
Citation: Rajalakshmi, N.R.;

Dumka, A.; Kumar, M.; Singh, R.;

Gehlot, A.; Akram, S.V.; Anand, D.;

Elkamchouchi, D.H.; Noya, I.D. A

Cost-Optimized Data Parallel Task

Scheduling with Deadline

Constraints in Cloud. Electronics 2022,

11, 2022. https://doi.org/10.3390/

electronics11132022

Academic Editor: Shinichi Yamagiwa

Received: 25 May 2022

Accepted: 21 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Cost-Optimized Data Parallel Task Scheduling with Deadline
Constraints in Cloud
N. R. Rajalakshmi 1 , Ankur Dumka 2,3, Manoj Kumar 4, Rajesh Singh 5, Anita Gehlot 5,
Shaik Vaseem Akram 5,6 , Divya Anand 7,8,* , Dalia H. Elkamchouchi 9 and Irene Delgado Noya 8,10

1 Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of
Science and Technology, Chennai 600062, India; rajirajasekaran@gmail.com

2 Department of Computer Science and Engineering, Women Institute of Technology, Dehradun 248007, India;
ankurdumka2@gmail.com

3 Department of Computer Science and Engineering, Graphic Era Deemed to Be University,
Dehradun 248007, India

4 School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra (J&K) 182320, India;
vermamk@gmail.com

5 Division of Research & Innovation, Uttaranchal Institute of Technology, Uttaranchal University,
Dehardun 248007, India; drrajeshsingh004@gmail.com (R.S.); dranitagehlot@gmail.com (A.G.);
vaseemakram5491@gmail.com (S.V.A.)

6 Law College of Dehradun, Uttaranchal University, Dehradun 248007, India
7 School of Computer Science & Engineering, Lovely Professional University, Phagwara 144411, India
8 Higher Polytechnic School, Universidad Europea del Atlantico, C/Isabel Torres 21, 39011 Santander, Spain;

irene.delgado@uneatlantico.es
9 Department of Information Technology, College of Computer and Information Sciences,

Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
dhelkamchouchi@pnu.edu.sa

10 Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
* Correspondence: divyaanand.y@gmail.com

Abstract: Large-scale distributed systems have the advantages of high processing speeds and large
communication bandwidths over the network. The processing of huge real-world data within a time
constraint becomes tricky, due to the complexity of data parallel task scheduling in a time constrained
environment. This paper proposes data parallel task scheduling in cloud to address the minimization
of cost and time constraints. By running concurrent executions of tasks on multi-core cloud resources,
the number of parallel executions could be increased correspondingly, thereby, finishing the task
within the deadline is possible. A mathematical model is developed here to minimize the operational
cost of data parallel tasks by feasibly assigning a load to each virtual machine in the cloud data
center. This work experiments with a machine learning model that is replicated on the multi-core
cloud heterogeneous resources to execute different input data concurrently to accomplish distributive
learning. The outcome of concurrent execution of data-intensive tasks on different parts of the input
dataset gives better solutions in terms of processing the task by the deadline at optimized cost.

Keywords: data parallel task; virtual machine; cloud data center; cost optimization model; concurrent
computation

1. Introduction

The development of software is an enormous sector of the global economy, with its
own phase of evolution and a significant influence on the digital economy as a whole.
The IT sector is a real engine of growth in the world economy, which means that its
success is important. The escalation of computing services has been enhanced recently. Its
attractiveness mainly stems from the release of IT resources, such as the transformation
of capital IT expenditure into economic resources. It has the potential to minimize costs
by economies of scale. Cloud computing, big data, and the Internet of Things (IoT) have

Electronics 2022, 11, 2022. https://doi.org/10.3390/electronics11132022 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11132022
https://doi.org/10.3390/electronics11132022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9705-0917
https://orcid.org/0000-0001-8438-4387
https://orcid.org/0000-0003-4915-8426
https://doi.org/10.3390/electronics11132022
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11132022?type=check_update&version=2

Electronics 2022, 11, 2022 2 of 13

become inseparable components of digital networking and information systems nowadays.
Along with numerous other sources of information and communication, they cover different
facets of society. Total automation and a focus on observable processes provide a continuous
flow of digital data that can be used at various levels of management, business growth,
manufacturing processes of an organization, and even the perception of the software
product by the customer. As an unprecedented volume of data is being dealt with by IT
industries every day, these vast amounts of data create new challenges and opportunities.

