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Background and Hypothesis:  The existing developmental 
bond between fingerprint generation and growth of the 
central nervous system points to a potential use of fin-
gerprints as risk markers in schizophrenia. However, the 
high complexity of fingerprints geometrical patterns may 
require flexible algorithms capable of characterizing such 
complexity. Study Design:  Based on an initial sample of 
scanned fingerprints from 612 patients with a diagnosis of 
non-affective psychosis and 844 healthy subjects, we have 
built deep learning classification algorithms based on con-
volutional neural networks. Previously, the general archi-
tecture of the network was chosen from exploratory fittings 
carried out with an independent fingerprint dataset from 
the National Institute of Standards and Technology. The 
network architecture was then applied for building classi-
fication algorithms (patients vs controls) based on single 
fingers and multi-input models. Unbiased estimates of 
classification accuracy were obtained by applying a 5-fold 
cross-validation scheme. Study Results:  The highest level 
of accuracy from networks based on single fingers was 

achieved by the right thumb network (weighted valida-
tion accuracy = 68%), while the highest accuracy from the 
multi-input models was attained by the model that simulta-
neously used images from the left thumb, index and middle 
fingers (weighted validation accuracy = 70%). Conclusion:  
Although fitted models were based on data from patients 
with a well established diagnosis, since fingerprints remain 
lifelong stable after birth, our results imply that fingerprints 
may be applied as early predictors of psychosis. Specially, 
if they are used in high prevalence subpopulations such as 
those of individuals at high risk for psychosis. 

Key words: schizophrenia/machine learning/dermatoglyp
hics/diagnosis/artificial intelligence

Introduction

Prenatal alterations in the development of  the central 
nervous system of  genetic and environmental origin have 
been suggested as possible causes for schizophrenia.1,2 
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Due to a common ontogenetic origin in the ectoderm 
(ie, the embryonic tissue that later differentiates to form 
epithelial and neural tissues) such alterations may also 
be reflected as abnormalities in finger skin patterns (also 
known as dermatoglyphs).3,4 Within weeks 6 to 24 of 
gestation dermatoglyphs develop in parallel with neural 
migration processes.5 While dermatoglyphic develop-
ment is not fully understood, there is clear evidence of 
its heritability6–8 as well as the influence of  the intrau-
terine environment.9,10 Factors such as chromosomal 
alterations, viral infections, or maternal stress during 
pregnancy have been associated with simplified and ab-
normal dermatoglyphic patterns8,11 while the speed of 
fetal development has been also related to dermato-
glyphic development.12

After gestation, fingerprints become lifelong stable 
and may be considered as indirect markers of alterations 
in early neurodevelopment. This has led to a significant 
amount of research looking for dermatoglyphic alter-
ations in patients with schizophrenia, summarized in 
the meta-analysis of Golembo-Smith et al.4 Studies in-
cluded have frequently reported reductions in the number 
of dermopapillary ridges and higher levels of fluctuating 
asymmetry.13–15 However, in most of them sample sizes 
were moderate or small, observed effect sizes were low 
and negative or conflicting results were present.4

To some extent, the uncertainty in these findings 
may also be due to the simplicity of the measured fea-
tures, which probably were poor descriptors of the com-
plex patterns present in dermatoglyphs. This limitation, 
though, may be overcome by using new tools recently 
developed in the field of machine learning and image 
processing such as the Deep Learning (DL) neural net-
works.16 The architecture of DL networks allows mod-
eling any type of mathematical relationship and are the 
ideal tool for characterizing patterns of high complexity 
“hidden” in the data.17 In the field of medical imaging DL 
networks have shown their effectivity in a wide range of 
areas including detection of structures and organs, tissue 
segmentation, automatic detection of abnormalities and 
computer-aided diagnostics (see examples in reviews by 
Shen et al.,18 Litjens et al.,19 and Decuyper et al.20). In 
most image-based applications a specific type of DL net-
work, known as convolutional neural network (CNN), 
has been used. CNNs, unlike other networks, explicitly 
take spatial contextual information into account.16,19

In this study, we fit CNNs to fingerprint images from 
a large sample including subjects with a diagnosis of 
non-affective psychosis and healthy individuals. In a 
preliminary step, the hyperparameters specifying the 
architecture of  the network were selected by fitting 
CNNs with an independent sample of  fingerprints from 
the National Institute of  Standards and Technology 
(NIST). Once the network architecture was established, 
models based on single fingers were built to classify our 
sample of  patients and controls, providing information 

on the predictive power of  each individual finger. Next, 
to maximize prediction accuracies multi-input models 
combining the information from several fingers were 
also fit. In all models a 5-fold cross-validation scheme 
was used to obtain non-biased estimates of  diagnosis 
accuracy.

