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Abstract: Modern high-throughput ‘omics’ science tools (including genomics, transcriptomics, pro-
teomics, metabolomics and microbiomics) are currently being applied to nutritional sciences to
unravel the fundamental processes of health effects ascribed to particular nutrients in humans and
to contribute to more precise nutritional advice. Diet and food components are key environmental
factors that interact with the genome, transcriptome, proteome, metabolome and the microbiota,
and this life-long interplay defines health and diseases state of the individual. Rheumatoid arthritis
(RA) is a chronic autoimmune disease featured by a systemic immune-inflammatory response, in
genetically susceptible individuals exposed to environmental triggers, including diet. In recent years
increasing evidences suggested that nutritional factors and gut microbiome have a central role in RA
risk and progression. The aim of this review is to summarize the main and most recent applications
of ‘omics’ technologies in human nutrition and in RA research, examining the possible influences of
some nutrients and nutritional patterns on RA pathogenesis, following a nutrigenomics approach.
The opportunities and challenges of novel ‘omics technologies’ in the exploration of new avenues in
RA and nutritional research to prevent and manage RA will be also discussed.

Keywords: rheumatoid arthritis; diet; nutrigenomics; proteomics; metabolomics; microbiome; microbiomics

1. Introduction

Recent advances in high-throughput/high-content techniques have led to a new frame-
work in biomedical research, the so-called ‘Omics era’, which combines the opportunity to
gather great amounts of data and details at the molecular level together with the evolution
of new computational models and statistical tools that are able to analyze and filter such
data. Then, progresses in next generation sequencing (NGS), high-throughput platforms,
mass-spectrometry and bioinformatic equipment, enabled the synchronous extensive study
of thousands of genes (genomics), epigenetic factors (epigenomics), RNA (transcriptomics),
metabolites (metabolomics) proteins (proteomics), and human-microbiota (microbiomics),
with the potential of combining diverse categories of ‘omics’ data (‘multi-omics’ or ‘system
biology’). Those novel ‘omics’ approaches and techniques have revolutionized the study
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of complex human diseases, providing an unparalleled genome-wide view of genetic
variation, gene expression, interaction with microbiota, and environmentally responsive
epigenetic changes [1–3]. Moreover, nutritional research has shifted from traditional phys-
iology and epidemiology to molecular genetics and biology. Applications of the above
mentioned ‘omics’ facilitated molecular nutrition understanding. Pursuing this course,
nutrigenomics has developed as a pluridisciplinary research field in nutrition-science
that intends to clarify how nutrition can affect human health. While the first meaning of
nutrigenomics concerned only with studies on nutrients or bioactive food compounds
influencing gene expression of a person, currently, this definition has been extended and,
in recent times, nutrigenomics refers to the employment of transcriptomics, genomics,
proteomics, metabolomics and epigenomics to find out and elucidate the existing mutual
relations between genes and nutrients at a molecular level, also encompassing nutrigenetic
studies exploring the relationships between genetic variants and diet in modulating dis-
ease risk [4]. In this review, we use the term “nutrigenomics” in its broadest definition.
Rheumatoid arthritis (RA) is a persistent inflammatory autoimmune disorder which affects
roughly 1% of the global population. It is characterized by extensive synovitis, systemic
inflammation and various degrees of cartilage and bone erosion. Multiple genetic and
environmental factors, including modifiable lifestyle factors such as cigarette smoking
and dietary habits have been linked with an increased risk for RA. Cumulative evidences
suggested that nutrition has a central role in RA risk and progression [5,6]. It is already
widely-known that bioactive food components can interact with genes impacting tran-
scription factors, protein expression, metabolite production and microbiota. On the other
hand, the genetic makeup of the single person can delineate the nutritional state, metabolic
responses, and predisposition to diet-associated health disorders. Research in this field
can help us to comprehend why some people respond differently from others to the same
foods, beverages and supplements. Recent evidence has shown that the host microbiota,
and especially the intestinal microbiota, play a central role in the onset and progression of
several diseases, including RA [7,8]. Accelerated progress of high-throughput molecular
technologies has allowed to conduct meticulous studies of the microbiota in humans, ex-
ploring the biological signatures that are connected with definite illnesses, environmental
conditions, or pharmacological/nutritional interventions [9–13]. Nutrition is the main
modulator of bacterial composition and abundance in the gastrointestinal tract, suggesting
the opportunities for therapeutic nutritional approaches to manipulate microbiota com-
position and diversity [14,15]. Nutrigenomics and nutritional microbiomics approaches
have received increasing attention and are currently being used to study respectively the
mutual interactions between food and genes and between diet and microbiota in several
diseases including cancer [16,17], cardiovascular [18,19], metabolic [20], and autoimmune
diseases [21–24] in order to enable their better understanding, prevention and treatment
through optimization of individuals’ dietary intakes.

Despite important research advancements and clinical improvements, RA still repre-
sents a public health challenge, in terms of both epidemiological and economic burden:
many patients still experience premature work disability, co-morbidities, and important
adverse effects caused by medications. Although with availability of several disease-
modifying antirheumatic drugs and biologic therapies the outcomes for patients with RA
have significantly improved, RA remains a long-standing condition for which there is
currently no effective cure [25]. Extensive use of the ever expanding, novel ‘omics’ tech-
nologies will facilitate both the understanding of RA pathogenesis and the identification
and modification of nutritional-related risk factors, allowing to establish a prevention
strategy for RA in susceptible population as well as to complement the present treatment
strategies for a better disease management. The combined-use of several ‘omics’ technolo-
gies will also enable the discovery of novel biomarkers related with specific food or dietary
intake, greatly facilitating human nutritional studies. After presenting an overview of
the most recent genomics, transcriptomics, proteomics, metabolomics, epigenomics, and
microbiomics approaches and their implementation within human nutrition research, in
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this paper we review the role of ‘omics’ technologies in elucidating the pathogenesis of
RA and the possible influence of some nutrients, food bioactive compounds, nutritional
patterns and microbiota on RA pathogenesis.

The aim of this review is to present the main novel ‘omics’ approaches and their
current and possible future application in RA and nutrition research, with the ultimate goal
to promote a human-relevant nutrigenomics approach to RA for disease prevention and
better disease management. The opportunities and challenges of novel ‘omics technologies’
will be also discussed.