It has been affirmed that the execution of gathered massive, non-uniform real-world
data through grid computing and cloud computing is becoming more obscure [1]. The
challenges are not bound to the size of data only but also to the time and cost constraints
of execution [2]. Task scheduling approaches have been used for homogeneous multipro-
cessor systems to solve computationally intensive image processing and computer vision
applications, including those for reconfigurable network topologies. However, in contrast
with homogeneous multiprocessor systems, heterogeneity in computer systems adds an
additional degree of complexity to the scheduling problem. This could be overcome by
efficient scheduling of tasks because the optimal scheduling uses the resources efficiently
to achieve quick response times for real-time applications [3]. The scheduling of heteroge-
neous computing resources depends on the following parameters of resource availability,
workload size, resource utilization, cost, and resource capacity, such as different speeds
of processors and communication between the processors. Service level agreement (SLA)
negotiation also moderates the scheduling and utilization of resources [4]. Therefore, the
above parameters have to be considered while scheduling the tasks on resources to meet
user expectations (Figure 1).

Electronics 2022, 11, x FOR PEER REVIEW 2 of 14

nowadays. Along with numerous other sources of information and communication, they
cover different facets of society. Total automation and a focus on observable processes
provide a continuous flow of digital data that can be used at various levels of manage-
ment, business growth, manufacturing processes of an organization, and even the per-
ception of the software product by the customer. As an unprecedented volume of data is
being dealt with by IT industries every day, these vast amounts of data create new chal-
lenges and opportunities.

It has been affirmed that the execution of gathered massive, non-uniform real-world
data through grid computing and cloud computing is becoming more obscure [1]. The
challenges are not bound to the size of data only but also to the time and cost constraints
of execution [2]. Task scheduling approaches have been used for homogeneous multi-
processor systems to solve computationally intensive image processing and computer
vision applications, including those for reconfigurable network topologies. However, in
contrast with homogeneous multiprocessor systems, heterogeneity in computer systems
adds an additional degree of complexity to the scheduling problem. This could be over-
come by efficient scheduling of tasks because the optimal scheduling uses the resources
efficiently to achieve quick response times for real-time applications [3]. The scheduling
of heterogeneous computing resources depends on the following parameters of resource
availability, workload size, resource utilization, cost, and resource capacity, such as dif-
ferent speeds of processors and communication between the processors. Service level
agreement (SLA) negotiation also moderates the scheduling and utilization of resources
[4]. Therefore, the above parameters have to be considered while scheduling the tasks on
resources to meet user expectations (Figure 1).

Figure 1. A framework for Resource Scheduling.

Time consumption is not only determined by hardware efficiency but also the effi-
ciency of applications running on the system. The web and business applications may
require high-performance computing machines to execute the application. The increasing
cloud utility may demand the powerful machine in the cloud data center to perform
high-performance computing. The increasing size of efficient and powerful cloud data
centers consumes enormous amounts of cost and leads to high operational costs and
carbon footprints.

In the view of attaining the timeliness of the computation, more patterns are em-
ployed to model a generic flow of work. The data parallelism pattern is appropriate to
embarrassingly model a parallel computation of a data-intensive task. This pattern leads
to the concurrent execution of multiple and independent data parallel tasks on hetero-
geneous computing of multi-core resources. However, data parallel task scheduling in
heterogeneous environments with the aim of satisfying QoS constraints (such as cost and
execution time) is a complex issue. The motivation of this work is the execution of da-

Figure 1. A framework for Resource Scheduling.

Time consumption is not only determined by hardware efficiency but also the efficiency
of applications running on the system. The web and business applications may require high-
performance computing machines to execute the application. The increasing cloud utility
may demand the powerful machine in the cloud data center to perform high-performance
computing. The increasing size of efficient and powerful cloud data centers consumes
enormous amounts of cost and leads to high operational costs and carbon footprints.

In the view of attaining the timeliness of the computation, more patterns are employed
to model a generic flow of work. The data parallelism pattern is appropriate to embar-
rassingly model a parallel computation of a data-intensive task. This pattern leads to the
concurrent execution of multiple and independent data parallel tasks on heterogeneous
computing of multi-core resources. However, data parallel task scheduling in heteroge-
neous environments with the aim of satisfying QoS constraints (such as cost and execution
time) is a complex issue. The motivation of this work is the execution of data-intensive
jobs within time and cost constraints using cloud heterogeneous resources. An efficient
model is needed to acquire the performance of the cloud heterogeneous resources. The

Electronics 2022, 11, 2022 3 of 13

data parallel task runs concurrently in cores that handle large amounts of data to often
yield high throughput and performance. Therefore, task scheduling is presented here to
implement task-level parallelism in cores. The contribution of this work is stated as follows.
This paper proposes cost-optimized data parallel task scheduling in cloud resources. By
running concurrent executions of data, the data parallel task is able to be finished within
the deadline. This work experiments with a machine learning model that is replicated on
the multi-core cloud heterogeneous resources to execute different input data concurrently
for distributive learning. A linear mathematical model is developed here to reduce the
operational cost of the data parallel task. The mathematical model aids in scheduling the
load fractions to each multi-core resource or virtual machine feasibly. The experimental
outcomes of the data-intensive task reveal that better solutions are attained in terms of
deadline and keeping the computational cost at an optimized rate.

