learning,
search based and hybridised techniques.

• Statistical SDP models are built on techniques such as linear regression, logistic regres-
sion, naïve Bayes classifier, K-nearest neighbour, Bayesian networks, Discriminant
Analysis, Correlation Analysis, Multivariate Adaptive Regression Splines (MARS),
and Negative Binomial Regression (NBR), etc.

Appl. Sci. 2022, 12, 493 6 of 26

• Traditional machine learning SDP models are built on machine learning techniques such
as decision trees, Bayesian Learning, Ensemble Learning, Evolutionary Learning,
Neural Networks, Support Vector Machines, and Rule Based Learning, etc.

• Novel machine learning SDP models include Batch Nested Generalized Exemplar (BNGE),
Exemplar-Aided Constructor of Hyperrectangles (EACH) and Rule Induction from
a Set of Exemplars (RISE), Partial Decision Trees (PART), PrUning and BuiLding
Integrated in Classification (PUBLIC), Rule Induction with Optimal Neighborhood
Algorithm (Riona) and Simple Learner with Iterative Pruning to Produce Error Reduc-
tion (SLIPPER), etc.

• Search-based (SBT) SDP models include Bioinformatics-oriented hierarchical evolution-
ary learning (BioHEL), CO-Evolutionary Rule Extractor (CORE), CHC Adaptative
Search for Instance Selection (CHC), Generational Genetic Algorithm for Instance
Selection (GGA), Population-Based Incremental Learning (PBIL), Steady-State Genetic
Algorithm for Instance Selection (SGA), Constricted Particle Swarm Optimization
(CPSO), Linear Decreasing Weight PSO (LDWPSO), Real Encoding PSO (REPSO),
Bojarczuk GP, Falco GP, Tan-GP, GA based Classifier System with Adaptive Discretiza-
tion Intervals (GA-ADI), GA based Classifier System with Intervalar Rules (GA-Int),
Incremental Learning with GA (ILGA), GA for solving problem MAX-F (OlexGA), Su-
pervised Inductive Algorithm (SIA), Supervised Classifier System (UCS), X-Classifier
System (XCS), and Memetic Pittsburgh Learning Classifier System (MPLCS), etc.

• Hybridised (HBT) SDP models Decision Tree- Genetic Algorithm (DT-GA), Oblique
Decision Tree with Evolutionary Learning (DT-Oblique), Tree Analysis with Randomly
Generated and Evolved Trees (TARGET), Genetic Algorithm with MSE estimation
(GA_MSE), Intelligent Genetic Algorithm for Edition (IGA), Genetic based Fuzzy
Adaboost (GFS-AB), Genetic Fuzzy Learning with Logitboost (GFS-LB), Logitboost
with Single Winner Inference (GFS-MaxLB), Fuzzy rule approach based on a genetic
cooperative-competitive learning (GFS-GCCL), Fuzzy Learning based on GP (GFS-GP),
Fuzzy Learning based on GP Grammar Operators (GFS-GPG), Grammar Operators
and Simulated Annealing (GFS-SP), Hierarchical Decision Rules (HIDER), Neural
Network Evolutionary Programming (NNEP), Steady-State GA for Extracting Fuzzy
Classification Rules from Data (SGERD), and Structural Learning Algorithm in a
Vague Environment with Feature Selection (SLAVE), etc.

DePaaS, by design, can provide multiple SDP model describing its usage details and
performance details. To start with, DePaaS aims to provide two best performing SDP
models from three classes–machine learning, search-based and hybridised techniques.
Malhotra has compared the performance of such novel machine learning, search-based
and hybridised SDP models [21]. Performance parameters (G-Mean and Balance) of the
top performing SDP models intended to be included in DePaaS is provided in Table 1
along with the Friedman score as determined by Malhotra.

Table 1. Relative Performance of SDP Models.

Class Technique
G-Mean Balance

Min Max Result of
Friedman Test Min Max Result of

Friedman Test

ML
Slipper 0.24 0.88 33.6 21.43 86.39 28.5

C4.5 0.33 0.89 31.81 12.01 94.34 31.2

SBT
Bojarczuk 0.47 0.86 38.8 37.49 75.72 26.5

ILGA 0 0.89 20.4 29.12 90.36 27.2

HBT
DT-GA 0.40 0.86 32.1 36.54 94.34 34.1

DT-Oblique 0.41 0.87 35.3 31.66 82.06 27.1

Appl. Sci. 2022, 12, 493 7 of 26

Thus, DePaaS shall include six best SDP models by design along with a facility to add
any number of SDP models of various types. These six models could serve as the initial
benchmark against which performance of new models could be compared.

3.4. Architecture

The conceptual framework of DePaaS described in Figure 1 is converted into a detailed
technical architecture. The architectural components are grouped into five layers. Each
layer shows modules, which are implementation units of software that provide a coherent
set of responsibilities.

Five types of users are identified—SDP Researcher, SDP Model Provider, Dataset
Provider, Project Team or End User or SDP Runner and SDP Admin. Internal data entities
are also identified. The resulting technical architecture is shown in Figure 2.

Figure 2. Layered, Modular Architecture of DePaaS.

To keep the high-level architecture simple to understand, messages passed between
components are abstracted and not shown.

The architecture separates software modules and storage. At least five layers can be
recognized in DePaaS architecture. The number of layers coincidently match with the
number of users. However, there is no strict one-to-one correlation between users and
layers even though Figure 2 implies it. Each layer is briefly described below:

• Security Layer: This layer consists of modules that register end users, maintains their
profiles, and impose role-based security across the DePaaS platform at the application
level.

DePaaS shall consist of multiple security controls, including integration of active di-
rectory services provided by the cloud service provider, dual factor authentication before
uploading SDP model and datasets, formation of security groups to enforce common
security controls and enforce perimeter network control using a firewall.

DePaaS shall enforce encryption, anonymization of names of the organization, busi-
ness unit, project, software product, module file, package, class and methods. Each user
shall have own containers which prevents sharing of data. While uploading SDP models
and datasets, end users can mark specific data elements that they would like to hide from
other users.

DePaaS shall seek minimal personal information of DePaaS users, and typically
includes name, affiliation and email address.

Appl. Sci. 2022, 12, 493 8 of 26

Incidents related to data security and privacy are logged in DePaaS Logs and are
periodically analysed by the DePaaS admin.

• Data and Feature Set Layer: This layer consists of modules that manage upload, valida-
tion, and integration of datasets. First the details of the dataset such as list of features
are accepted, and then the dataset is validated for redundancy and relevance. A cost
benefit analysis could also be performed to estimate the perceived value of integrating
the new dataset. The dataset meeting the threshold for redundancy, relevance and
cost is integrated into DePaaS.

• Model Management Layer: This layer consists of modules that manage upload, vali-
dation, and integration of SDP models. First the details of the SDP model such as
learning technique, tunable parameters, performance parameters, etc., are accepted
and the model is validated against acceptable thresholds of performance. A cost
benefit analysis could be performed to estimate the perceived value of integrating the
new SDP model. The SDP model meeting stated thresholds is integrated into DePaaS.

• SDP Run Management Layer: This layer consists of multiple modules that guide the
industry practitioner to perform one run of software defect prediction. These modules
together implement the SDP process shown in Figure 3.

Figure 3. Novel DePaaS Process for use with DePaaS.

To initiate the use of DePaaS, the software development team shall register into
DePaaS using the front-end application, choosing an appropriate commercial model such
as pay-per-use. Then, the user (a member of the software development team) shall log into
the front-end application and choose the most appropriate SDP model based on the nature
of the current project and other relevant parameters. The model selector algorithm shall
help this process by suggesting the most suitable SDP model/technique or a combination
of multiple models/techniques, such as the one based on filter technique [22], or the other
based on wrapper technique [23], or a hybrid model based on both filter and wrapper
technique [24], or using any other recommendation algorithm [18]. The recommendation
algorithm could also be made to choose the most appropriate set of reference projects in
the CPDP context.

Once the SDP model is chosen, its parameters, such as granularity, shall be fine-tuned
using the model tuner application. As software defect prediction could be done at different
granularity, the end user shall specify the appropriate level at which the software defects
need to be predicted. Choices of granularity could be subsystem, module, file, class, or
method.