Literature search was conducted using PubMed (between August–November 2020)
and different combinations of search terms and Boolean operators (see Supplementary
Table S1). Only human-based studies (e.g., observational and interventional studies in RA
and inflammation) were reviewed.

2. Applications of ‘Omics’ Approaches and Technologies within Nutritional Research

A crucial goal of nutritional research is to establish the role of nutrition in metabolic
control and to boost health. Nutrition and health correlations have been classically ex-
plained in terms of energetic and structural necessity of the body, as assured by nutrients.
Nevertheless, foods also include several secondary biologically active non-nutrient com-
pounds which can also help in the prevention and even in the treatment of various chronic
diseases. In fact many epidemiological studies have shown a correlation between nutrition
and the incidence of different disorders, in particular type 2 diabetes [26,27], cardiovascular
diseases [28–30], cancer [31–34], neurodegenerative disorders [35,36], and RA [5,37,38].
However, the understanding of the exact components and the mechanisms underlying
their supposed beneficial or detrimental effects is still insufficient. Newly introduced mod-
ern high throughput ‘omics’ approaches are greatly contributing to the elucidation of the
connections between dietary exposure and health at the molecular level [39,40]. Genomics,
transcriptomics, proteomics, and metabolomics are four main platforms of comprehensive
‘omics’ approach in nutritional science. They respectively investigate the whole set of DNA,
RNA, proteins and metabolites in a cell, tissue or entire organism. The start of the 21st
century was featured by prompt progress in high-throughput technologies, high-content-
and single-cell approaches, mass spectrometry, bioinformatics, and computing capacities.
These tools are widely used in an effort to identify molecular events implicated in the
health effects of nutritional components or in diet-related diseases [41]. Nutrigenetics is
the science that detects and describes gene variants linked with differential response to
nutrients and relating this variation to different disease states. Next generation sequencing
(NGS), also known as ‘second-generation sequencing’, makes it possible to read the code
of great amounts of small fragments of DNA or RNA in parallel, enabling more rapid
sequencing with higher throughput at dropping costs. Genome-wide association studies
together with NGS have contributed to identify novel genomic variants (for e.g., genetic
polymorphisms) with the aim of understanding complex disease pathobiology as well as
examining the influences of dietary exposure and genetic variants in humans. The inte-
gration of genetic polymorphisms into nutritional epidemiological studies has allowed to
tackle several limitations intrinsic in such studies, such as genetic variability affecting either
the absorption, biotransformation, metabolism, distribution or elimination of a nutrient
or bioactive food compound [42,43]. One example of how nutrigenomics and NGS tech-
nologies has been employed to elucidate the involvement of precise dietary factors results
from an investigation on coffee and heart disease [44]. Numerous studies had examined
this relationship and deduced that coffee either decreases risk, has no impact, or increases
risk [45]. Even tough coffee is a complex mixture consisting of a large amount of bioactive
compounds, it is an important source of caffeine and it has always been recognized that
caffeine might be particularly deleterious for the cardiovascular system. Caffeinated-coffee
was found to increase the risk of heart infarction among persons who carry a gene variant
that makes them ‘slow’ caffeine metabolizers, but do not affect individuals who are ‘fast’
caffeine metabolizers [46]. NGS and omics-based readouts applied to nutrigenetics, will



Nutrients 2021, 13, 763 4 of 23

give crucially significant information that will support clinicians in ensuring the optimal
diet for a particular individual, namely personalized nutrition.

Transcriptomics studies have become routine, thanks to technologies such as real-
time-PCR and robust microarrays. Moreover, RNA sequencing has developed as a robust
alternative for transcriptome investigation as it is covering wider spectrum of RNAs ensur-
ing more useful information [47,48]. Transcriptomics analysis provides opportunities to
investigate the transcriptome at a given nutritional condition, affording a comprehensive
view of intracellular RNA expression [49]. For example, transcription profiling has been
widely applied to assess the possible effects of anthocyanins, pigments naturally occurring
in many comestible vegetables and fruits, on obesity associated gene expression in human
adipocytes [50] and also for exploring the potentialities of gene expression profiling in
blood to investigate the influences of nutritional exposure in human intervention stud-
ies [51]. Nutri-miromics explores the impact of diet on gene expression as a result of
epigenetic processes related to microRNAs (miRNAs), which may influence the risk for
the development of chronic diseases, including RA [52,53]. MiRNAs are small non-coding
endogenous RNA molecules that functions in post-transcriptional regulation of gene ex-
pression by causing mRNA degradation or translational suppression through binding
to a target messenger RNA. They may be regulated by environmental and nutritional
factors, mainly by single nutrients or bioactive food components [54], suggesting that diet
manipulation may have the potential to serve as a therapeutic approach in controlling
the risk of chronic diseases. It has been suggested that miRNAs not only are synthesized
endogenously, but also might be acquired from diet [55]. Although such subject is still
debated, it has been proposed that exogenous miRNAs may modulate serum miRNAs
profiles possibly influencing biological processes [56]. Next-generation sequencing and
omics-based analyses provides a powerful tool to identify dietary miRNAs as well as to
understand the complex crosstalk between nutrition, miRNAs, gene targets, and human
health and disease [57]. Extensive availability of NGS and ‘multi-omics’ technologies
has allowed genome-wide clarification of the epigenomic makeup in dozens of cell types,
throughout developmental times, in several species, including humans [58].

Nutritional epigenomics deals with assessing the influence of nutrition and bioactive
food compounds on global epigenetic mechanisms that regulate gene activity and expres-
sion, for e.g., DNA methylation, histone modifications (histone methylation, acetylation,
and phosphorylation), chromatin remodelling, and noncoding RNAs. Epigenetic mecha-
nisms have been implicated in pathogenesis of several diseases, including autoimmune
conditions [59–63]. Since nutrition is among the most significant environmental factors
influencing the epigenetic profile, nutritional-epigenomics powered by novel technologies
is emerging as a promising approach in nutritional research and for personalized nutri-
tion [64]. In the past few years, new technologies that allow to sequence longer strands of
nucleic acids by reading single DNA or RNA molecules have made progress and become
more eminent [65]. These technologies, which can also be called ‘long-read sequencing’ or
‘third generation sequencing’, together with the development in bioinformatics equipment
and single-cell sequencing methodods, will allow to decipher human genome, transcrip-
tome, microbiome and epigenome to a greater depth [66–70]. These technologies are
already being successful applied in nutritional sciences to investigate, for e.g., the effect of
dietary interventions on human microbiome [71].