The organization of the paper is detailed as follows. Section 2 describes the related work.
Section 3 discusses the need for data parallel task implementation on multi-core resources. The
proposed time-constrained cost optimization model is formulated in Section 4. Experimental
results and discussion are carried out in Section 5. Finally, Section 6 concludes the paper.

2. Related Works

Scheduling is essentially a decision-making mechanism that decides the execution
order on the collection of available resources. The task scheduling on various computational
environments, such as clusters, grids, and the cloud data center is crucial to complete
execution within the deadline. The consumer submitting a job may have a deadline to
comply with. If the target device is a power grid or a cloud, this information is useful,
and the scheduler must use it to verify whether a given schedule complies with the
constraints of the user. The performance of an application on heterogeneous systems is
highly dependent on the processor’s computing capacity, the number of processors, the
bandwidth of communication, the size of the memory, etc. In [5], the author said that the
appropriate scheduling mechanisms improve the Quality of Service (QoS) for cloud users
by minimizing the total completion time of applications. The scheduling mechanisms aid
in managing the complexity that is present in the management of distributed resources
and allocations. The resources are scheduled based on the users’ requirements such as the
budget and deadline. The time cost-optimization scheduling algorithm aids in achieving a
lower job completion time at a minimum computation cost. However, if more numbers of
resources are used for computation, it makes the task more expensive to complete. Mixing
data and task parallelism to compute the large computational applications often gives better
speedups compared to either applying pure data parallelism or pure task parallelism.

In [6], the author proposed a proportional share allocation system that allows users
to bid higher in order to gain more resource shares. Even if this allocation system intends
to minimize the total run time and cost, it does not guarantee the completion of the
workload within a fixed budget; moreover, troubles can be incurred due to the continuous
intervention of the broker to prefer the cheapest resources to complete the task within
the deadline [7]. The multiprocessor executes the parallel task simultaneously to obtain
quick results, process a massive amount of data, and solve a problem in the expected
time. Ref. [8] Machine learning technologies are applied to obtain acceptable solutions of
tolerable time consumption for scheduling problems. Ref. [9] The workflow scheduling
for efficient resource utilization of the volunteer computing system and cloud resources is
applied. Therefore, many of the time-constrained parallel applications in a heterogeneous
environment scheduled using efficient task-scheduling algorithms are completed. The
existing task scheduling works of [10], Ref. [11] executed tasks on a core, but they did not
implement parallelization on the core level. Good scheduling for a parallel task can make it
meet its deadline. The existing scheduling works of [12–18] allocated all of the multiple
available resources at a time to run the concurrency of tasks on the resources.

In [19], they stated that the deadlines could not be met by parallel tasks if parallel
tasks are executed by one unique thread. Multi-core processors are capable of executing

Electronics 2022, 11, 2022 4 of 13

the parallel task simultaneously to obtain quick results, process a massive amount of data,
and solve a problem in the expected time [20]. This work uses multi-core resources to
implement core-level parallelisms to obtain quick results and to process a massive amount
of data within the expected time and minimum power consumption. Others can be seen
in [21–29]. However, the complexity is increased by considering time and cost constraints.
Due to the review above, the cost-optimized scheduling is formulated in this research to
schedule the data parallel task in a multi-core environment under time and cost constraints.

3. Need of Data Parallel Task Implementation on Multi-Cores

The data parallel task is the simultaneous execution of the same task on different
parts of the initial input dataset or task replication with different input datasets. The
implementation of parallel execution requires the transfer of huge data subsets to remote
virtual machines for concurrent execution and makes long wide-area data transfer latencies.
They could be secured by the data management services through authorization and authen-
tication of the remote site. The initiation of a new virtual machine creates latency and cost
consumption. Hence, the completion of a task under the deadline and cost constraints is
also complicated. Therefore, the probable number of parallel task executions in a minimum
execution environment is needed, which is proposed here. It can be obtained by running
concurrent executions on multi-core resources or virtual machines in the cloud. Thus, the
resource utilization is optimized proficiently through executing the tasks concurrently on
the multi-core resources.