Appl. Sci. 2022, 12, 493 9 of 26

Then the user shall upload the source code consisting of software code units that
needs to be classified as defective or not. Some models may not need the actual source
code but work on the defect metadata. Moreover, some of the SDP models extract desired
software metrics in real time either from uploaded source code or from the public datasets.
In such cases, source code shall be uploaded prior to model selection.

In certain circumstances, the dataset and features need to be selected before selecting
the defect prediction model. Such a pre-selection helps detecting issues in the dataset, such
as, duplicate features. Additionally, pre-selecting datasets help counting the number of
rows, which certain SDP models need as an input. In cases where the model might have
a co-dependency on the dataset, the end user may not have a choice of datasets. In such
cases, the dataset mandated by the SDP model is automatically chosen.

The chosen model shall then be trained and validated. For this purpose, the chosen
dataset might be broken into three parts—the training part, validation part and the testing
part. In the cross-project context, the model could be trained on one project’s dataset and
run on another project’s dataset. The chosen model is initially fit on the training dataset.
The chosen model might use its own learning method such as gradient descent or stochastic
gradient descent. The model is run on the training dataset and results are compared with
the desired target indicated by the chosen model. Based on the proximity of the output
to the desired target, model parameters are adjusted. After successively fitting the model
on the training dataset, the model is run on the validation dataset. This run provides a
measure of evaluation of the chosen model. The model parameters are adjusted once again
to improve the performance of the chosen model as desired. Finally, the chosen model is
run on the test data set which provides a final measure of performance of the tuned model.

The input shall be processed as per the internal logic of the SDP model and unit-wise
classification details (list of modules and a flag indicating whether the unit is defective or
not) shall be produced by DePaaS as the output. Depending on the SDP model chosen,
the output might consist of number of defects (defect count) and a set of source code lines
marked as ‘risky changes’. The end user shall view SDP outputs and download it in many
formats as needed.

The end user could also examine model performance parameters such as Area under
the Receiver Operator Characteristic Curve (AUC), G-Mean, Balance, etc., and choose to
repeat the defect prediction process with the choice of the same model or by changing the
granularity or by choosing an alternate SDP model or a context. DePaaS can provide the
highest, lowest, and average performance of the chosen SDP model it has observed over
time.

At the end of each usage cycle, DePaaS shall store its prediction experience—a set of
statistics, including model performance, useful for further refinement of the model. Such
parameters could be used in the future by the SDP model improvement application, which
can be manually or automatically invoked after every run of the SDP model.

After having received the intended service, the end user would log out. The history
of SDP model runs, and results would be saved for the future use. DePaaS would collect
the feedback from the user before logging the user out. This feedback could include user’s
general comments about the overall experience of using DePaaS and specific comments
about specific services that was provided to the user.

DePaaS would ensure that the software code and other details uploaded by the end
user for defect prediction are discarded as per the privacy terms agreed with the end user.
By design, DePaaS would retain the defects metadata that was generated during the SDP
run. If desired by the end user, the names of the software modules, classes and methods
could be encrypted before the actual storage.

The proposed DePaaS process could be integrated into the software development
process used by the software teams. It could be invoked as early as possible—post coding
and before planning of unit testing phase—of the software development process. It is
recommended that the DePaaS process invoked before the integration or system testing

Appl. Sci. 2022, 12, 493 10 of 26

phase so that testing effort could be prioritised based on the prediction obtained from
DePaaS.

• Persistence Layer: This layer consists of database as well as binary files–which are
executable files of the SDP models. DePaaS modules access the DePaaS storage
through the Data API, which separates data and executable code. Storage elements
shown here could contain other sub-storages. For example: SDP Run Settings consists
of dataset details, dataset pre-processing details, feature selection details, model
tuning parameters, model training data, and possibly some runtime parameters
such as number of iterations.

3.5. Advanced Algorithms

Software Defect Prediction is a novel idea for the industry to follow and implement.
DePaaS implements several advanced algorithms to help end users to choose the best of
SDP models, most appropriate feature sets for training SDP models, and optimum values
for model tuning parameters.

• Recommending Models: The knowledge base of software defect prediction recognizes
about eighty SDP models. End users might find it overwhelming to choose the best
SDP model out of this large number of choices. As a means of help, these models could
be ranked based on Friedman test scores of SDP model performance. However, an
advanced algorithm that recommends the most suitable search based, or hybridized
SDP models based on the parameters of the project on hand could be very useful.
DePaaS implements such an algorithm.

• Recommending Features and Feature Sets: End users need to select a set of features
(called feature sets) to train the chosen SDP model. As there are about eighty features
that can be extracted from software code and defect datasets, choosing the most
optimum set would be a difficult task for DePaaS users. Therefore, DePaaS provides
an advanced algorithm to recommend features sets. Basili et al. [25] (1996) established
that Chidamber and Kemerer’s OO metrics show to be better predictors than the best
set of “traditional” code metrics. Hence, they can be offered as the default feature set
to train the SDP model. Other feature sets such as Henderson-Sellers’ metrics [26],
Martin’s metrics [27] and QMOOD metrics suite [28] could also be offered by the
recommendation algorithm.

• Recommending Model tunable parameters: Every SDP model implements a learning
and/or searching algorithm. Performance of such algorithms could be influenced by
tuning several parameters. Such parameters vary with the chosen SDP models. For
example—common tunable parameters of GP SDP models include mutation probabil-
ity (Mp), crossover probability (Cp), size of population (PS), number of generations
(NG) and distance function (DS) [21]. Other parameters include number of rules,
number of labels, convergence platform width, etc. [21]. For machine learning based
SDP models, tunable parameters include confidence, number of leaf instances, max-
imum depth, number of labels, feature adjustment rate, number of nodes between
prune, maximum number of nearest neighbour and probability of growth and prun-
ing [21]. An advanced algorithm would recommend the most optimum value for these
tunable parameters.

Thus, the advanced algorithms of DePaaS could successfully recommend SDP models,
feature sets and tunable parameters of SDP models. Such algorithms would reduce the
complexity of the SDP process. End users of DePaaS could accept recommendations of
these algorithms initially and could take independent decisions as they gain experience
with the SDP process.

3.6. Technical Feasibility

A review of the characteristics of DePaaS architecture indicates that the architecture
is comprehensive, modular, layered and uses APIs to interact with other modules and

Appl. Sci. 2022, 12, 493 11 of 26

storage. It practices good practices of design including encapsulation, loose-coupling, and
high-cohesion. The architecture is extensible as new modules can be added with relative
ease. The architecture abstracts extensible concepts allowing for evolution of the platform.
For example: Model Tuning not only contains details of tunable parameters for models
included in DePaaS, but also enables easy inclusion of tunable parameters that could be
identified in the future.

DePaaS could be implemented as a SaaS on a cloud platform-as-a-service such as
Amazon Web Services (AWS). DePaaS would implement a multi-tenant architecture, with
each application having N-tier architecture within. Alternatively, each application could
be deployed as a microservice and be orchestrated with a managed Kubernetes service
such as Amazon EKS.

The front-end application could be implemented using NodeJS—a language which can
address large volumes of users landing on the platform. SDP models can be implemented
using Python.

Each module of DePaaS needs to communicate with other modules. For example: the
model uploader module needs to interact with model validator. Typically, such an interaction
takes place by passing messages from one module to another. Considering the volume of
messages passed between modules, message queues such as RabbitMQ could be used to
manage communication between modules.

DePaaS needs a persistence layer to store user profiles, SDP models, defect datasets,
SDP project details, intermediate and final results of SDP runs, model performance details,
defects metadata and user feedback. Persistence facility could be implemented using
multi-tenant database available on a cloud platform such as Postgres on AWS.

DePaaS needs a few services such as email, file-upload, billing, reporting, etc. Such
services need not be implemented within the scope of DePaaS but could be availed from
the hosting environment. Typically, providers of such services expose public, restful APIs
which can be consumed to avail those services.

The architecture of DePaaS built as a SaaS would be horizontally scalable as new
modules could be added and new features could be added to existing modules. DePaaS
would also be vertically scalable as it is deployed on the cloud—a scalable infrastructure.

4. Industry Perception Study

To gauge the initial response of industry practitioners to DePaaS, a survey was con-
ducted which also probed the awareness level of SDP among software practitioners. The
DePaaS model was also explained with examples and practitioners were asked to offer
their views on its need, usefulness and challenges associated with its construction, usage,
and sustenance. This section explains the survey and its results in detail.