Metabolomics is referred to the study of the overall metabolites set or small molecules
(metabolome) present in biological samples. Conventionally, Nuclear Magnetic Resonance
(NMR), Proton Nuclear Magnetic Resonance (1HNMR) Spectroscopy, and Mass Spectrome-
try (MS) have represented the principal technologies employed in metabolomics studies.
Progress in these tools, in particular Matrix-Assisted Laser Desorption Ionization Time Of
Flight (MALDI-TOF), Secondary Ion Mass Spectrometry (SIMS), and Fourier transform ion
cyclotron resonance MS, along with new approaches for compound identification [72] have
opened numerous opportunities for quantitative, non-invasive analysis for metabolites in
human-body fluids and tissues as well as changes thereon in response to diet. Nutritional
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metabolomics has emerged as high-performance and sensitive method for the identification
and characterization of biochemical pathways [73]. Moreover, it has been used in several
studies for assessing metabolite profiles as a result of specific dietary intake [74–77] and
several metabolic perturbations were detected. To refine the assessment of a person’s food
intake, and therefore elucidate suggested correlations between diet and disease, relevant
and accurate dietary evaluation methods are crucial. Dietary biomarkers have arisen as
a complementary tool to the conventional methods in nutrition studies, and in the few
past years, metabolomics has established as an important approach for the identification
of new dietary biomarkers [78]. Proteomics is the large-scale, high-throughput study of
the expression, structure, function, modifications, and interactions of proteins, within a
biofluid or tissue sample. A broad spectrum of different approaches and methods are being
utilized for proteomic studies, particularly microarray-based tools, mass-spectrometry,
nuclear-magnetic resonance, and the most modern single-cell and high-sensitivity pro-
tein analyses [79–81]. Nutritional proteomics or nutriproteomics harnesses proteomics
technologies to identify molecular and cellular variations in protein expression and func-
tion on a comprehensive level as well as evaluating the interaction of proteins with food
components. Food components may interact with endogenous proteins inducing post-
translational modifications and modulating their original functions. The characterization
of such modifications will allow a better understanding of the interplay between bioac-
tive dietary components and diet-related diseases [82,83]. For e.g., nutriproteomics could
help in elucidating the possible relationships between food antigens and autoimmune
disorders [84]. Tsuda et al. (2015) have demonstrated that monoclonal autoantibodies
derived from RA patients cross-react not only with various autoantigens but also with
numerous food proteins. The authors proposed that such dietary proteins may trigger the
generation of RA-specific autoantibodies to induce autoimmunity in at risk individuals [85].
Interestingly, it has been also hypothesized that chemical alterations of food proteins by
different toxic agents in food may lead to immune reaction against altered food proteins
that cross-react with tissue antigens, causing autoimmune reactions [84]. Understanding
the possible link between specific food consumption and autoimmunity in humans may
lead to prevention of autoimmune diseases through precise dietary advices in at risk indi-
viduals. From birth, humans interact and coevolve with trillions of microbes residing in
most body surfaces and cavities, referred to as the human microbiota. Advances in ‘omics’
technologies and computational methods have driven the investigation of the microbiota’s
contribution to human health and disease, led by massive efforts such as the Human
Microbiome Project and the Europe-based MetaHit Consortium [86]. Microbiomics is an
emerging rapidly-growing field in which all the microbes of a particular community (for
e.g., gut microbiota) are analyzed together, harnessing ‘omics’ approaches and technolo-
gies, including metagenomics, metatranscriptomics, metaproteomics and metabolomics.
These technologies, which investigate respectively the collective genome, transcriptome,
proteome, and metabolome of microorganisms from a sample (e.g., human stools or saliva),
are providing information concerning the structure and function of the entire microbial
community as well as the identification and assessment of regulatory and metabolic ma-
chinery by which host and microbes interact among themselves to determine a healthy or
diseased state in the human host [87]. Every single microbial genus in the gut comprises
numerous species and strains that may harbour important dissimilarities in their genomes
and functional characteristics and it has been documented that strain-level diversity may
result in inconsistencies in genus and species associations with dietary interventions, health
or disease [88,89]. Our data frequently are based on a genus- or species-level taxonomic
allocations that, even if helpful, may not be adequate for an exhaustive comprehension of
the complex relations between the gut microbiome, diet and human health. As sequencing
technologies continue to evolve, novel strain-level understandings can be achieved in the
study of the relationships between gut microbiota, diet and human health [90]. Micro-
biome composition has been linked to disease also by way of modulation of diet-derived
specific metabolites and signaling pathways [91,92]. Thus, nutritional microbiomics and



Nutrients 2021, 13, 763 6 of 23

metabolomics studies hold promise for the discovery of pathways linked to disease pro-
cesses. Nutritional microbiomics is a promising approach to investigate the interaction
between diet and gut microbiota and the potential of modulating these interactions for the
prevention of human diseases [93]. Major ‘omics’ approaches and emerging technologies
already employed for nutritional research are overviewed in Table 1.

Table 1. Examples of ‘omics’ approaches and emerging technologies employed in nutritional research. Five major categories
and their subcategories are shown.

Approach Subcategory Targets Techniques References

Genomics

Genomics Genes (DNA sequence)

Second generation: Illumina;
SOLID; Ion Torrent.