If more executions are performed at the local sites, there is no need to transfer the data
to the remote sites (i.e., data replicas in remote sites might be reduced, and security services
can be achieved). In the cloud, there are k many-core machines or resources R with m
cores. All the m cores in each machine or resource are identical. Here, the implementation
of the data parallel task is performed through task replications, which run on different
parts of the initial input dataset. The number of task replication depends on the number
of cores; as a result, each task is run on an individual core. A multi-core virtual machine
has more execution cores. Hence, multi-core resources are helpful for data parallel task
scheduling to process a large amount of data concurrently to achieve high throughput and
performance. Figure 2 indicates the scheduling of data parallel processing operations in a
multi-core architecture. A multi-core processor improves the overall performance of the
task by proper scheduling of parallel computation.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 14

Figure 2. Concurrent computation on multi-core resources.

4. Scheduling Methodology
4.1. Problem Modeling

In this work, the proposed model consists of a finite set of k heterogeneous virtual
machines or multi-core machines with varying capacities to execute a given task. These
virtual machines can be represented as R = {R1, R2, R3, …, Rk}. The given data-intensive
load N split into load fractions, which are n1, n2, n3 … nk, are scheduled onto a set of mul-
ti-core machines {R1, R2, R3 … Rk}. The objective of the proposed work is described here:
• Replicate the task in order to increase the number of concurrent computations that

depend on the number of cores on the virtual machine.
• Finding the feasible amount of data load fractions to achieve an optimized cost un-

der a prefixed job deadline D and budget B constraints. While running a concurrent
computation on the cores, each task runs independently on an isolated core without
waiting for any hardware resources. The CPU time accounted for each task in CMP
is approximately equal if identical workloads are running on a similar core.
The load fractions are communicated to the resources to run a replicated task con-

currently on all the multi-core machines [30]. The execution of dependent tasks on the
resources can make the overhead of communication which may dominate in the overall
processing time. Hence, the overall turnaround time of load on a multi-core machine Ri
will be calculated as the summation of the execution time and the communication time.
In this work, it is assumed that there is no direct communication between virtual ma-
chines. The communication time (Tdi) is related to the data transfer time, and the pro-
cessing time (Tei) is related to the execution time of load fractions ni on the virtual machine
Ri. Here, the execution time is linearly reliant on the fractions of load ni received by the
machine Ri. The communication time is linearly reliant on the fractions of load ni trans-
ferred to the machine Ri. Moreover, the proposed model considers both communication
and execution overhead on each machine Ri is raised during the task execution. Particu-
larly, communication overheads are adapted to the latency on the network while trans-
ferring data to the sites. Similarly, execution overheads are due to scheduling the re-
source, task replication, etc. Here, ni ε N. If ni is the number of load fractions transferred
into machine Ri, it is again partitioned into sub-load fractions such as nci to a set of cores
on the same machine Ri.

Figure 2. Concurrent computation on multi-core resources.

Electronics 2022, 11, 2022 5 of 13

4. Scheduling Methodology
4.1. Problem Modeling

In this work, the proposed model consists of a finite set of k heterogeneous virtual
machines or multi-core machines with varying capacities to execute a given task. These virtual
machines can be represented as R = {R1, R2, R3, . . . , Rk}. The given data-intensive load N split
into load fractions, which are n1, n2, n3 . . . nk, are scheduled onto a set of multi-core machines
{R1, R2, R3 . . . Rk}. The objective of the proposed work is described here:

• Replicate the task in order to increase the number of concurrent computations that
depend on the number of cores on the virtual machine.

• Finding the feasible amount of data load fractions to achieve an optimized cost under
a prefixed job deadline D and budget B constraints. While running a concurrent
computation on the cores, each task runs independently on an isolated core without
waiting for any hardware resources. The CPU time accounted for each task in CMP is
approximately equal if identical workloads are running on a similar core.

The load fractions are communicated to the resources to run a replicated task con-
currently on all the multi-core machines [30]. The execution of dependent tasks on the
resources can make the overhead of communication which may dominate in the overall
processing time. Hence, the overall turnaround time of load on a multi-core machine Ri
will be calculated as the summation of the execution time and the communication time. In
this work, it is assumed that there is no direct communication between virtual machines.
The communication time (Tdi) is related to the data transfer time, and the processing time
(Tei) is related to the execution time of load fractions ni on the virtual machine Ri. Here,
the execution time is linearly reliant on the fractions of load ni received by the machine Ri.
The communication time is linearly reliant on the fractions of load ni transferred to the
machine Ri. Moreover, the proposed model considers both communication and execution
overhead on each machine Ri is raised during the task execution. Particularly, communica-
tion overheads are adapted to the latency on the network while transferring data to the
sites. Similarly, execution overheads are due to scheduling the resource, task replication,
etc. Here, ni ε N. If ni is the number of load fractions transferred into machine Ri, it is again
partitioned into sub-load fractions such as nci to a set of cores on the same machine Ri.