4.1. Details of the Study

This study was conducted on a large sample (n = 32) of experienced software pro-
fessionals having experience of 10 to 15 years. The chosen sample was responsible for
developing software work products and had the authority to deploy resources necessary
to produce high quality, defect-free software products. They had the necessary educational
background in computer science, and were aware of the software development life cycle,
cost of quality, root causes for software defects, quality maturity models and the impact of
high cost of software defect repair. The chosen sample was competent enough to compre-
hend SDP and judge its usefulness in an industrial setting. They were chosen using the
technique of judgmental sampling and each respondent had consented to participate in
this study.

Each respondent was interviewed by the research team. First, data for demographic
details were collected and verified. Then, an overview of SDP (including known challenges)
was given as a 30-min presentation. After this, respondents were asked for their level of
understanding of SDP. Then, DePaaS was introduced as a cloud based, unified platform
offering AI based models, guided process for software defect prediction. The usage

Appl. Sci. 2022, 12, 493 12 of 26

context, users and use cases were explained. The functional and technical architecture were
explained. Any gaps in understanding of SDP and DePaaS were addressed and closed.
Each respondent was handed over a questionnaire shown in Appendix A and were given
seven to ten days to think about answers.

Once each respondent was ready with their answers to the questionnaire, a second
interview was held in which answers to the survey questions were discussed and recorded.
Results were tabulated and summarized. Whenever a single response for a question was
desired, the median of Likert responses was computed. To arrive at certain conclusions, and
to help with the statistical analysis of the solution, two nominal categories were combined.

Results were statistically analysed using ‘one dimensional fitness test’ using the Chi-
square method. Null and alternate hypothesis were proposed for each question. Null
hypothesis was rejected either by comparing probability value (p) with significance level (α)
or by comparing Chi-square (χ2) value with critical value. Once the results were found to
be significant, the view of the group having highest response percentage was considered to
be statistically significant.

4.1.1. Variables

Variables used in the study are tabulated in Table 2.

Table 2. Variables.

Input Variables Output Variables

Name, age, gender, education, work-experience,
designation, role, number of years of experience
in the software industry, level of authority, SDLC
knowledge, Knowledge of cost of quality, root
causes for software defects, quality maturity
models and the impact of high-cost of software
defect repair, Open ended questions about
challenges to build, operate and sustain DePaaS

SDP knowledge before presentation, SDP
knowledge after presentation, Comfort Level
with DePaaS understanding, Number of days
of gap needed for assimilation, Response to
each survey question, List of challenges to
build, operate and sustain DePaaS.

4.1.2. Threats to Validity

• Threats to Construct Validity: Each of the research question needs a different type of
validity. Face or logical validity—a superficial technique was used, which directly
asked the responded whether the questions posed were relevant to the goals of
the research or not. Questions posed were straightforward, in the sense that, the
respondents directly answered the question. An expert review of the questionnaire
could help establishing construct validity.

• Threats to conclusion validity: This research presents the median value of the sample
pool response as the perceived awareness, perceived belief, perceived benefit, and
perceived challenge of SDP and building DePaaS. Additional Chi-square test could
be performed to compare the sample pool’s responses with those of an industry
expert, especially regarding the perceived benefits and challenges of SDP and building
DePaaS.

• Threats to external validity: Anticipating a potential researcher bias in generalizing
results, judgmental sampling was applied to diversify survey respondents. Software
practitioners having a diverse background in terms of age, experience, number of soft-
ware products developed, technical skills, educational background, etc. were chosen.
Future repetitions of the study should consider the fact that the responses could be
influenced by the researcher and a suitable statistical factor could be introduced to
remove any potential bias.

4.2. Analysis of the Results of the Survey

Results of the survey are presented in multiple sections below along with the statistical
analysis details.

Appl. Sci. 2022, 12, 493 13 of 26

4.2.1. Belief in Defect Prediction

The sample pool was asked about whether it believed that an artificial intelligence-
based computer model, trained on software metrics, can classify software modules into
two categories—defective or non-defective.

About 66% of respondents believed that defective modules could be identified by
an intelligent computer program such as DePaaS (χ2 = 4.1724, CV = 3.84, α = 0.05,
p = 0.0411). Believers quoted advances in AI and machine learning as the primary reason to
justify their belief whereas non-believers quoted poor-data, non-relation between metrics
and defects, use of third-party software as main reasons not to believe in the ability of a
computer program to predict defects. One respondent believed the defects are an inherent
nature of the software and prediction is not as useful since each module is highly likely to
be defective.

4.2.2. Awareness about SDP Technique

The sample pool was given an insight into two decades of research on SDP. It was
informed that SDP has the potential to evolve as a robust process and become a step in the
software development life cycle. Then, respondents were asked to rate the level of their
knowledge about SDP.

About 61% of respondents did not believe that they knew enough about SDP (χ2 = 6.76,
CV = 3.84, α = 0.05, p = 0.0093). About 16% of the respondents had a deeper knowledge of
SDP. Only 3% of respondents were aware of advanced capabilities of SDP such as defects
count prediction. None of the respondents was aware that the research has progressed
to identify risky changes. None of the respondents believed that SDP could estimate the
severity of defects.

4.2.3. Desirability of SDP

Explaining the architecture and features of DePaaS, the survey asked the sample pool
whether it would desire DePaaS as an integral part of their software development process.

About 70% of respondents welcomed DePaaS as a key step in the software devel-
opment process (χ2 = 8.33, CV = 3.84, α = 0.05, p = 0.0039). However, the usage had
pre-condition that the software code and/or defect metadata remain secure on the DePaaS
platform. Respondents who did not desire DePaaS cited security concerns (loss of code,
leak of information about data quality) as the primary reason not to use DePaaS.

This analysis finds that a cloud-based secure AI framework for SDP would be accepted
by majority (70%) of software practitioners and though (66% of) software practitioners
believe that defect prediction is possible due to advances in AI and machine learning
techniques, not many (≤3%) were aware that SDP can estimate defect count, defect severity
and identify risky changes with the help of AI algorithms.

4.3. Feedback about Ability of DePaaS to Address SDP Challenges

The sample pool was briefed about typical challenges faced by SDP research and were
asked to judge the potential of DePaaS to solve those problem. Results were tabulated and
statistically analysed. They are presented in clusters in subsequent sections below:

4.3.1. Solving SDP Problems Related to SDP Objectives and Focus

The sample pool was briefed about SDP problems related to SDP objectives, SDP
focus, and was asked whether DePaaS could help solve those problems.

About 62% of software practitioners indicated that DePaaS could help predicting
defects across-projects (χ2 = 8.91, CV = 3.84, α = 0.05, p = 0.0028). Majority of software
practitioners believed that DePaaS does not help estimating defect severity (78% negative,
χ2 = 12.45, CV = 3.84, α = 0.05, p = 0.0004), predicting security vulnerabilities
(78% negative, χ2 = 12.45, CV = 3.84, α = 0.05, p = 0.0004), and highlighting risky code
changes (83% negative, χ2 = 17.29, CV = 3.84, α = 0.05, p = 0.0000).

Appl. Sci. 2022, 12, 493 14 of 26

4.3.2. Solving SDP Problems Related to Datasets

The sample pool was briefed about SDP problems related to datasets used in SDP and
was asked whether DePaaS could help solve those problems.

According to responses of software practitioners, DePaaS promotes use of industry
datasets (53% positive, χ2 = 9.80, CV = 3.84, α = 0.05, p = 0.0017) since it would serve as
a unified platform or a single place where commercial datasets could be shared for the
common good of software defect prediction and prevention. About 69% of practition-
ers indicated that DePaaS could enforce and ensure data cleanliness as well (χ2 = 7.54,
CV = 3.84, α = 0.05, p = 0.0060). This can be achieved by introducing data cleanliness as an
entry criterion for the dataset being uploaded to DePaaS. About 57% software practitioners
indicated that DePaaS could help enforcing a uniform or a standardized way of document-
ing defect data—however, this belief was not found to be statistically significant (χ2 = 1.20,
CV = 3.84, α = 0.05, p = 0.2733). Most of the software practitioners (68%) were inconclu-
sive about whether DePaaS would help addressing the problem of imbalanced datasets
(χ2 = 5.44, CV = 3.84, α = 0.05, p = 0.0.19).

4.3.3. Solving SDP Problems Related to Feature Selection

The sample pool was briefed about SDP problems related to feature selection and was
asked whether DePaaS could help solve those problems.