Third generation: PacBio;
SMRT-seq; Illumina Tru-seq

Synthetic Long-Read technology;
Oxford Nanopore Technologies

sequencing platform

[65,94]

Epigenomics Modification of DNA and
DNA- binding proteins

Whole-genome bisulfite
sequencing (for DNA Methylation

Analysis); ChIP-seq (for
DNA–Protein Interaction
Analysis); ATAC-Seq (for

Chromatin Accessibility Analysis)

[95–97]

Transcriptomics
Transcriptomics mRNA

RNA-microarrays; RNA-seq:
Illumina, SOLID, Ion Torrent

(second generation);
PacBio, SMRT-seq, Illumina
TruSeq Synthetic Long-Read

technology, Oxford Nanopore
Technologies sequencing platform

(third generation)

[47–50]

ncRNA-omics non-coding RNA
(including microRNA) [57,98–100]

Proteomics

Proteomics Proteins
Protein-microarrays; NMR

Spectroscopy; MS; single-cell and
ultrasensitive protein analyses

[79–81]

Interactomics
Protein-protein interaction,

protein-small
molecules interaction

TAP; Affinity Chromatography;
Coimmunoprecipitation; Protein

arrays; PFC; Phage display,
NMR spectroscopy

[84,85,101]

Metabolomics

Metabolomics Metabolites NMR; 1H NMR; MS; MALDI-TOF;
SIMS; FTICR-MS [72–78]

Lipidomics Lipids

Aminomics Aminoacids

Microbiomics

Microbiomics
Human Microbiota
(including bacteria,

fungi, protozoa, and viruses)
[87–91,102,103]

Meta-genomics Microbiota DNA

Meta-transcriptomics Microbiota RNAs

Meta-proteomics Microbiota proteins

Meta-bolomics Microbiota metabolites

Abbreviations: ATAC-Seq, Assay for transposase-accessible chromatin-Squencing; ChIP-seq, Chromatin immunoprecipitation-Sequencing;
FTICR-MS, Fourier transform ion cyclotron resonance-Mass Spectrometry. 1H NMR, Proton Nuclear Magnetic Resonance spectroscopy;
lncRNAs, long non-coding RNAs; MALDI-TOF, Matrix-Assisted Laser Desorption Ionization Time of Flight; MS, Mass Spectrometry;
NMR, Nuclear Magnetic Resonance; PacBio, Pacific Biosciences; PFC, Protein fragment Complementation; SIMS, Secondary Ion Mass
Spectrometry; SMRT-seq, Single Molecule Real Time sequencing; SOLID: Sequencing by Oligonucleotide Ligation and Detection; TAP,
Tandem Affinity Purification.

3. The Contribution of ‘Omics’ in Elucidating Rheumatoid Arthritis Pathogenesis

RA is an autoimmune condition that impacts predominantly the lining of the synovial
joints and is characterized by chronic synovitis, systemic inflammation and various degrees
of bone and cartilage erosion. Systemic inflammation characterizing RA is related with
different extra-articular conditions, including cardiovascular diseases, resulting in higher
mortality in patients with RA. In industrialized countries, RA is the most frequent form
of inflammatory arthritis. The disorder is more common in women and the age of onset
is typically between 25 and 50, in the midst of working life, with important social and
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economic burden [104]. Genetic factors can explain 50–60% of the risk [105,106] while envi-
ronmental modifiable factors, such as infectious diseases, tobacco smoking, air pollution,
dust, and nutrition, account for the remainder [107,108]. Thanks to the rapid progresses in
the field of ‘omics’ technologies, the past decade has resulted in tremendous advancement
in our capacity to interpret genetic and molecular reasons underlying complex conditions
such as autoimmune diseases [109]. The etiopathology of RA is not fully understood,
however, NGS combined with the application of innovative multi-omics approaches, cell
profiling-technologies and bioinformatics tools has enabled a wider investigation and
deeper insight into the pathogenesis and disease variants of RA, including the definition of
RA-associated cell populations [110], specific gene expression profiles [111–115], suscepti-
bility loci, gene-environment interactions, as well as genetic loci associated with subsets of
patients and those linked with response to therapy and/or dietary components [116–120].
Genomics studies of RA, including recent application of genome wide association studies
(GWAS), have discovered over 100 genetic loci linked with RA risk and/or severity [121].
Amid all the genetic susceptibility elements found so far, the human leukocyte antigen
(HLA) locus is the more important one. A strong link between RA and HLA-DRB1 alle-
les encoding an amino acid sequence pattern known as the ‘shared epitope’ has already
been recognized for a long time. The shared epitope has been associated with a higher
risk of anti-citrullinated protein antibodies (ACPAs)-positive RA while ACPAs positivity
has been linked with more aggressive and destructive RA, systemic manifestations and
cardiovascular complications [117]. It has been documented that the production of au-
toantibodies, including rheumatoid factor and ACPAs is an early and asymptomatic event
that may precede for several years the onset of clinical apparent symptoms in RA. In the
symptomatic RA phase, compensatory pathways that keep the disease asymptomatic may
fail, promoting the transition from preclinical to clinically apparent disease [122]. These
findings indicate an emerging disease paradigm where both genetic and environmental
factors trigger a preclinical systemic autoimmune state, possibly originated at mucosal
sites [123], followed by genetic and environmental factors that may propagate this silent
autoimmune state to clinically overt RA [122,124].