ni = nci * mi (1)

where mi represents the numbers of cores on machine Ri, Tei is the execution time of
resource, which is given by

Tei = ei + tei nci (2)

where ei denotes the execution overheads, and the execution time of machine Ri is taken
as the parallel execution time of cores on machine Ri. If the concurrent task execution on
multiple cores runs with equal workload fractions nci on each core, the load fraction nci on a
core is taken into consideration to calculate the execution time of virtual machine Ri. Here,
tei is the proportionality constant between the time of execution and the number of load
fractions nci submitted to the replicated task, which runs on the core of server Ri. Similarly,
the communication time Tdi is given by

Tdi = di + tdini (3)

where di represents the communication start-up overheads, and tdi is the proportionality
constant between the time of data transfer and the number of load fractions transferred to
resource Ri. Accordingly, the total turnaround time Ti needed to execute ni load fractions
on Ri is calculated by

Ti = Tei + Tdi
Ti = Tei + Td = ei + tei nci + di + tdi ni

(4)

Electronics 2022, 11, 2022 6 of 13

4.2. Time and Cost-Constrained Cost Optimization

This section extends the model in Section 4.1 with time-constrained cost optimization.
A cost optimization model is formed here, which distributes the load fractions to the
selected multi-core resources or virtual machines to carry out the concurrent task in an
optimal way. The following notations are used to formulate the mathematical model:

ci—Cost required for concurrent processing of unit load task in resource Ri
nci—Part of the workload from sources distributed to the task that runs on the core of

resource Ri
B—Budget for the given job.
tei—Concurrent execution time taken by executing a unit load on each core of resource Ri
tdi—Time taken to transfer a unit load to the resource Ri
N—Total workload of the given job.
mi—The number of tasks that should be concurrently executed by virtual machine Ri
The objective is to minimize the total computational cost of a job under a prefixed job

deadline D and cost constraints. The prefixed deadline and budget are given by the user.
The total turnaround time of the job should be within the deadline.

Minimize = ∑
i

cinci (5)

ei + tei nci + di + tdi mi nci ≤ D I = 1, k
tei nci + tdi minci + oi ≤ D i = 1, k

(6)

where oi = ei + di

∑i cinci ≤ B i = 1, k (7)

∑i minci = N i = 1, . . . k (8)

nci ≥ 0. (9)

Equation (5) represents the objective function. Equations (6)–(9) represent the con-
straints to attain the objective function. The constraints (6) and (7) represent the deadline
and cost constraints of a given task. Constraint (8) represents that the load of the job is
the summation of the load fractions, which are distributed for execution. Constraint (9)
represents that the distributed workload fractions are non-negative constraints.

4.3. Time and Cost-Constrained Cost-Optimized Scheduling Algorithm

The resource manager examines the memory data and the performance of a virtual
machine for running a unit of the workload, as well as computing the cost and communi-
cation time for jobs. The time and cost-constrained cost-optimized scheduling algorithm
distribute the feasible load fractions to the selected multi-core resources based on a linear
solution. Here, the replicated task is executed with different parts of submitted data loaded
to the multi-core resources Algorithm 1.

Algorithm 1. Time and Cost-Constrained Cost-Optimized Scheduling Algorithm

Assumption: Resource manager should examine the value of tei, tdi, ci, oi for each resource
Input: Task with input load N, user specified deadline D in sec and Budget B in $.
Variable Resource List []
Variable Resource capacity []//the values of unit load turnaround time ti, ci & mi
Output: load distribution based on the deadline and budget constrained cost optimization values
& job is done at minimum cost from (5)–(9)

Begin
i = 0;
Get the load value of N;

Electronics 2022, 11, 2022 7 of 13

Algorithm 1. Cont.

For each machine R(i,k) in Resource list[] do
If (N not null)
Get the value of ci, Ti, mi of Virtual Machine Ri from Resource_Capacity [];
Get the feasible value nci of Machine Ri. based on the constraints of
tei nci + tdi mi nci + oi ≤ D & ∑

i
cinci ≤ B

For resource Ri (j, mi) do//where mi is number of tasks can be executed by resource Ri
Create task replication trj on Ri
Distribute nci to task trj of machine Ri.
j++;
End
Execute all tasks concurrently;
Get Job Results.