Methods

Sample

An initial sample of  612 patients with a diagnosis of 
schizophrenia (N = 544) and of  schizoaffective dis-
order (N = 68) according to DSM-IV criteria were re-
cruited from 13 facilities belonging to the Hermanas 
Hospitalarias cluster of  mental health hospitals in 
Spain (located in Barcelona, Palencia, Santander, 
Málaga, Madrid, Navarra, Guipúzcoa, and Zaragoza). 
A second sample of  N = 844 healthy controls was also 
recruited from non-medical hospital staff, their rela-
tives and acquaintances, plus independent sources in 
the community, discarding potential participants with 
a first degree relative with a diagnosis of  psychosis. In 
both samples, subjects were aged 18 years or above. 
Individuals not belonging to the European-Caucasian 
ethnicity but which had been originally included in the 
study (N = 77) were later discarded. All subjects gave 
written informed consent and the study procedures were 
approved by the Comité de Ética de la Investigación de 
FIDMAG Hermanas Hospitalarias and adhered to the 
Declaration of  Helsinki.

Acquisition and Preprocessing of Fingerprints

Images from all fingers of participants were ac-
quired with a Kojak PL fingerprint scanner (https://
integratedbiometrics.com/) by a group of well trained 
people under the supervision of a single researcher. These 
images were saved in digital format and sent to the insti-
tution where image processing was performed. Then, a 
set of sequential steps were applied for quality check and 
improvement of images:

1.	A Gabor filter was used iteratively (3 iterations) to min-
imize discontinuities in fingerprint images produced by 
skin scars and wounds (see an example in Appendix 
1). Specifically, the method proposed by Hong et al.21 
and implemented in the python library (https://pypi.
org/project/fingerprint-enhancer) was applied.

2.	A visual inspection on the filtered images of all indi-
viduals was carried out, discarding images from in-
dividual fingers where scars and abnormalities were 
still noticeable after filtering. This step was performed 
by 2 researchers, being blind for both site and group. 
Specifically, the first researcher went through all im-
ages and labeled them as ok or bad/dubious. Next, the 
second researcher inspected the dubious images, which 
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in the majority of cases were eventually rejected. The 
relative amount of discarded images was substantial 
and is reported in table 1.

3.	 Images containing fingers extending beyond the first 
(distal interphalangeal) crease were cut to discard the 
extended portion.

4.	Finally, as required by DL algorithms, the margins of 
images were enlarged to have equal sizes. For that, the 
X and Y dimensions of the largest image of each finger 
were considered.

Selection of Hyperparameters Defining the Network 
Architecture and the Learning Process

The specific architecture of DL convolutional networks 
depends on a large number of parameters (known as 
hyperparameters) which have to be chosen before fitting 
the predictive models with actual data. These include, 
among others, the number of convolutional and dense 
layers, the size and number of filters in each layer, the 
inclusion of specific pooling, padding or strides between 
layers and the selection of the non-linear activation func-
tions for intermediate and final layers. Also, additional 
decisions should be taken on the features ruling the 
training process, such as the loss function, the optimi-
zation algorithm, the usage and intensity of regulariza-
tion or drop out, the number of epochs, and the size and 
number of batches.

The initial selection of these hyperparameters usually 
involves many attempts until an optimal configuration 
is found. Consequently, if  the data used for this initial 
step is also used in the final network fittings, the risk of 
overfitting and of reporting biased (overoptimistic) clas-
sification accuracies becomes very high.16 To avoid this, 
we used a publicly available set of fingerprint images 
from the National Institute of Standards and Technology 
(NIST) (https://www.nist.gov/). Specifically, 442 images 
from the right index were extensively used to find an op-
timal combination of hyperparameters for the prediction 

of sex (which was the only dichotomic variable available 
in the dataset). Here it was assumed that a network archi-
tecture optimized for the classification of sex would also 
capture finger traits relevant for classifying patients and 
controls. Finally, to check if  the selected hyperparameters 
were also suitable for our data, we carried out fittings 
using right index images from our healthy controls to 
classify them according to sex.