Among the non-HLA gene variants identified there are many that involve immune
system, citrullination, cytokine, and inflammation genes and/or known targets of ap-
proved therapy [121,125]. Loci showing stronger association with disease risk include
genes encoding for protein tyrosine phosphatase, non-receptor type 22 (PTPN22), tumor
necrosis factor (TNF) receptor-associated factor 1 (TRAF1), signal transducer and activator
of transcription 4 (STAT4), interleukin 6 signal transducer (IL6ST), interleukin 2 receptor
subunits alpha and beta, and CD40 [125]. The list of candidate genes is rapidly grow-
ing [126]. By combining the whole-genome sequencing and transcription profiles data of
RA patients it is becoming possible to reveal the potential molecular pathways and crucial
genes which play important roles in RA development as well as to identify the relevant cell
types in RA pathogenesis [127–129]. Several pathways within the inflammatory cascade
are activated in RA. All of them result in the upregulation of transcription factors and
proinflammatory cytokines including nuclear factor kappa B (NFkB), interleukin (IL)-1,
IL-6, IL-17, monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor (TNF)-
α. Diverse genes in RA loci are concerned with the NF-kB signaling pathway, the Janus
kinase (JAK)-signal transducers and activators of transcription (STAT), or cytokines signal-
ing pathways [130–132]. The release of cytokines promotes the activation of fibroblast-like
synoviocytes (FLSs), macrophages, neutrophils, adhesion molecules, and clotting factors as
well as the release of macrophage colony-stimulating factors, which increase macrophages
and also induce osteoclast activation, promoting active bone destruction. Matrix metallo-
proteinases (MMPs), prostaglandins, cyclooxygenase-2 (COX-2) and free radicals are also
produced in excessive amounts which enhance the inflammatory pathways, resulting in
the breakdown of extracellular matrix and cartilage loss [133,134]. The local and systemic
immune responses lead to the development of a persistent low-intensity inflammatory
condition which is related to important RA comorbidities and complications, such as
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cardiovascular diseases, vascular damage, insulin-resistance, and amyloidosis [135–138].
Recent high-throughput and epigenome-wide analysis have allowed to demonstrate that
epigenetics play vital roles in the pathogenesis of RA [49,139], providing a possible crossing
point by which genetic and environmental risk factors interact each other to influence the
susceptibility, onset, and development of RA. Indeed, DNA methylation, post-translational
histone modifications and variations in gene expression induced by non-coding RNAs are
implicated in adaptive and innate immune cell differentiation, migration, proliferation,
apoptosis, and FLSs activation in RA patients [140,141]. Proteomics-based approaches have
been utilized for the identification of key protein and peptide mediators in RA [142], as
well as to detect and quantify cytokines, allowing the discovery of new potential biomark-
ers [143], which may serve for early diagnosis, as indicators for clinical observation on the
disease progression and to monitor responses to therapeutic interventions. By studying
biomarkers in patient populations, the disease could be sorted into different subcategories
that show different outcomes and responses to specific drugs or nutritional interven-
tions [120,144–146]. Multi-omics analysis integrated with advanced bioinformatic tools and
machine learning are already yielding a more comprehensive understanding of molecular
mechanisms underlying RA pathogenesis and therapeutic response, paving the way for
personalized-medicine [147,148].