4.4. Self-Learning Agent for Cost-Optimized Scheduling

A self-learning agent is designed here to automate the above cost-optimized schedul-
ing of a task. The designed system is effective and interpretable for fitting the task into
the machine. Based on the learning parameters from the environment, the system will
schedule the job to an appropriate machine by considering the optimized cost and time con-
straints. In [31], the authors discussed the reinforcement learning agent that was adapted
to the dynamic environment by learning the decision-making policy from experience. It
is well appropriate for the resource management systems since the resource management
scheduler needs to make scheduling decisions without knowing the dynamic change of
job arrivals based on the machine’s availabilities [32–34]. The decision agent repeatedly
observes the learning parameters to make decisions to reach the optimal policy [35]. The
Markov decision process is used for designing a self-learning agent. The agent perceives
the environment state (s), action (a), and reward (r) from its learning experiences. The
agent iteratively implements a state–action pair from its learning experiences to schedule
the job for machines. The Markov chain has a stationary distribution Π and a finite mixing
time T. A trajectory of samples of state actions s1a1, s2a2, s3a3, . . . , sTaT has been chosen
until its current state has a distribution that roughly matches Π. Here, an approximator
function is used to adjust certain learning parameters to make a decision related to the
optimal scheduling policy. The self-learning agent chooses the finest action based on the
optimal selection policy π, which is given below.

π θ(at/st) = minaεA L(at/st) (10)

The agent is trained with different task machine pairs to accomplish the above schedul-
ing policy. The selected trajectory from many action state pairs should map the task of the
machines on the basis of minimized time and cost scheduling. The action at ∈ A (st) and
the state of the highest fitting of the machine job pair yields an immediate reward r from
the environment. The value of L-learning has been updated from cumulative rewards r. α
represents a transition of a state under action from the learning experience. The probability
of transition is defined by

Pθ(α) = P (s1a1, ,sTaT) (11)

Pθ(α) = ∏T
t=1 P(st/(st−1at−1)πθ(at/st) (12)

The expectation of cumulative reward is defined as,

M(θ) = Eα ∼ [r (α)] = ∑T
t=1 r(st, at) Pθ(α) (13)

r(α) = r (s1a1, , sTaT) = ∑T
t=1rt = ∑T

t=1 r(stat) (14)

Electronics 2022, 11, 2022 8 of 13

The gradient descent is applied to obtain cost-optimized scheduling:

∇θ Eα ∼ [r (α)] =∇θ
∫

r (α) Pθ (α) dα (15)

The environment’s state has a variable length of fitted multi-core machines and task
pairs to achieve cost-optimized data parallel task scheduling. The agent will learn from its
environment. The self-learning agent is trained up with different task and resource pairs to
make an intelligent decision through iterative learning parameters from the environment.
The main objective of learning is fitting the task to the machines under the constraints of
minimum time and cost.

5. Results and Discussion
5.1. Experimental Evaluation

The cost-optimized data parallel task scheduling model is tested with resources that
are listed in Table 1. A data-intensive task with an input size of 500,000 text data records
under the constraints of a user-specified deadline of 5000 s, and a budget of 700 USD is taken
here to evaluate the proposed work and algorithm. The algorithm uses the information
of the resources mentioned in Table 1, in which the execution time tei(s) is calculated by
concurrently running the unit workload on cores of virtual machine Ri. The time taken to
transfer a unit load to the resource is tdi(s). The summation of the execution time and the
communication time of the listed resources is calculated as ti(s), which is given in Table 1.
The summation of the execution, communication overheads, and concurrent processing
cost of given resources are assumed and given in Table 1. For concurrent executions, those
500,000 records are distributed into the computing resources of multi-core virtual machines.

Table 1. Resource information.

Virtual
Machine

List
oi (S)

ti (s)
per Unit Load

(tei + tdi)
(s)

Concurrent
Processing Cost
per Unit Load

ci ($)

Optimal Load
Fractions Value

(Data
Records)

Distributed
Load Fractions
to Each Server
(Data Records)

R1 250 0.1364 0.00520 29,649 118,596

R2 250 0.1454 0.00260 32,668 130,672

R3 280 0.1498 0.00130 31,508 126,032

R4 280 0.1514 0.00065 31,175 62,350

R5 280 0.1514 0.00065 31,175 62,350

The following linear programming model is formed to give the feasible workload
fraction values for each task or thread.

MIN = 0.00520 * n1 + 0.00260 * n2 + 0.00130 * n3 + 0.00065 * n4 + 0.00065 * n5;

0.1364 * n1 ≤ 5000 − 250;

0.1454 * n2 ≤ 5000 − 250;

0.1498 * n3 ≤ 5000 − 280;

0.1514 * n4 ≤ 5000 − 280;

0.1514 * n5 ≤ 5000 − 280;

4 * n1 + 4 * n2 + 4 * n3 + 2 * n4 + 2 * n5 = 500,000;

0.00520 * n1 + 0.00260 * n2 + 0.00130 * n3 + 0.00065 * n4 + 0.00065 * n5≤ 700;

Electronics 2022, 11, 2022 9 of 13

The above linear equation has been solved. The cost-optimized scheduling gives the
minimum processing cost of USD 320.5. The optimal load fraction values distributed to
computing resources are shown in Table 1. The above resources have the capacity to execute
the tasks concurrently. Hence, the task is replicated based on the number of cores in each
virtual machine. Each of these is assigned with the optimal input of 29,649 records; thus
118,596 records are totally transferred to virtual machine R1. The work is also tested up to
schedule the task of different load values with different deadlines at the same budget of
700 USD. Figure 3 shows how the load fractions are distributed to each multi-core virtual
resource to run the various load at optimal cost at different deadlines.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 14

Table 1. Resource information.