Many respondents (45%) indicated that DePaaS could help feature selection. However,
this belief was not found to be statistically significant (χ2 = 1.64, CV = 3.84, α = 0.05,
p = 0.2008). The front-end application could suggest optimal combination of features that
could yield higher prediction accuracy. Such a suggestion could also be made based on the
historical data of SDP model performance.

4.3.4. Solving SDP Problems Related to Building SDP Models

The sample pool was briefed about problems related to building SDP models and was
asked whether DePaaS could help solve those problems.

Respondent data indicates that DePaaS could help enforcing a robust SDP model
building methodology (56% positive, χ2 = 6.55, CV = 3.84, α = 0.05, p = 0.0105) and
comparing performance of multiple SDP models (60% positive, χ2 = 6.76, CV = 3.84,
α = 0.05, p = 0.0093). Respondents believed that the model improvement program of DePaaS
could collect and analyse model performance which might help consistent performance of
SDP models across multiple runs (58% positive) and across models (72% positive). There
was no statistical evidence to support either of these beliefs (χ2 = 3.00, CV = 3.84, α = 0.05,
p = 0.0833 and χ2 = 9.00, CV = 3.84, α = 0.05, p = 0.0027, respectively).

Respondent data indicates that DePaaS may not help improving prediction accuracy
(58% negative, χ2 = 4.84, CV = 3.84, α = 0.05, p = 0.0278) or incorporating security specific
models (63% negative, χ2 = 11.64, CV = 3.84, α = 0.05, p = 0.0006). Respondent data
indicates that DePaaS could promote use of SBT and HBT models (χ2 = 3.85, CV = 3.84,
α = 0.05, p = 0.0499).

4.3.5. Solving SDP Problems Related to SDP Model Evaluation

The sample pool was briefed about SDP problems related to evaluation of SDP models
and was asked whether DePaaS could help solve those problems.

Respondent data indicates that practitioners were inconclusive about whether DePaaS
helps ensuring statistical validation of SDP models (77% neutral, χ2 = 1.29, CV = 3.84,
α = 0.05, p = 0.2568) or removal of author bias while building SDP models (71% neutral,
χ2 = 2.78, CV = 3.84, α = 0.05, p = 0.0956).

4.3.6. Solving SDP Problems Related to Practical Use of SDP

The sample pool was briefed about SDP problems related to practical use of SDP and
was asked whether DePaaS could help solve those problems.

Appl. Sci. 2022, 12, 493 15 of 26

Respondent data indicates that DePaaS could help perform SDP in the CPDP context
(72% positive, χ2 = 8.91, CV = 3.84, α = 0.05, p = 0.0028). As a cloud-based AI service,
DePaaS might be easier to comprehend (63% positive, χ2 = 4.17, CV = 3.84, α = 0.05,
p = 0.0411) with the help of a descriptive process.

4.4. Perceived Challenges to DePaaS

To understand the perceived challenges to build, use and improve DePaaS, three open
ended questions were posed to the sample pool. Their responses are discussed in sections below.

4.4.1. Perceived Challenges to Build DePaaS

The sample pool was asked to list potential challenges to build DePaaS as a cloud-
based AI framework having features listed Section 3 of this article.

Responses, as shown in Appendix B, indicate the presence of several challenges to
build DePaaS. Primary concern expressed by 97% of respondents was the lack of clarity
about the ‘nature’ of the defect identified by SDP models. Concerns were also expressed by
74% of the sample pool about the ability of DePaaS to identify GUI type of defects.

Ability to gather defect data, relevance of gathered data and lack of clarity about the
theoretical connection between metrics and defects were also significant concerns of 74%,
94% and 52% of respondents, respectively.

Responses highlighted that building model selector (87%); model improvement ap-
plication (29%) and even SDP model selection (45% positive) are complex tasks.

Respondents questioned the relevance of DePaaS for scripting languages (42%) and
ability to cross the technology (programming language) barriers (68%).

4.4.2. Perceived Challenges to Use DePaaS

The sample pool was asked to list potential challenges to use DePaaS as per the
‘De-PaaS process’ explained in Section 3 of this article.

Responses to DePaaS usage related questions highlighted multiple concerns. Every
respondent (100%) questioned security of uploaded software code, defect metadata and
other details.

Responses indicated that choosing the appropriate project in CPDP context would be
difficult (97%). This could be due to concerns about the model selector algorithm (87%).
Similar concern was expressed about finding the data relevant for the chosen project (88%).

Respondents believed that using DePaaS may not easy as there are too many metrics
to choose from (53%) which makes feature selection more complex (88%). Model selection
and tuning need more skills (56%) which might need a deeper knowledge of programming
and software metrics (53%). Some responses indicated that the DePaaS concept is too
complex (25%) and difficult to teach (22%).

Some responses indicated the possibility of false alarms (66%) and non-repeatable results
(72%). These challenges pertain to the SDP model chosen and not to the DePaaS framework.

4.4.3. Perceived Challenges to Sustain DePaaS

The sample pool was asked to list potential challenges to sustain DePaaS as a cloud-
based AI framework and as a step within the formal software development process. In this
context, ‘sustenance of DePaaS’ indicated continued use of DePaaS by the software devel-
opment teams, addition of new SDP models to the DePaaS architecture and continuous
improvement to the performance of SDP models.

Responses to questions about sustainability of DePaaS could provide deeper insights
into the viability of DePaaS to become a step within the formal software development process.

Responses indicates that the definition of ‘software defect’ is likely to be inconsistent
across software product teams and technologies (93%). Additionally, most respondents
(97%) stated that DePaaS may not identify ‘business defects’ (cases where the customer
requirements specifications were not met). These challenges pertain to specific SDP models
as opposed to the concept or idea of DePaaS.

Appl. Sci. 2022, 12, 493 16 of 26

A cluster of responses (83%) indicated that the prediction accuracy might vary across
models and might be very low for CPDP. However, only 30% of the respondents believed
that the value addition of DePaaS is likely to be low.

Responses observed that software teams do not usually collaborate among them-
selves to share data and best practices of defects prediction or prevention (90%). In
such circumstances, DePaaS might face survival challenges (30%). However, this can be
overcome by sharing defect metadata.

77% of respondents believed that DePaaS could not possibly replace the experienced
judgment of humans.

Overall, responses provided a rich set of challenges to be overcome while building,
using, and sustaining DePaaS. This practitioner perspective is very a good contribution to
further research in CPDP.

5. Conclusions

This paper has proposed DePaaS—Defect Prediction as a Service—a cloud-based,
multi-model SDP framework. It is intended to serve as a global, unified platform that
serves both researchers who build SDP models and software industry practitioners who
consume defect prediction services provided by these SDP models.

This paper described the usage context, five types of users, five initial use cases of
DePaaS and provided a layered, modular architecture as well. It described the structure
and behaviour of architecture components. It established the technical feasibility of imple-
menting DePaaS as a cloud-based software-as-a-service. It also provided a novel process
for using DePaaS along with multiple recommendation algorithms to handhold end users.

This paper presented the first ever study of industry perceptions of software defect
prediction. It presented statistically validated responses of software practitioners to ques-
tions that probed the extent of understanding of SDP among them. It established the need
for DePaaS kind of universal SDP platform and proved that such a platform has potential
to overcome many of the known problems of the field of software defect prediction.

The paper recommends implementation of DePaaS, continued research onto enhanc-
ing advanced recommendation algorithms of the global, unified defect prediction frame-
work and extending the scope of the industry perception survey to cover a larger population.

6. Patents

Authors shall pursue a patent for detailed algorithms of DePaaS in the future.

Author Contributions: Conceptualization, M.P., D.G., D.A.; Methodology, M.P., N.G., D.A.; Valida-
tion, D.G., D.A., H.M.A.; Formal Analysis, H.M.A., N.G., A.K.; Investigation, H.M.A., A.O.M., A.K.;
Resources, N.G., S.K.; Data Curation, N.G.; Writing—Original Draft, N.G., M.P.; Writing—Review
Editing, N.G., H.M.A., A.K.; Supervision, N.G. and D.G., S.K.; Project Administration, A.O.M. and
H.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz
University, Jeddah, under grant No. (D-61-830-1443). The authors, therefore, gratefully acknowledge
DSR technical and financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study to voluntarily participate in the study and share their opinions.