4. Nutrigenomics Approach to Rheumatoid Arthritis

It is already well documented from epidemiological studies that nutritional patterns
could play a role both as disease risk and protective factor, on the basis of the properties of
particular foods. Certain nutritional factors can indeed exhibit pro-inflammatory outcomes
(for e.g., red meat, salt, excessive caloric intake) or conversely mitigate inflammation (for
e.g., fruit and vegetables, flaxseeds, low caloric intake) [5,6]. Nutritional components
derived from diet, such as glucids, amino acids, fatty acids, vitamins, minerals, and other
natural compounds occurring in small quantities in food, can not only fulfil a structural
role in the cell, but also represent molecular signals which may impact biochemical path-
ways and alter gene expression. Indeed, they can directly interrelate with key factors
and regulate the pathways involved in inflammation cascades related to RA pathogenesis,
or affect intra- and extracellular microenvironments, thereby indirectly altering cellular
activities [149]. Christensen et al. have recently demonstrated the association between diet
and immune cell-related gene expression patterns in humans [150]. Interestingly, reduction
in pain and higher physical function in RA patients, as well as a lower risk of the disease
in individuals carrying the HLA-DRB1 shared epitope allele, have been associated with
adherence to the Mediterranean diet (MedDiet) [37,151]. The assigned health benefits of
the MedDiet could be justified by a modulating effect on genes related to inflammation
and oxidative stress [152]. Although nutrigenomic studies on RA patients are still scarce,
the influence of several dietary patterns and bioactive compounds on inflammation-or
other RA-related pathways has been investigated. For e.g., Camargo et al. (2013) showed
that MedDiet is able to reduce the expression of NF-κB, TNF-α, MCP-1 and MMP-9 in
human peripheral blood mononuclear cells [153]. Consumption of a MedDiet for 4 weeks
has been associated with reduced IL-1β gene expression in human mononuclear cells in
fasting and postprandial states [154]. It has also been shown that adherence to MedDiet
is linked with changes of methylation-state in inflammation-related genes in peripheral
blood cells [155]. In addition, recent studies have shown that the Mediterranean-based
nutritional interventions are able to induce changes in the expression of inflammation-
related miRNAs [100], possibly influencing RA risk by means of epigenetic mechanisms.
MedDiet is characterized by frequent consumption of food from vegetable sources, whole
grains, beans, nuts, seeds, legumes, fruit, and spices, while olive oil represents the principal
source of fat. MedDiet also involves an equilibrate intake of fish and wine, as well as
a lower consumption of red meat, sweets, and dairy products [156] Components of the
MedDiet such as olive oil, vegetables, fruits, fatty-fish, and tree-nuts provide a model
for functional foods, on the basis of their natural contents of bioactive compounds and
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nutraceuticals, such as flavonoids, alkaloids, polyphenols, terpenoids, sterols, pigments,
and polyunsaturated fatty-acids of omega-3 series (omega-3 PUFAs). Olive oil holds a high
nutritional value and a peculiar composition, which is particularly relevant in the case
of Extra Virgin Olive Oil (EVOO). EVOO is considered an important bioactive food with
several valuable properties and it may be efficacious in the management of inflammatory
and autoimmune diseases, including RA [157,158]. It has been shown that the phenolic
fraction of EVOO modulates cytokines production, including IL-6, TNF-α, and IL-1β, per-
haps via NF-κB signaling pathway, exerting an anti-inflammatory and immunomodulatory
action in systemic lupus erythematosus patients [159]. Castaner et al. (2012) have shown
that three weeks ingestion of high-polyphenol-containing olive oil, reduce the activation
of the CD40/CD40-ligand system and its downstream products in healthy subjects, as
compared to olive oil containing less polyphenol [160]. About that, it would be worth
noting that the inflammatory CD40/CD40-ligand pathway seems to be implicated in the
progression from undifferentiated arthritis or ACPAs-positive arthralgia to established
RA [161]. Moreover, a recent study has demonstrated that EVOO phenolic compounds may
have a favorable effect on bone by modulating osteoblast-related gene expression, which
would explain their beneficial effect against bone pathologies [162]. Omega-3 PUFAs could
have a protective and preventive effect in RA, given their anti-inflammatory and pain-killer
properties [163,164]. Epidemiological studies have reported a substantial inverse associ-
ation between oily fish consumption and RA [165–167], suggesting that omega-3 PUFAs
found in fish oil (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) may be
a protective factor against RA progression. In favour of this hypothesis, a case-control
study established that RA cases had important decreased levels of EPA, and EPA+DHA
in their erythrocyte membranes (a biomarker of omega-3 PUFAs status) compared with
controls [168]. Moreover, Gan et al. (2017) showed that both omega-3 PUFAs supplement
use and omega-3 PUFAs levels in red blood cell membranes were inversely linked with
ACPAs positivity in people without RA, but at genetic risk for future RA [119]. A further
study by the same authors found that the potential protective effect of omega-3 PUFAs
on RA-related autoimmunity may be most pronounced in those who exhibit HLA-DRB1
shared-epitope genetic variant [169]. Emerging evidences from epigenomic-wide associa-
tion studies indicate that one of the mechanisms responsible for the omega-3 PUFAs-related
anti-inflammatory modulation of gene expression within the cells involves the alteration of
epigenetic markers, such as DNA methylation [97]. Inverse associations with risk of disease
development and disease activity has been also associated with high intakes of fruit and
vegetables, suggesting a protective factor [170,171]. Fruits, such as berries, pomegranates
and citrus fruits, as well as vegetables and whole grains, are rich sources of a variety of
vitamins and other bioactive compounds, especially the polyphenolic flavonoids that have
been associated with anti-inflammatory, anti-oxidant and analgesic effects. Vegetarian and
vegan dietary patterns are particularly high in such compounds and have been proven
useful in the management of RA [172]. Moreover, several studies have demonstrated that
patients with arthritis consume less fruits, whole grains and plant proteins, compared to
those without arthritis [173–175]. Nutrigenomic effects of numerous dietary bioactive com-
pounds naturally occurring in fruits, vegetables, and their derivative products, have been
explored in humans. For e.g., resveratrol, a phenolic compound normally present in some
fruits including red grapes, mulberries as well as in peanuts and red wine, has been shown
to downregulate NF-κB, TNF-α, IL-β, IL-6 and COX-2 [176,177]. In addition, according to
recent nutri-miromics studies, resveratrol is capable of downregulating miRNA-21, and
miRNA-155 in different human cell culture models [98,99]. MiRNA-21 and miRNA-155
are highly expressed in RA, and are known to play critical roles in disease pathogene-
sis [178–180]. Moderate consumption of alcohol was negatively associated with the risk of
developing ACPA-positive RA, especially in smokers carrying HLA-DRB1 SE alleles [181],
while excessive sodium chloride consumption among cigarette-smokers increases by more
than two the risk of developing HLA-DRB1 SE-positive RA, suggesting a significant ad-
ditive effect between smoking, diet and genetic risk factors [182]. It has been shown that
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caffeine downregulates inflammatory pathways involved in autoimmunity. In vitro ex-
periments showed significant downregulation at the mRNA levels of key inflammatory
genes including STAT1 and TNF, and also cytokine levels were decreased significantly
with caffeine treatment [183]. Another study has found that coffee decreases methotrexate
(i.e., the first-line disease-modifying antirheumatic drug used to treat RA) intolerance and
increases treatment compliance among RA patients [184]. Soukup et al. scrutinized the
effect of coffee intake on the therapeutic impact of methotrexate in RA patients grouped
based on different genotypes related to adenosine pathway. They found that genotypes
and coffee consumption affect risk of RA and effectiveness of methotrexate treatment [118].
Based on genome-wide gene expression response data, Van Bussel et al. [185] have theo-
rised that a brief term caloric restriction is effective in downregulating gene sets involved
in the immune response in young men. Moreover, a recent multi-omics study has found
that caloric restriction ameliorates insulin sensitivity in humans [186], while studies in
human obesity and insulin resistance have shown a clear relationship between decreased
insulin sensitivity, the chronic activation of pro-inflammatory signaling pathways and RA
activity. Indeed, elevated levels of TNF-α and IL-6 have all been recorded in several dia-
betic and insulin-resistant conditions [187,188], while insulin-resistant pathways have been
linked with disease activity in RA [189]. Various in vivo studies have stated the nutrige-
nomic impacts of single nutrient supplementations/withdrawal in mouse or rat models of
RA, namely magnesium [190], methionine [191], nobiletin (a citrus flavone) [192], omega-
3 PUFAs-derived metabolites [193], Equol (a major soybean phenolic metabolite) [194],
epigallocatechin-3-gallate (a green tea polyphenol) [195] and numerous others, and all
these interventions usually showed promise of favorably modulating some of the genes
or pathways implicated in inflammation or arthritis in rodents. However, considering
the differences between RA, as it occurs in humans, and the RA-like condition currently
replicated in RA animal models [196], translatability of these in vivo studies to humans in
order to predict the effects of bioactive compounds or nutritional interventions, may be
questionable. Additional studies designed to identify the genetic susceptibility to RA and
the interaction between particular genetic variants, RNAs and proteins expression, metabo-
lites production and nutrient intake in humans, will be crucial in planning patient-specific
nutritional interventions and preventive strategies based on patient genetic characteristics.

5. Rheumatoid Arthritis, Microbiome and Nutrition

It is well known that microbiome can affect the inflammatory state of an individual
by influencing both the host innate and adaptive immune system and its metabolic poten-
tial [197]. In recent times, thanks also to the progress in microbiomics techniques which
has allowed a deep characterization of microbial communities, the gut microbiota has been
given an important role in RA aetiology and development [3,198,199].