Virtual
Machine

List
oi (S)

ti (s)

per Unit Load
(tei + tdi)

(s)

Concurrent Pro-
cessing Cost per

Unit Load
ci ($)

Optimal Load
Fractions Value

(Data
Records)

Distributed
Load Fractions
to Each Server
(Data Records)

R1 250 0.1364 0.00520 29,649 118,596
R2 250 0.1454 0.00260 32,668 130,672
R3 280 0.1498 0.00130 31,508 126,032
R4 280 0.1514 0.00065 31,175 62,350
R5 280 0.1514 0.00065 31,175 62,350

The following linear programming model is formed to give the feasible workload
fraction values for each task or thread.

MIN = 0.00520 * n1 + 0.00260 * n2 + 0.00130 * n3 + 0.00065 * n4 + 0.00065 * n5;

0.1364 * n1 ≤ 5000−250;

0.1454 * n2 ≤ 5000−250;

0.1498 * n3 ≤ 5000−280;

0.1514 * n4 ≤ 5000−280;

0.1514 * n5 ≤ 5000−280;

4 * n1 + 4 * n2 + 4 * n3 + 2 * n4 + 2 * n5 = 500,000;

0.00520 * n1 + 0.00260 * n2 + 0.00130 * n3 + 0.00065 * n4 + 0.00065* n5 ≤ 700;

The above linear equation has been solved. The cost-optimized scheduling gives the
minimum processing cost of USD 320.5. The optimal load fraction values distributed to
computing resources are shown in Table 1. The above resources have the capacity to ex-
ecute the tasks concurrently. Hence, the task is replicated based on the number of cores in
each virtual machine. Each of these is assigned with the optimal input of 29,649 records;
thus 1,18,596 records are totally transferred to virtual machine R1. The work is also tested
up to schedule the task of different load values with different deadlines at the same
budget of 700 USD. Figure 3 shows how the load fractions are distributed to each mul-
ti-core virtual resource to run the various load at optimal cost at different deadlines.

Figure 3. Task load processed by concurrent processes.

0

35000

70000

105000

140000

R1 R2 R3 R4 R5

1000 sec
2000 sec
3000 sec
4000 sec
5000 sec

Figure 3. Task load processed by concurrent processes.

The experiment is performed on the assignment of the task to the multi-core virtual
resources. In [36,37], the authors assigned the data-intensive job to a set of processors or
clusters based on their speed and capacity to complete the task within the deadline. They
considered the communication delay and data access latency to calculate the completion
time of the task. The feasible assignment of the data load to each processor is based on
processor capacity, hence the task assignment to virtual machines that have minimal cores
is compared with the task assigned to a machine that has multiple cores.

The cost-optimized parallel task assignment experiments on available heterogeneous
virtual resources that have minimal cores. However, it processes 317,236 records within the
5000 s deadline at the cost of 699.637 USD on five heterogeneous resources. It processes
500,000 records on five resources within 9000 s at the cost of 845.8 USD. As per our result,
the concurrent executions on the multiple virtual machines that have minimal cores require
more processing time to finish the submitted task load of 500,000 records; the execution of
the same data parallel task on multi-cores of virtual machines is less within the deadline.
In [38], the arrived task has a budget that limits the total number of resources because the
running job has to pay the system for the usage of additional resources. Figure 4 shows the
comparison of the execution on multi-core virtual resources and a virtual machine with
minimal cores. Hence, the execution on a virtual machine with minimal cores under the
constraints either requires more processing time or more resources.

The results show that the concurrent tasks that run the feasible load fractions on
multi-core virtual machines are capable of processing the entire submitted load within
the deadline at the minimum cost. However, the concurrent tasks on a virtual machine
with minimal cores can process only around 60% of the given load within the deadline as
shown in Figure 5. The cost-optimized data parallel task scheduling on multi-cores attains
the optimized cost as shown in Figure 6. The highlight of this research considers task
replication in the core processors to minimize the time and cost. If the multi-core virtual
resources are available, the task could be executed as per data parallel task scheduling
within the minimum span; otherwise, examining the currently available resources may
increase the execution time and cost.