Data Availability Statement: The study has made available the summary of the response data in the
Appendices of this paper.

Acknowledgments: This project was supported by the Deanship of Scientific Research (DSR), King
Abdulaziz University, Jeddah, under grant No. (D-61-830-1443). The authors, therefore, gratefully
acknowledge DSR technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 493 17 of 26

Appendix A. Questionnaire and Statistical Analysis of the Industry Perceptions Survey

Table A1. Belief in SDP and other questions.

Category
and

Question
Responses on Likert Scale and Statistical Analysis

RQ2A (i): Belief in SDP

QA1

Do you believe that a computer program such as DePaaS can classify software
modules (file/class/method/function/process) as defective or non-defective?

Strongly Believe Believe Neutral Disbelieve Strongly
Disbelieve

7
(23%)

13
(43%)

1
(3%)

7
(23%)

2
(7%)

Group 1: Believe = 23% + 43% = 66%, N1 = 7 + 13 = 20
Group 2: Disbelieve = 23% + 7% = 30%, N2 = 7 + 2 = 9
H0 = There is no difference in the way believers and disbelievers perceive the ability
of DePaaS to identify software defects.
Ha = Extent of belief in DePaaS to identify software defects is statistically different
among believers and disbelievers.
χ2 = 4.17, CV = 3.84, α = 0.05, p = 0.0411, the observed value of believers (66%) is
higher than the observed value of disbelievers (30%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief in DePaaS to identify software defects is statistically significant.

RQ2A (ii): SDP Awareness

QB1

How deep is your understanding of SDP–concept, approaches, process, and
outputs?

Very Deep Deep Neither Deep
nor Shallow Shallow Very Shallow

1
(3%)

5
(16%)

6
(19%)

11
(35%)

8
(26%)

Group 1: Aware = 3% + 16% = 19%, N1 = 1 + 5 = 6
Group 2: Unaware = 35% + 26% = 61%, N2 = 11 + 8 = 19
H0 = There is no difference in the depth in SDP knowledge among the two groups.
Ha = Depth of SDP knowledge is statistically different among the two groups.
χ2 = 6.76, CV = 3.84, α = 0.05, p = 0.0093, the observed value of Group 2 (61%) is
higher than the observed value of Group 1 (16%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Lack of SDP awareness among software practitioners is statistically
significant.

RQ2A (iii): Desirability of SDP

QC1

Would you desire to have a cloud-based AI framework for SDP as described, as a
part of software development project?

Very Likely Likely Not Sure Unlikely Very Unlikely

4
(13%)

17
(57%)

3
(10%)

5
(17%)

1
(3%)

Group 1: Desirable = 13% + 57% = 70%, N1 = 4 + 17 = 21
Group 2: Undesirable = 17% + 3% = 20%, N2 = 5 + 1 = 6
H0 = There is no difference in the extent of desirability for DePaaS among the two groups.
Ha = Desirability for DePaaS is statistically different among the two groups.
χ2 = 8.33, CV = 3.84, α = 0.05, p = 0.0039, the observed value of Group 1 (70%) is
higher than the observed value of Group 2 (20%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Desirability for DePaaS among software practitioners is statistically
significant.

Appl. Sci. 2022, 12, 493 18 of 26

Table A1. Cont.

Category
and

Question
Responses on Likert Scale and Statistical Analysis

RQ2B (i): General SDP problems

QD1

Do you believe that DePaaS models could estimate defect severity?

Very Likely Likely Not Sure Unlikely Very Unlikely

2
(6%)

3
(10%)

2
(6%)

21
(68%)

3
(10%)

Group 1: Believers = 6% + 10% = 16%, N1 = 2 + 3 = 5
Group 2: Non-Believers = 68% + 10% = 78%, N2 = 21 + 3 = 24
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS models could estimate defect severity.
Ha = Extent of belief among believers and non-believers that DePaaS models could
estimate defect severity is statistically different.
χ2 = 12.45, CV = 3.84, α = 0.05, p = 0.0004, the observed value of Group 2 (78%) is
higher than the observed value of Group 1 (16%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS models could estimate defect severity’. The evidence
to the contrary is statistically significant.

QD2

Do you believe that DePaaS could mark or label those parts of code that are
vulnerable from security perspective?

Very Likely Likely Not Sure Unlikely Very Unlikely

2
(6%)

3
(10%)

2
(6%)

20
(65%)

4
(13%)

Group 1: Believers = 6% + 10% = 16%, N1 = 2 + 3 = 5
Group 2: Non-Believers = 65% + 13% = 78%, N2 = 20 + 4 = 24
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could label vulnerable code changes.
Ha = Extent of belief among believers and non-believers that DePaaS could label
vulnerable code changes is statistically different.
χ2 = 12.45, CV = 3.84, α = 0.05, p = 0.0004, the observed value of Group 2 (78%) is
higher than the observed value of Group 1 (16%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS could label vulnerable code changes’. The evidence to
the contrary is statistically significant.

QD3

Do you believe that DePaaS could help defect prediction across projects?

Very Likely Likely Not Sure Unlikely Very Unlikely

2
(7%)

16
(55%)

7
(24%)

3
(10%)

1
(3%)

Group 1: Believers = 7% + 55% = 62%, N1 = 2 + 16 = 18
Group 2: Non-Believers = 10% + 3% = 13%, N2 = 3 + 1 = 4
A large part of the population (24%) had difficulty answering this question and
chose to remain neutral.
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could help defect prediction across projects.
Ha = Extent of belief among believers and non-believers that DePaaS could help defect
prediction across projects is statistically different among the two groups.
χ2 = 8.91, CV = 3.84, α = 0.05, p = 0.0028, the observed value of Group 1 (62%) is
higher than the observed value of Group 2 (3%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief among software practitioners that ‘DePaaS could help defect
prediction across projects’ is statistically significant.

Appl. Sci. 2022, 12, 493 19 of 26

Table A1. Cont.

Category
and

Question
Responses on Likert Scale and Statistical Analysis

QD4

Do you believe that DePaaS could highlight risky code changes?

Very Likely Likely Not Sure Unlikely Very Unlikely

1
(3%)

2
(7%)

2
(7%)

22
(73%)

3
(10%)

Group 1: Believers = 3% + 7% = 10%, N1 = 1 + 2 = 3
Group 2: Non-Believers = 73% + 10% = 83%, N2 = 22 + 3 = 25
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could highlight risky code changes.
Ha = Extent of belief among believers and non-believers that DePaaS could highlight
risky code changes is statistically different.
χ2 = 17.29, CV = 3.84, α = 0.05, p = 0.0000, the observed value of Group 2 (83%) is
higher than the observed value of Group 1 (10%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS could highlight risky code changes’. The evidence to
the contrary is statistically significant.

RQ2B (ii): Dataset problems

QE1

Do you believe that DePaaS could use industry datasets?

Very Likely Likely Not Sure Unlikely Very Unlikely

3
(9%)

14
(44%)

12
(38%)

2
(6%)

1
(3%)

Group 1: Believers = 9% + 44% = 53%, N1 = 3 + 14 = 17
Group 2: Non-Believers = 6% + 3% = 9%, N2 = 2 + 1 = 3
A large part of the population (38%) had difficulty answering this question and
chose to remain neutral.
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could use industry datasets.
Ha = Extent of belief among believers and non-believers that DePaaS could use
industry datasets is statistically different among the two groups.
χ2 = 9.80, CV = 3.84, α = 0.05, p = 0.0017, the observed value of Group 1 (53%) is
higher than the observed value of Group 2 (9%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief among software practitioners that ‘DePaaS could use industry
datasets’ is statistically significant.

QE2

Do you believe that DePaaS could help ensuring data cleanliness?

Very Likely Likely Not Sure Unlikely Very Unlikely

2
(7%)

18
(62%)

3
(10%)

5
(17%)

1
(3%)

Group 1: Believers = 7% + 62% = 69%, N1 = 2 + 18 = 20
Group 2: Non-Believers = 17% + 3% = 20%, N2 = 5 + 1 = 6
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could help ensuring data cleanliness.
Ha = Extent of belief among believers and non-believers that DePaaS could help
ensuring data cleanliness is statistically different among the two groups.
χ2 = 7.54, CV = 3.84, α = 0.05, p = 0.0060, the observed value of Group 1 (69%) is
higher than the observed value of Group 2 (20%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief among software practitioners that ‘DePaaS could help ensuring
data cleanliness’ is statistically significant.