Zhang et al. carried out metagenomic sequencing and a metagenome-wide association
study on stool, salivary and dental specimens from a wide cohort of treatment-naïve RA
patients and healthy controls. Consequently, they found that the gut microbiome and the
oral microbiome displayed noteworthy dissimilarities between RA patients and control
subjects, and, the altered gut microbiome and oral microbiome of RA patients were in part
restored by DMARDs [200]. Other human microbiomics studies have revealed that RA pa-
tients display a decreased gut microbiota diversity if compared with healthy controls [201].
Patients with RA, especially erosive patients, have a characteristic enterotype of gut micro-
biota with a decreased abundance of bacteria belonging to the family Bifidobacterium and
Bacteroides [202], an expansion of certain rare bacterial lineages [203], and, at least in the
preclinic phase of the disease, an abundance of Prevotella copri in shared-epitope positive
individuals [204]. It is now accepted that diet composition has a crucial role in the control
of gut microbial populations and, thus, in the potential prevention, management and treat-
ment of many human diseases, including RA [205]. During the past few years, numerous
works have associated diet/nutrients, gut microbial communities and the expression of
genes involved in immune responses [206]. Considering this relation, there may be impor-
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tant therapeutic benefit in manipulating microbial composition by dietary interventions.
A fresh study by De Filippis et al. [88] has suggested that diet affect P. copri at the strain
level. The authors analyzed the gut metagenomes of individuals with different dietary
patterns, checking for the presence of distinct P. copri strains. They found that a diet high
in fiber were linked to P. copri types with better ability in carbohydrate catabolism, while
P. copri strains associated with an omnivore dietary pattern had a higher preponderance of
genes involved in branched-chain amino acids (BCAA) biosynthesis. Whether particular
strains are more prone to trigger RA than others, and whether different nutritional patterns
could affect this risk, remains to be elucidated by further studies. However, it has been
shown that high BCAA is a risk factor for type 2 diabetes, glucose intolerance, and promote
pro-oxidant and pro-inflammatory activities in peripheral blood mononuclear cells [207],
suggesting a possible relationship between P. copri, diet, and RA in genetically susceptible
individuals, paving the way for precise nutritional interventions aiming to prevent RA.
While the pathogenesis of microbiome-mediated diseases remains to be completely clari-
fied, one mechanism may be linked to microbial metabolism. There is evidence that some
foods have pro- or anti-inflammatory effects mediated by diet-related metabolites [208].
Metabolites generated by gut commensal microbes in response to host diet, may influence
both microbiota and host homeostasis, with potentially beneficial or detrimental effects.
Tang et al. have identified dietary compounds and phytochemicals that may affect micro-
biota abundance within the gut and interact with microbial community composition to
change host metabolism. In particular long-term intake of plant-derived foods as well as
consumption of artificial sweeteners were linked to important disparities in circulating
metabolites, especially bile acids, which were linked on gut enterotype, suggesting that
microbiome makeup and structure mediate the effect of nutrition on host physiology [91].
This could be interesting considering that bile acids are increasingly recognised as impor-
tant signalling molecules in the regulation of immune homeostasis and inflammation [209].
Several metabolomics studies and genome-based analysis of bacteria have reported that
the microbial metabolites regulate immune system and inflammation. For e.g., short chain
fatty acids (SCFA), produced by bacteria that ferment fiber, are known to mediate immune
functions and inflammation [210,211]. Moreover long-term vegetarian diet has been linked
with an enrichment in butyrate-producing bacteria [212], while a short-term high-fiber
nutritional intervention study in RA patients has been shown to increase anti-inflammatory
SCFA and decrease pro-arthritic cytokines, along with a durable shift in the microbiome
composition [102]. In addition, evidence suggests that SCFA may act as histone deacetylase
inhibitors in human cells, thereby epigenetically modulating inflammation-related gene
expression [213]. Trimethylamine N-oxide (TMAO), is an important microbiota-generated
metabolite derived from dietary choline, betaine, and L-carnitine, which are contained
in great amounts, in red meat, eggs, and dairy. TMAO is known to exert an impact on
several significant mechanisms in the atherosclerosis pathogenesis pathway and vascular
disfunction, promoting the etiological mechanisms of cardiovascular disease in RA [214].
Persistent red meat consumption increases systemic TMAO levels while high intake of meat
and processed-meat products has been associated with an increased risk of RA [215,216],
suggesting that this association could be mediated by the host-microbiome and microbial
metabolome. Recently, it has been found that RA patients have a distinct oral microbiome.
In addition, RA oral microbiota showed greater micobial diversity in comparison with
healthy subjects, suggesting that there could be more potentially pathogenic microbes
in the oral cavity of patients with RA and that this could negatively affect the outcome
of the disease [217]. Tong et al. have observed a typical compositional modification of
salivary microbiome in persons at increased risk for RA, indicating that oral microbiota
dysbiosis arise in the preclinic stage of RA and are linked with systemic autoimmune
features [218]. For e.g., it has been shown that Porphyromonas gingivalis, a bacterium which
can be found the oral cavity, may generate an enzyme that citrullinates proteins. A close
connection between the resulting inflammatory disorder of the oral mucosa (periodontitis)
and a higher susceptibility to seropositive RA has been suggested [219]. Interestingly, some
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studies revealed that dietary habits can influence periodontal health, both directly, and
indirectly by altering oral microbiota composition, [103,220,221], suggesting that some
benefit might possibly be achieved through dietary modulation in at risk subjects.