Fitting of Deep Learning Networks for Patient/Control 
Classification

Once all hyperparameters of the network were well estab-
lished, 2 types of models were built for the patient/control 
classification using the scanned fingerprints (figure 1). On 
the one hand, predictive models based on single-finger 
images were fitted. For that, fingers with a rejection rate 
lower than 50% in patients were considered (see table 1). 
Specifically, individual models for fingers R1, R2, R3, 
R4, L1, L2, and L3 (see acronyms in table 1) were gen-
erated. On the other hand, networks combining informa-
tion from several fingers were also considered. Following 
previous evidence pointing to a differential degree of 
right–left asymmetry in patients4 models containing both 
right and left instances of the same finger were fitted. 
For that, two-finger models with right-left pairs R1-L1, 
R2-L2, and R3-L3 were considered. Three finger models 
including the thumb, index and middle finger of each 
hand (R1-R2-R3 and L1-L2-L3) were also trained, but 
more complex models or models including instances of 
the ring and little fingers were discarded as sample sizes 
became too small for reliable network development (fit-
ting multi-finger models required having correct images 
from all fingers of each individual).

The same network architecture used in the single-finger 
models was considered as the building blocks for the 
multi-finger models (figure 1). Specifically, multi-input 
models, where each finger is processed by a parallel con-
volutional branch whose output is merged into a single 
dense layer containing the outputs of the other branches 
(fingers) were applied.22

From the initial fittings using the NIST dataset it be-
came clear that sex had a strong influence on fingerprints. 
Hence, to avoid the confounding effect of sex on the pa-
tient/control classifications, samples of images had to be 
matched for sex (ie, they had to have the same propor-
tion of males and females in patients and controls). Final 
sample sizes and sex ratios used for each model are pro-
vided in table 2, together with information on age and 
estimates of premorbid IQ obtained through a Spanish 
word accentuation test based on thirty words.23

To obtain unbiased estimates of  classification accur-
acies from the models, a 5-fold cross-validation scheme 
was applied. Final accuracy estimates were provided 
by averaged classification success values from valida-
tion subsamples obtained at the end of  the last epoch. 

Table 1.  Absolute and Relative Amount of Filtered Images 
Discarded After Visual Inspection in Patients (Initial N = 612) 
and in Healthy Controls (Initial N = 844). Names of Fingers are 
Provided With Their Abbreviations as Used Throughout the Text

Finger (abbreviation) Patients Controls

Right thumb (R1) 230 (39 %) 90 (11 %)
Right index (R2) 200 (34 %) 66 (8 %)
Right middle (R3) 223 (38 %) 92 (12 %)
Right ring (R4) 263 (45 %) 119 (15 %)
Right little (R5) 310 (53 %) 148 (19 %)
Left thumb (L1) 242 (41 %) 114 (15 %)
Left index (L2) 212 (36 %) 59 (8 %)
Left middle (L3) 252 (43 %) 81 (10 %)
Left ring (L4) 301 (51 %) 144 (18 %)
Left little (L5) 325 (55 %) 178 (23 %)
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Bootstrap 95% intervals were derived from this same 
data. Building and training of  all networks was carried 
out using the R API of  Keras (https://keras.rstudio.
com) which, in turn, runs on the TensorFlow platform 
(www.tensorflow.org). All network calculations were 
performed on a NVIDIA Quadro RTX 6000 24GB 
Graphics Processing Unit.

Results

Hyperparameter Selection and Checking

The general architecture of the network selected after ex-
ploratory fittings based on the NIST dataset, as listed by 
the Keras software, is shown in Appendix 2. The chosen 
model contained 4 initial convolutional layers (three of 
them followed by pooling of the maximum value) and 
two dense layers. In all layers Rectified linear Units (relu) 
were used as activation functions, apart from the last 
dense layer where a sigmoid was considered to obtain 
outputs in the 0–1 range (ie, the range of probabilities). 
The number of convolution filters in each layer is also 
provided in Appendix 2. Other relevant hyperparameters 
and settings are: optimization function = Root Mean 
Squared Propagation, loss function = Binary Cross-
entropy, metrics = Accuracy, Number of epochs = 300, 
Batch Size = 32, convolution filter size = 3 × 3, pooling 
window size = 4 × 4 and Drop Out regularization with a 
0.5 rate.

Levels of accuracy in the validation subsets of each 
one of the 5 cross-validation folds, achieved by the net-
work fittings as epochs were run, are shown in Appendix 
3A. As the NIST sample was not matched by sex (19% fe-
males vs 81% males) balanced (weighted) accuracies were 
used and reported instead of raw accuracies. Network fit-
ting with the previously listed hyperparameter settings led 
to a weighted validation accuracy of 0.733 (0.681–0.787 
bootstrap 95% interval).

When the same configuration of hyperparameters was 
used to classify sex in our subset of healthy subjects (N 
= 719 correct images of right index in the whole sample; 
35% men, 65% women) a lower but clearly significant 
weighted validation accuracy of 0.718 (0.684–0.752 boot-
strap 95% interval) was achieved. Appendix 3B shows the 
evolution of weighted accuracies through the 300 epochs 
for the 5 validation subsets derived from the 5 cross-
validation folds.