Appl. Sci. 2022, 12, 493 20 of 26

Table A1. Cont.

Category
and

Question
Responses on Likert Scale and Statistical Analysis

QE3

Do you believe that DePaaS could help documenting defects in a uniform manner?

Very Likely Likely Not Sure Unlikely Very Unlikely

5
(16%)

13
(41%)

2
(6%)

5
(16%)

7
(22%)

Group 1: Believers = 16% + 41% = 57%, N1 = 5 + 13 = 18
Group 2: Non-Believers = 16% + 22% = 38%, N2 = 5 + 7 = 12
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could help documenting defects in a uniform manner.
Ha = Extent of belief among believers and non-believers that DePaaS could help
documenting defects in a uniform manner is statistically different.
χ2 = 1.20, CV = 3.84, α = 0.05, p = 0.2733, the observed value of Group 1 (57%) is
higher than the observed value of Group 1 (38%).
Since p > α and χ2 < CV, H0 is true, and cannot be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS could help documenting defects in a uniform manner’.

QE4

Do you believe that DePaaS could handle imbalanced datasets?

Very Likely Likely Not Sure Unlikely Very Unlikely

0
(0%)

1
(4%)

19
(68%)

6
(21%)

2
(7%)

Group 1: Believers = 0% + 4% = 4%, N1 = 0 + 1 = 1
Group 2: Non-Believers = 21% + 7% = 28%, N2 = 6 + 2 = 8
A large part of the population (68%) had difficulty answering this question and
chose to remain neutral.
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could handle imbalanced datasets.
Ha = Extent of belief among believers and non-believers that DePaaS could handle
imbalanced datasets is statistically different.
χ2 = 5.44, CV = 3.84, α = 0.05, p = 0.196, the observed value of Group 2 (28%) is
higher than the observed value of Group 1 (4%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS could handle imbalanced datasets’. The evidence to
the contrary is statistically significant.

RQ2B (iii): Feature selection problems

QF1

Do you believe that DePaaS could help selecting features in a formal manner?

Very Likely Likely Not Sure Unlikely Very Unlikely

3
(10%)

11
(35%)

9
(29%)

5
(16%)

3
(10%)

Group 1: Believers = 10% + 35% = 45%, N1 = 3 + 11 = 14
Group 2: Non-Believers = 16% + 10% = 26%, N2 = 5 + 3 = 8
A large part of the population (29%) had difficulty answering this question and
chose to remain neutral.
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could help selecting features in a formal manner.
Ha = Extent of belief among believers and non-believers that DePaaS could help
selecting features in a formal manner is statistically different.
χ2 = 1.64, CV = 3.84, α = 0.05, p = 0.2008, the observed value of Group 1 (45%) is
higher than the observed value of Group 1 (26%).
Since p > α and χ2 < CV, H0 is true, and cannot be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS could help selecting features in a formal manner’.

Appl. Sci. 2022, 12, 493 21 of 26

Table A1. Cont.

Category
and

Question
Responses on Likert Scale and Statistical Analysis

RQ2B (iv): Model building problems

QG1

Do you believe that DePaaS could help imposing a robust model building
methodology?

Very Likely Likely Not Sure Unlikely Very Unlikely

4
(13%)

13
(43%)

8
(27%)

4
(13%)

1
(3%)

Group 1: Believers = 13% + 43% = 56%, N1 = 4 + 13 = 17
Group 2: Non-Believers = 13% + 3% = 16%, N2 = 4 + 1 = 5
A large part of the population (27%) had difficulty answering this question and
chose to remain neutral.
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could help impose a robust model building methodology.
Ha = Extent of belief among believers and non-believers that DePaaS could help impose
a robust model building methodology is statistically different among the two groups.
χ2 = 6.55, CV = 3.84, α = 0.05, p = 0.0105, the observed value of Group 1 (56%) is
higher than the observed value of Group 2 (16%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief among software practitioners that ‘DePaaS could help impose a
robust model building methodology’ is statistically significant.

QG2

Do you believe that DePaaS could help improving defect prediction accuracy?

Very Likely Likely Not Sure Unlikely Very Unlikely

2
(6%)

5
(16%)

6
(19%)

14
(45%)

4
(13%)

Group 1: Believers = 6% + 16% = 22%, N1 = 2 + 5 = 7
Group 2: Non-Believers = 45% + 13% = 58%, N2 = 14 + 4 = 18
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could help improving defect prediction accuracy.
Ha = Extent of belief among believers and non-believers that DePaaS could help
improving defect prediction accuracy is statistically different.
χ2 = 4.84, CV = 3.84, α = 0.05, p = 0.0278, the observed value of Group 2 (58%) is
higher than the observed value of Group 1 (22%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS could help improving defect prediction accuracy’. The
evidence to the contrary is statistically significant.

QG3

Do you believe that DePaaS could promote use of search based (SBT) or hybrid
techniques (HBT)?

Very Likely Likely Not Sure Unlikely Very Unlikely

3
(10%)

15
(48%)

5
(16%)

3
(10%)

5
(16%)

Group 1: Believers = 10% + 48% = 58%, N1 = 3 + 15 = 18
Group 2: Non-Believers = 10% + 16% = 26%, N2 = 3 + 5 = 8
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could promote use of SBT and HBT models.
Ha = Extent of belief among believers and non-believers that DePaaS could promote
use of SBT and HBT models is statistically different among the two groups.
χ2 = 3.85, CV = 3.84, α = 0.05, p = 0.0499, the observed value of Group 1 (58%) is
higher than the observed value of Group 2 (26%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief among software practitioners that ‘DePaaS could promote use of
SBT and HBT models’ is statistically significant.

Appl. Sci. 2022, 12, 493 22 of 26

Table A1. Cont.

Category
and

Question
Responses on Likert Scale and Statistical Analysis

QG4

Do you believe that DePaaS could help comparing performance of various SDP
models?

Very Likely Likely Not Sure Unlikely Very Unlikely

5
(16%)

14
(44%)

7
(22%)

3
(9%)

3
(9%)

Group 1: Believers = 16% + 44% = 60%, N1 = 5 + 14 = 19
Group 2: Non-Believers = 9% + 9% = 18%, N2 = 3 + 3 = 6
A large part of the population (22%) had difficulty answering this question and
chose to remain neutral.
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could help comparing performance of various SDP models.
Ha = Extent of belief among believers and non-believers that DePaaS could help comparing
performance of various SDP models is statistically different among the two groups.
χ2 = 6.76, CV = 3.84, α = 0.05, p = 0.0093, the observed value of Group 1 (60%) is
higher than the observed value of Group 2 (18%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief among software practitioners that ‘DePaaS could help comparing
performance of various SDP models’ is statistically significant.

QG5

Do you believe that DePaaS could contain security specific SDP models?

Very Likely Likely Not Sure Unlikely Very Unlikely

0
(0%)

3
(10%)

8
(27%)

16
(53%)

3
(10%)

Group 1: Believers = 0% + 10% = 10%, N1 = 0 + 3 = 3
Group 2: Non-Believers = 53% + 10% = 63%, N2 = 16 + 3 = 19
A large part of the population (27%) had difficulty answering this question and
chose to remain neutral.
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could contain security specific SDP models.
Ha = Extent of belief among believers and non-believers that DePaaS could contain
security specific SDP models is statistically different.
χ2 = 11.64, CV = 3.84, α = 0.05, p = 0.0006, the observed value of Group 2 (63%) is
higher than the observed value of Group 1 (10%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS could contain security specific SDP models’. The
evidence to the contrary is statistically significant.

QG6

Do you believe that DePaaS could ensure that multiple runs of model yield
same results?

Very Likely Likely Not Sure Unlikely Very Unlikely

3
(10%)

15
(48%)

4
(13%)

5
(16%)

4
(13%)

Group 1: Believers = 10% + 48% = 58%, N1 = 3 + 15 = 18
Group 2: Non-Believers = 16% + 13% = 29%, N2 = 5 + 4 = 9
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could ensure that multiple runs of an SDP model would yield the same result.
Ha = Extent of belief among believers and non-believers that DePaaS could ensure that
multiple runs of an SDP model would yield the same result is statistically different.
χ2 = 3.00, CV = 3.84, α = 0.05, p = 0.0833, the observed value of Group 1 (58%) is
higher than the observed value of Group 1 (29%).
Since p > α and χ2 < CV, H0 is true, and cannot be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS could ensure that multiple runs of a model yield same results’.