6. Discussion

The beginning of the 21st century was featured by fast progress in high-throughput
‘omics’ approaches, high-content-technologies, bioinformatics and computational power.
Genomics, transcriptomics, proteomics, metabolomics, and microbiomics analysis now
make it possible to improve the understanding of the pathogenesis of complex diseases
such as RA as well as to study the relationship between nutrition, microbiota, health and
disease at a molecular level. Thanks to the ‘omics’ methods and approaches, researchers
are now experiencing the opportunity of connecting food components, diet, individual
genetic background, health, and disease. Novel ‘omics’ technologies offer unprecedented
opportunities to overcome the limitations inherent in traditional nutrition and RA research.
Although robust associations between dietary intake and population health or disease
are evident from conventional observational epidemiology, the outcomes of large-scale
intervention studies examining the causality of those links have often proved unconvinc-
ing or have failed to demonstrate causality, including nutritional interventional studies
related to RA [222,223]. This apparent conflict is most likely due to the well-known dif-
ficulty in assessing nutritional status and measuring habitual dietary intake which may
lead to confounding in observational epidemiology. Indeed, dietary intake assessment
is usually established by self-reported food intake questionnaires, which have intrinsic
limitations. Metabolomics and proteomics benefit from the accessibility to the advanced
high-sensitivity analytical tools to provide new opportunities for dietary biomarker de-
velopment and application. Biomarkers of food or nutrient intake may allow to assess
food consumption accurately and objectively by measuring blood/urine/fecal metabolites
and avoiding the subjective errors that self-reporting of intake may introduce. There are
several proteomics and metabolomics studies that have detected candidate biomarkers
for diverse dietary habits, as well as for several kinds of foods, including meat, vegetables
and fruits. Numerous studies have also described metabolites associated to specific dietary
patterns, like MedDiet, high fat, or Western diets [208]. Interestingly, some studies revealed
increased levels of carnitine and taurine in patients with active RA [224,225]. Carnitine
and taurine are known to be potential biomarkers of meat intake thus this might support
the evidences from epidemiological studies which correlate high meat consumption with
RA [215]. The identification of food biomarkers is an ongoing process. The application of
biomarkers in nutritional research will be crucial to ameliorate the assessment of dietary
intake, exposure to particular nutritional components, and of compliance to nutritional
interventions, as well providing information on interindividual differences in response
to diet. There is a large need for further studies to better understand the influence of
diet or dietary bioactive components on RA risk, possibly encompassing a nutrigenomics
approach. This approach will lead to precision nutrition, whose goals are the prevention
and management of chronic diseases, such as RA, by adjusting nutritional interventions or
recommendations according to a specific genetic background or metabolic profile. Even if
dietary biomarkers usually allow for a more realistic measure of nutritional intake, some
factors which are absent in the conventional methods of dietary assessment could bias
the measurement of dietary intake biomarkers. Such factors include genetic variations,
nutritional factors (e.g., nutrient-nutrient interaction), lifestyle/physiological conditions
(e.g., smoking), biological sampling and analytical methodology. However, existing re-
search on this issue is still scarce. Currently there is no agreement as to which metabolites
would be the most suitable biomarkers for distinct kind of foods. By the way, some metabo-
lites are indicators of groups of food, not being capable to distinguish between the exact
kinds of foods being examined (for e.g., a metabolite typically found in meat may not be
useful in discerning between different types of meat). Possibly, for several foods, an associ-
ation of diverse metabolites would be more suitable as a marker than a single metabolite.
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Unfortunately, the multi-omics studies in RA have not gathered dietary intake data nor
employed the same ‘omics’ platforms so far, hampering the connection of specific food
intake with metabolic changes in RA patients. Thus it is essential to evaluate a biomarker’s
reliability, reproducibility, ability to reveal modifications over time and robustness through-
out different populations, as well as advantages and disadvantages to warrant it is assessed
using the adequate techniques [208,226]. Since conducting nutrition research with human
subjects may be often challenging, many studies aimed to explore the mutual relationship
between autoimmune diseases, including RA, nutrition and microbiota have been- and
are being carried out in animal models. However, while animal models have been helpful
in clarifying the fundamental mechanisms underpinning RA pathogenesis and immune
responses, the use of non-human models to replicate the complexity of the relationship
between RA, diet, microbiota as well as to evaluate the effects of nutritional interven-
tions, may possibly be misleading, taking into account the several interspecies differences
characterizing for e.g., physiologic responses to nutrients and systemic inflammatory chal-
lenges [227,228], gastrointestinal physiology and microbiome composition [229]. Recent
developments in stem cell biology and three-dimensional complex fluidic in vitro systems
offer exciting opportunities for developing new human biology-based models for use in
nutrigenomics, microbiota and RA omics-based research [198,229]. Such emerging tools,
which are already being applied in biomedical research, are likely to be better models of
the complexity of the human in vivo situation. The integration of these tools with nutrige-
nomics and microbiomics could provide nutrition researchers with huge opportunities to
undertake well-controlled experiments using very manageable human-relevant models to
investigate the mechanisms through which food components modulate gene and protein
expression, metabolite production and epigenetic pathways in both health and disease.
Individually, ‘omics’ technologies have promoted a critical shift in biomedical and nutrition
sciences. Anyhow, each approach individually cannot grab the entire biological complexity
of nutrition-disease relationships. Combination of multiple technologies, referred to as
‘multi-omics approach or systems biology’ is emerging as an approach to allow a broader
view of biology, disease and the influences of environmental factors, including diet [230].
The integration of data from different ‘omics’ platforms (system biology) could provide
multidimensional insight into the relationship between pathogenetic processes and the
influence of nutrition, allowing the retrieval of comprehensive and holistic biological infor-
mation. Although an “inflammatory” dietary pattern may have a role in the switch from
preclinical to clinical RA, and early nutritional intervention might possibly result in a delay
or prevention of the onset of RA, it requires both an early diagnosis and the identification
of at risk population [174,231]. Since current diagnostic tests are not sufficiently sensitive or
accurate in the very early stages of the disease, RA is typically diagnosed only once damage
to the joints has already begun, a time at which the window for optimal interventions
may have been missed. The multi-omics approach has the potential to identify multiple
biomarkers that can be used to revolutionize the management of RA by mean of enabling a
timely diagnosis. Furthermore, through the analysis of biomarkers in patient populations,
the disease could be stratified into distinct subsets that exhibit differential risks, outcomes,
and eventually different responses to specific foods or dietary interventions. The inte-
gration of diverse complex ‘omics’ datasets may be considered one of the key challenges
of today’s bioinformatics, due to different data formats, high data dimensionality and
need for data normalization [232,233]. The constant exponential growth in ‘omics’ data
requires a parallel development in computing power and software systems for handling
this challenge. New bioinformatic stuffs for the integration of data from several ‘omics’
fields continue to arise, and will assist researchers to faithfully decode data in the context
of biological systems, but harmonized actions are essential to encourage this process [234].
The multi-omics approach will provide the broader scientific community with a valu-
able resource to address many questions about RA pathogenesis and disease-nutrition
interactions at a system-biology level, resulting in development of new diagnostic tools,
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therapeutic strategies, and targeted nutritional interventions, resulting in better disease
prevention and management (Figure 1).

Figure 1. An integrative ‘omics’ approach will lead to a more human-focused research, precision nutrition, eventually
resulting in better prevention strategies, as well as better management of rheumatoid arthritis.

7. Conclusions

The continuous advancement in ‘omics’ technologies has a huge potential to transform
nutrition and RA research. The application and integration of novel ‘omics’ technologies
together with advanced computational tools will enable a better understanding of RA
pathogenetic mechanisms at a molecular level, the discovery of new biomarkers, the
identification and characterization of food bioactive compounds and their impact on RA-
related pathways. This will lead to a more human-relevant approach to nutrition- and RA-
research that ultimately will lead to a nutrigenomics approach and precision nutrition, for
future better disease prevention and management.
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