Diagnostic Classification Based on Single Fingers

Table 2 reports weighted validation accuracies achieved 
by fitting the previously selected network on each one of 

Fig. 1.  Two types of convolutional neural network (CNN) 
models were fitted with the fingerprints of patients and healthy 
controls. On the one hand, predictive models based on single-
finger images were built (A). These models had a standard CNN 
architecture composed of a set of convolutional layers (ie, made 
of spatial convolution filters) followed by dense layers obtained 
by flattening (rearranging the convolutional structure to a simple 
1-dimensional vector of fully connected nodes). The creation 
of these single-finger models followed a 2 step procedure. First, 
the general structure and main properties of the network (also 
known as hyperparameters) were chosen through trial and error 
on an independent external fingerprint dataset. Once the CNN 
architecture had been set, samples of finger images from patients 
and healthy controls obtained in this study were used to estimate 
the weights (coefficients) of the final predictive networks. (B) 
Considering several instances of this architecture (one instance 
for each finger) multi-input models that use images from several 
fingers were also built. At a certain level of the network, after 
the flattening step, the information from the different fingers had 
to be merged through concatenation of their dense layers into a 
single vector. In both single and multi-input models, a sigmoid 

activation function in the last dense layer provided estimates of 
the probability for a test individual of belonging to the target 
population (ie, of being a patient).
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the individual fingers separately (R1, R2, R3, R4, L1, L2, 
and L3). The highest accuracy (of 68%) was attained by 
the Right Thumb images, followed by the Left Middle 
and Left Thumb images (68% and 67%) while the lowest 
accuracy (of 59%) was provided by the Right Index. The 
remaining fingers had accuracies between these extreme 
values (see figure 2A).

To gain some insights on the inner workings of the de-
veloped neural networks, heatmaps of intermediate con-
volutional layers were created. Specifically, by calculating 
a weighted average of channels generated by a convolu-
tional layer of the fitted model, maps of the areas of an 
individual fingerprint image that have been more relevant 
in the classification of a given subject may be derived (see 
figure 3).24 Examples of heatmaps from correctly classi-
fied patients derived from each one of the fingers finally 
used in this study are shown in Appendix 4. In general, 
regions with a substantial weight on the classification 
of individuals are quite large but are well delimited spa-
tially. Although, for a given finger, there are noticeable 
interindividual similarities in the anatomical location of 
these influential areas, variability between individuals is 
also evident.

Diagnostic Classification Based on Multi-Input 
Networks

Finally, models based on more than one finger always 
provided weighted accuracies equaling or surpassing 
the maximum accuracy achieved by any of  the indi-
vidual fingers included in their respective models (see 

table 2 and figure 2B). Specifically, the left-hand com-
bination L1-L2-L3 led to the highest accuracy of  all 
(70%).

Discussion

Our results suggest that fingerprints are valuable sources 
for diagnosis of non-affective psychosis and that CNNs 
are a feasible tool to achieve this goal. Since dermato-
glyphic patterns, once formed, are stable through life it 
may also be inferred that fingerprint images are poten-
tially useful for early prediction of risk before the dis-
order is developed. Although a maximum accuracy of 
70% does not provide enough precision for a faultless 
diagnosis, fingerprint images may still be valuable, espe-
cially if  they are combined with other sources of informa-
tion that have already shown some predictive power in 

Fig. 2.  (A) Upper plot shows the mean weighted accuracies 
achieved by each one of the networks based on a single 
fingerprint (with error bars based on bootstrap 95% confidence 
intervals). The plot also shows the 5 individual weighted 
accuracies estimated from each 1 of the 5 cross-validation test 
sets. (B) Analogous plot but for networks based on several fingers 
(multi-input models). Fingerprints are coded following the 
acronyms of table 1.

Fig. 3.  Left column: Examples of Right Thumb fingerprints 
for 3 patients correctly classified by the network. Right column: 
Heatmaps for these fingerprints obtained by a weighted average 
of channels generated by one of the intermediate convolutional 
layers of the predictive network (conv2d_2). In these, the spatial 
distribution of anatomical areas with a greater weight in the 
classification of the 3 subjects is shown in light colors.
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schizophrenia such as genetics25,26 and brain imaging 
data.27,28 Indeed, the same multi-input approach used 
here to combine different fingers may be easily extended 
to include data sources of different natures.22

On the other hand, the 70% limit in accuracy also re-
flects the biological origin of fingerprint abnormalities. 
As stated in the introduction, dermatoglyphic develop-
ment is restricted to a period during gestation and it can 
only be affected by genetic or environmental factors that 
were active during this period. While there is strong evi-
dence for the effect of such factors, there are many other 
processes occurring later in life that have also been shown 
to increase the risk for schizophrenia29 and which would 
expose a fingerprint based accuracy much higher than 
70% as unrealistic.