Appl. Sci. 2022, 12, 493 23 of 26

Table A1. Cont.

Category
and

Question
Responses on Likert Scale and Statistical Analysis

QG7

Do you believe that DePaaS could ensure that two SDP models yield same results?

Very Likely Likely Not Sure Unlikely Very Unlikely

3
(11%)

17
(61%)

3
(11%)

3
(11%)

2
(7%)

Group 1: Believers = 11% + 61% = 72%, N1 = 3 + 17 = 20
Group 2: Non-Believers = 11% + 7% = 18%, N2 = 3 + 2 = 5
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could ensure that two DePaaS models yield same outputs for multiple runs.
Ha = Extent of belief among believers and non-believers that DePaaS could ensure that
two DePaaS models yield same outputs for multiple runs is statistically different among
the two groups.
χ2 = 9.00, CV = 3.84, α = 0.05, p = 0.0027, the observed value of Group 1 (72%) is
higher than the observed value of Group 2 (18%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief among software practitioners that ‘DePaaS could ensure that two
DePaaS models yield same outputs for multiple runs’ is statistically significant.

RQ2B (v): Model evaluation problems

QG8

Do you believe that DePaaS could statistically validate SDP results?

Very Likely Likely Not Sure Unlikely Very Unlikely

0
(0%)

2
(6%)

24
(77%)

3
(10%)

2
(6%)

Group 1: Believers = 0% + 6% = 6%, N1 = 0 + 2 = 2
Group 2: Non-Believers = 10% + 6% = 16%, N2 = 3 + 2 = 5
A large part of the population (77%) had difficulty answering this question and
chose to remain neutral.
H0 = There is no difference in the extent of belief among believers and non-believers
that DePaaS could statistically validate SDP results.
Ha = Extent of belief among believers and non-believers that DePaaS could
statistically validate SDP results is statistically different.
χ2 = 1.29, CV = 3.84, α = 0.05, p = 0.2568, the observed value of Group 2 (16%) is
higher than the observed value of Group 1 (6%).
Since p > α and χ2 < CV, H0 is true, and cannot be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS could statistically validate SDP results’.

QG9

Do you believe that DePaaS models suffer from author bias?

Very Likely Likely Not Sure Unlikely Very Unlikely

0
(0%)

2
(6%)

22
(71%)

5
(16%)

2
(6%)

Group 1: Believers = 0% + 6% = 6%, N1 = 0 + 2 = 2
Group 2: Non-Believers = 16% + 6% = 22%, N2 = 5 + 2 = 7
A large part of the population (71%) had difficulty answering this question and
chose to remain neutral.
H0 = There is no difference in the extent of belief among believers and non-believers
about the presence of author bias in DePaaS.
Ha = Extent of belief among believers and non-believers about the presence of author
bias in DePaaS is statistically different.
χ2 = 2.78, CV = 3.84, α = 0.05, p = 0.0956, the observed value of Group 2 (22%) is
higher than the observed value of Group 1 (6%).
Since p > α and χ2 < CV, H0 is true, and cannot be rejected at α = 0.05.
Conclusion: There is no statistical evidence to support the claim that the software
practitioners believe that ‘DePaaS is free from author bias’.

Appl. Sci. 2022, 12, 493 24 of 26

Table A1. Cont.

Category
and

Question
Responses on Likert Scale and Statistical Analysis

RQ2B (vi): Practical usage problems

QH1

Do you believe that DePaaS could be widely used in your company?

Very Likely Likely Not Sure Unlikely Very Unlikely

5
(16%)

18
(56%)

2
(6%)

4
(13%)

3
(9%)

Group 1: Believers = 16% + 56% = 72%, N1 = 5 + 18 = 23
Group 2: Non-Believers = 13% + 9% = 22%, N2 = 4 + 3 = 7
H0 = There is no difference in the extent of belief among believers and non-believers
about wide use of DePaaS within a company.
Ha = Extent of belief among believers and non-believers about wide use of DePaaS
within a company is statistically different among the two groups.
χ2 = 8.53, CV = 3.84, α = 0.05, p = 0.0035, the observed value of Group 1 (72%) is
higher than the observed value of Group 2 (22%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief among software practitioners that ‘DePaaS could be widely used in
a company’ is statistically significant.

QH2

Do you believe that DePaaS could help practitioners to gain a better
understanding of SDP?

Very Likely Likely Not Sure Unlikely Very Unlikely

7
(22%)

13
(41%)

3
(9%)

6
(19%)

3
(9%)

Group 1: Believers= 22% + 41% = 63%, N1 = 7 + 13 = 20
Group 2: Non-Believers = 19% + 9% = 28%, N2 = 6 + 3 = 9
H0 = There is no difference in the extent of belief among believers and non-believers
about the ability of DePaaS to help understanding of SDP.
Ha = Extent of belief among believers and non-believers about the ability of DePaaS to
help understanding of SDP is statistically different.
χ2 = 4.17, CV = 3.84, α = 0.05, p = 0.0411, the observed value of Group 1 (63%) is
higher than the observed value of Group 2 (28%).
Since p < α and χ2 > CV, H0 is false, and can be rejected at α = 0.05.
Conclusion: Belief among the software practitioners that ‘DePaaS helps better
understanding of SDP’ is statistically significant.

Appendix B. Challenges to Build, Use and Sustain DePaaS

Table A2. Challenges to build, use and sustain DePaaS.

Question
Identifier
and Tag

Challenge Responses %

RQ2C (i)
DePaaS
building

challenges

Nature of defects detected is not clear 30 97%

Difficult to pin-point defective method/code 30 97%

Datasets may not reflect project dynamics 29 94%

Model selector algorithm is not clear-each project
needs are different 27 87%

Company policy prevents sharing project data 23 74%

Cannot detect certain types of defects
example—GUI 23 74%

Appl. Sci. 2022, 12, 493 25 of 26

Table A2. Cont.

Question
Identifier
and Tag

Challenge Responses %

RQ2C (i)
DePaaS
building

challenges

Not sure how the concept works across projects
of different programming languages 21 68%

Cannot see association of metrics to defects 16 52%

Which SDP models to put into DePaaS? 14 45%

Concept might work for OOAD but not scripting
languages 13 42%

Too difficult to build model improvement
application 9 29%

RQ2C (ii)
DePaaS
usage

challenges

Concern about security of code and data 32 100%

Concern about presence and finding relevant
project in CPDP context 31 97%

Difficulty in feature selection 28 88%

Lack of relevant data to train models 28 88%

Not repeatable findings 23 72%

Potential false alarms 21 66%

Needs high skills to select and tune the model 18 56%

Needs deep computer science knowledge
(programming and metrics) 17 53%

Too many metrics to choose from 17 53%

Training the model might take time 9 28%

Concept is too complex 8 25%

Difficult to teach 7 22%

RQ2C (iii)
DePaaS

sustenance
challenges

Inability to spot business/product defects which
are most subjective in nature 29 97%

Definition of defect is unclear-it might vary across
user, technology, and product 28 93%

Slow evolution of SDP models 27 90%

Software teams do not cooperate to the extent
needed 27 90%

Prediction accuracy is variable and could be very
low for CPDP 25 83%

Cannot replace practitioner’s judgment and
experience 23 77%

No clarity on how third-party modules are
supported 19 63%

Not sure how does DePaaS cope with design and
code evolution 13 43%

Cannot beat developer insight about
defect-proneness but defect count might help 12 40%

Low value addition 9 30%

Not clear as who would maintain DePaaS 9 30%

Appl. Sci. 2022, 12, 493 26 of 26

References
1. Statista, Number of IoT Devices 2015–2025. Available online: https://www.statista.com/statistics/471264/iot-number-of-

connected-devices-worldwide/ (accessed on 19 June 2021).
2. CAST, Research Labs|CAST. Available online: https://www.castsoftware.com/resources/research-library/research-labs

(accessed on 10 March 2019).
3. Krasner, H. Research Report: The Cost of Poor Quality Software in the US: A 2018 Report | CISQ—Consortium for Information &

Software Quality. Available online: https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/index.
htm (accessed on 10 March 2019).