Although a considerable effort was put on the proper 
design and execution of the study, some sources of poten-
tial bias have remained. Thus, as shown in table 2, samples 
matched for sex ratio had substantial differences in pre-
morbid IQ between patients and controls. While a major 
frequency or intensity in early neurodevelopmental events 
is likely to have led to reduced premorbid IQ values, we 
cannot completely rule out other sources of bias under-
lying such differences. The mean age in the matched (by 
sex ratio) samples was also considerably larger in patients. 
However, due to the lifelong stability of fingerprints, ef-
fects of age would not have to be expected, except for a 
larger number of scars and wounds accumulated trough 
external life events. It is assumed, though, that these had 
been minimized by the exhaustive quality control and im-
provements carried out when preprocessing the images.

There are also other issues to bear in mind to have a 
rational idea of the practical implications of our study. 
First of all, while we have achieved a reasonably high level 
of accuracy, applicability of the predictive models should 
be eventually measured through their positive predictive 
value (PPV, ie, the probability that an individual classi-
fied as patient by the model is really a patient) instead of 
the accuracy (ie, the probability of an individual to be 
classified in his/her correct class). Apart from accuracy, 
the PPV depends on the prevalence of the disorder. A 
low prevalence such as the one for schizophrenia, which 
is approximately 1% of the general population, leads to 
very low PPVs even for high accuracies. This restricts the 
practical utility of the developed algorithms to high risk 
subpopulations such as groups of individuals with prod-
romal symptoms or at high genetic risk for schizophrenia. 
In the former group (which may also include individuals 
with a possible first episode of psychosis) the predictive al-
gorithms could become a valuable clinical tool if  used ad-
equately and with results cautiously interpreted. However, 
for individuals at high genetic risk for schizophrenia, clear 
ethical guidelines would have to be put in place to regulate 
their use, especially in the early stages of life.

From the design and results of our study, we cannot de-
rive any conclusion on the specificity of the abnormalities 

found. Indeed, prenatal stress has also been considered 
a risk-factor for other psychiatric disorders (see reviews 
by Lautaresku30 and Van den Bergh31). However, previous 
studies comparing fingerprints in schizophrenia with 
those from other psychiatric disorders such as bipolar 
disorder, posttraumatic stress disorder or anxiety, have 
reported high levels of specificity in schizophrenia.32,33 
Still, these studies were based on small sample sizes and 
cannot be considered conclusive. Also, if  the observed 
abnormalities are indicative of the intensity and extent of 
insults occurring during gestation, they may be taken as 
a proxy for the impact of prenatal stress, especially when 
information on prenatal stress had not been properly 
registered in clinical records and it is instead unreliably 
recalled. Although the primary objective of our study 
was to evaluate the predictive power of CNNs in schizo-
phrenia, additional outcomes such as the heatmaps may 
have a broader interest. Interindividual variability in the 
extent and location of the anatomical patterns observed 
in these heatmaps is probably related to the well-known 
between subject variability in the presence and location 
of arches, loops, and whorls in fingerprints. In that sense, 
the convolutional networks used here are ideal for finger-
print characterization, as they rely on space invariant fil-
ters that are able to detect finger patterns regardless of 
their position in the image.

In spite of  research in the field spanning several dec-
ades now, placing our results in relation to previous 
findings may be difficult as no clear consensus has been 
achieved yet. Maybe, the significant difference in total 
finger ridge count reported in the meta-analysis by 
Golembo-Smith et al.4 could be linked to our findings, 
although such measurement is anatomically unspecific. 
While a deeper understanding of  patterns in heatmaps 
and their relation to schizophrenia warrants future 
work, other areas of  interest include the development of 
models for differential diagnosis between affective and 
non-affective psychoses, for disorder prognosis (eg, pre-
diction of  long-term clinical evolution) and the design 
of  multi-input models combining fingerprint images 
with other sources of  data.

To the best of our knowledge, this is the first study 
analyzing the potential utility of fingerprint images to 
automatically diagnose schizophrenia through DL, and 
our results support the feasibility of such an approach. 
Moreover, the lifelong stability of fingerprints also sup-
ports their potential value as predictors of risk of psy-
chosis, especially if  combined with other sources of data 
and if  applied to high prevalence subpopulations like those 
of individuals presenting prodromal psychotic symptoms 
or subjects with significant genetic risk for schizophrenia.

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin/.
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