4. Shihab, E. An Exploration of Challenges Limiting Pragmatic Software Defect Prediction; Queen’s University: Kingston, ON, Canada, 2012.
5. Harley, N. 11 of the Most Costly Software Errors in History. Available online: https://raygun.com/blog/costly-software-errors-

history/ (accessed on 10 March 2019).
6. Murray, S. IDC Forecasts Worldwide IT and Telecom Spending to Slow After Last Year’s Rebound; Economic Risks Have Increased.

Available online: https://www.businesswire.com/news/home/20180621005079/en/IDC-Forecasts-Worldwide-IT-and-Telecom-
Spending-to-Slow-After-Last-Year%E2%80%99s-Rebound-Economic-Risks-Have-Increased (accessed on 19 June 2021).

7. Brooks, F.J. Mythical Man-Month, The: Essays on Software Engineering, Anniversary Edition; Addison-Wesley: Boston, MA, USA, 1995.
8. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Available online:

https://userpages.uni-koblenz.de/~{}laemmel/esecourse/slides/slr.pdf (accessed on 21 June 2021).
9. Jhala, R.; Majumdar, R. Software Model Checking. ACM Comput. Surv. CSUR 2009, 41, 1–54. [CrossRef]
10. Synopsys, Synopsys Software Security | Software Integrity Group. Available online: https://www.synopsys.com/software-

integrity.html (accessed on 19 June 2021).
11. Arisholm, E.; Briand, L.C.; Johannessen, E.B. A systematic and comprehensive investigation of methods to build and evaluate

fault prediction models. J. Syst. Softw. 2010, 83, 2–17. [CrossRef]
12. Catal, C.; Diri, B. A systematic review of software fault prediction studies. Expert Syst. Appl. 2009, 36, 7346–7354. [CrossRef]
13. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [CrossRef]
14. Radjenović, D.; Heričko, M.; Torkar, R.; Živkovič, A. Software fault prediction metrics: A systematic literature review. Inf. Softw.

Technol. 2013, 55, 1397–1418. [CrossRef]
15. Son, L.; Pritam, N.; Khari, M.; Kumar, R.; Phuong, P.; Pham, T. Empirical Study of Software Defect Prediction: A Systematic

Mapping. Symmetry 2019, 11, 212. [CrossRef]
16. Zhou, Z.H. Ensemble methods: Foundations and Algorithms; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2012.
17. Bowes, D.; Hall, T.; Petrić, J. Software defect prediction: Do different classifiers find the same defects? Softw. Qual. J. 2018, 26,

525–552. [CrossRef]
18. Porto, F.; Minku, L.; Mendes, E.; Simao, A. A Systematic Study of Cross-Project Defect Prediction with Meta-Learning. Available

online: http://arxiv.org/abs/1802.06025 (accessed on 20 June 2021).
19. Catal, C.; Erdogan, M.; Isik, C. Software Defects Prediction in the Cloud. In Proceedings of the 21st Conference of Open

Innovations Association FRUCT, Helsinki, Finland, 6–10 November 2017; Available online: https://ieeexplore.ieee.org/servlet/
opac?punumber=8241162 (accessed on 20 June 2021).

20. Williams, A.; Patra, J.; Das, S.; Jayaraman, I. IGNITE Defect Predict Provides Early Insights to Prevent Application Failure.
Available online: https://www.ibm.com/downloads/cas/4XOVXPDB (accessed on 20 March 2021).

21. Malhotra, R. An extensive analysis of search-based techniques for predicting defective classes. Comput. Electr. Eng. 2018, 71,
611–626. [CrossRef]

22. Rodger, J.A. Toward reducing failure risk in an integrated vehicle health maintenance system: A fuzzy multi-sensor data fusion
Kalman filter approach for IVHMS. Expert Syst. Appl. 2012, 39, 9821–9836. [CrossRef]

23. Aparisi, F.; Avendaño, G.; Sanz, J. Interpreting Out-of-Control Signals of MEWMA Control Charts Employing Neural Net-works.
Int. J. Comput. Electr. Autom. Control Inf. Eng. 2010, 4, 24–28.

24. Huda, S.; Abdollahian, M.; Mammadov, M.; Yearwood, J.; Ahmed, S.; Sultan, I. A hybrid wrapper–filter approach to detect the
source(s) of out-of-control signals in multivariate manufacturing process. Eur. J. Oper. Res. 2014, 237, 857–870. [CrossRef]

25. Basili, V.; Briand, L.; Melo, W. A validation of object-oriented design metrics as quality indicators’. IEEE Trans. Softw. Eng. 1996,
22, 751–761. [CrossRef]

26. Henderson-Sellers, B. Object-Oriented Metrics: Measures of Complexity (Facsimile ed.); Pearson College Div., Prentice-Hall, Inc.:
Hoboken, NJ, USA, 1995.

27. Martin, R.C. Object oriented design quality metrics: An analysis of dependencies’. Rep. Object Anal. Des. 1995, 2, 1–8. Available
online: https://linux.ime.usp.br/~{}joaomm/mac499/arquivos/referencias/oodmetrics.pdf (accessed on 20 June 2021).

28. Bansiya, J.; Davis, C. A hierarchical model for object-oriented design quality assessment’. IEEE Trans. Softw. Eng. 2002, 28, 4–17.
[CrossRef]

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.castsoftware.com/resources/research-library/research-labs
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/index.htm
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/index.htm
https://raygun.com/blog/costly-software-errors-history/
https://raygun.com/blog/costly-software-errors-history/
https://www.businesswire.com/news/home/20180621005079/en/IDC-Forecasts-Worldwide-IT-and-Telecom-Spending-to-Slow-After-Last-Year%E2%80%99s-Rebound-Economic-Risks-Have-Increased
https://www.businesswire.com/news/home/20180621005079/en/IDC-Forecasts-Worldwide-IT-and-Telecom-Spending-to-Slow-After-Last-Year%E2%80%99s-Rebound-Economic-Risks-Have-Increased
https://userpages.uni-koblenz.de/~{}laemmel/esecourse/slides/slr.pdf
http://doi.org/10.1145/1592434.1592438
https://www.synopsys.com/software-integrity.html
https://www.synopsys.com/software-integrity.html
http://doi.org/10.1016/j.jss.2009.06.055
http://doi.org/10.1016/j.eswa.2008.10.027
http://doi.org/10.1109/TKDE.2008.239
http://doi.org/10.1016/j.infsof.2013.02.009
http://doi.org/10.3390/sym11020212
http://doi.org/10.1007/s11219-016-9353-3
http://arxiv.org/abs/1802.06025
https://ieeexplore.ieee.org/servlet/opac?punumber=8241162
https://ieeexplore.ieee.org/servlet/opac?punumber=8241162
https://www.ibm.com/downloads/cas/4XOVXPDB
http://doi.org/10.1016/j.compeleceng.2018.08.017
http://doi.org/10.1016/j.eswa.2012.02.171
http://doi.org/10.1016/j.ejor.2014.02.032
http://doi.org/10.1109/32.544352
https://linux.ime.usp.br/~{}joaomm/mac499/arquivos/referencias/oodmetrics.pdf
http://doi.org/10.1109/32.979986

	Introduction
	Research Design
	Motivation for Research
	Research Design

	DePaaS: Architecture and Design
	Users, Usage Contexts and Use Cases
	Usage Contexts
	Users
	Use Cases

	Functional Description
	SDP Models Provided by DePaaS
	Architecture
	Advanced Algorithms
	Technical Feasibility

	Industry Perception Study
	Details of the Study
	Variables
	Threats to Validity

	Analysis of the Results of the Survey
	Belief in Defect Prediction
	Awareness about SDP Technique
	Desirability of SDP

	Feedback about Ability of DePaaS to Address SDP Challenges
	Solving SDP Problems Related to SDP Objectives and Focus
	Solving SDP Problems Related to Datasets
	Solving SDP Problems Related to Feature Selection
	Solving SDP Problems Related to Building SDP Models
	Solving SDP Problems Related to SDP Model Evaluation
	Solving SDP Problems Related to Practical Use of SDP

	Perceived Challenges to DePaaS
	Perceived Challenges to Build DePaaS
	Perceived Challenges to Use DePaaS
	Perceived Challenges to Sustain DePaaS

	Conclusions
	Patents
	Questionnaire and Statistical Analysis of the Industry Perceptions Survey
	Challenges to Build, Use and Sustain DePaaS
	References