Electronics 2022, 11, 2022 10 of 13

Electronics 2022, 11, x FOR PEER REVIEW 10 of 14

The experiment is performed on the assignment of the task to the multi-core virtual
resources. In [36,37], the authors assigned the data-intensive job to a set of processors or
clusters based on their speed and capacity to complete the task within the deadline. They
considered the communication delay and data access latency to calculate the completion
time of the task. The feasible assignment of the data load to each processor is based on
processor capacity, hence the task assignment to virtual machines that have minimal
cores is compared with the task assigned to a machine that has multiple cores.

The cost-optimized parallel task assignment experiments on available heterogene-
ous virtual resources that have minimal cores. However, it processes 317,236 records
within the 5000 s deadline at the cost of 699.637 USD on five heterogeneous resources. It
processes 5,00,000 records on five resources within 9000 s at the cost of 845.8 USD. As per
our result, the concurrent executions on the multiple virtual machines that have minimal
cores require more processing time to finish the submitted task load of 5,00,000 records;
the execution of the same data parallel task on multi-cores of virtual machines is less
within the deadline. In [38], the arrived task has a budget that limits the total number of
resources because the running job has to pay the system for the usage of additional re-
sources. Figure 4 shows the comparison of the execution on multi-core virtual resources
and a virtual machine with minimal cores. Hence, the execution on a virtual machine
with minimal cores under the constraints either requires more processing time or more
resources.

Figure 4. Execution Time of Data-Intensive Tasks.

The results show that the concurrent tasks that run the feasible load fractions on
multi-core virtual machines are capable of processing the entire submitted load within
the deadline at the minimum cost. However, the concurrent tasks on a virtual machine
with minimal cores can process only around 60% of the given load within the deadline as
shown in Figure 5. The cost-optimized data parallel task scheduling on multi-cores at-
tains the optimized cost as shown in Figure 6. The highlight of this research considers
task replication in the core processors to minimize the time and cost. If the multi-core
virtual resources are available, the task could be executed as per data parallel task
scheduling within the minimum span; otherwise, examining the currently available re-
sources may increase the execution time and cost.

0

2250

4500

6750

9000

11250

10 20 30 40 50

Ti
m

e
(S

ec
)

TASK

Figure 4. Execution Time of Data-Intensive Tasks.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 14

Figure 5. Data parallel task on multi-core resources.

Figure 6. Cost-optimized multi-core model with a deadline of 5000 s.

5.2. Experimental Evaluation for Data Parallelism Using Model Replication
Nowadays, machine learning and deep learning play vital roles in all mul-

ti-disciplinary applications [39,40]. The models are developed to predict or classify the
image data or text data. The models are developed and deployed for prediction, classi-
fication, and recommendation. While developing the models, training and testing pro-
cesses are carried out. A total of 70% of text data or image data will be used for training,
and 30% of text data or image data will be used for the testing process to improve the
learning rate of the machine. If the dataset size is large, a huge number of image or text
data could be used for training and testing process. It will consume time and money to
train and test the model. The cost-optimized data parallel task scheduling is applied to
train and test the model. The highlight of this research considers distributive learning by
applying machine learning model replication in the core processors to make the time
and cost minimam. The data parallel task is the simultaneous execution of the same
model on different parts of the input image dataset or the machine learning model being
replicated to execute different input datasets concurrently. Hence, an image da-
ta-intensive task of the classification of leaf images is experimented with here. The input
leaf image is shown in Figure 7; there is a data size of 100,000 images taken here to train
and test the model.

0
200000
400000
600000
800000

1000 sec 2000 sec 3000 sec 4000 sec 5000 sec

Data Parallel Task on Multicore
Resources

co
st

 in
 $

Cost Optimised Multicore
Model

Task on Multi core Task on Minimal core

Figure 5. Data parallel task on multi-core resources.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 14

Figure 5. Data parallel task on multi-core resources.

Figure 6. Cost-optimized multi-core model with a deadline of 5000 s.

5.2. Experimental Evaluation for Data Parallelism Using Model Replication
Nowadays, machine learning and deep learning play vital roles in all mul-

ti-disciplinary applications [39,40]. The models are developed to predict or classify the
image data or text data. The models are developed and deployed for prediction, classi-
fication, and recommendation. While developing the models, training and testing pro-
cesses are carried out. A total of 70% of text data or image data will be used for training,
and 30% of text data or image data will be used for the testing process to improve the
learning rate of the machine. If the dataset size is large, a huge number of image or text
data could be used for training and testing process. It will consume time and money to
train and test the model. The cost-optimized data parallel task scheduling is applied to
train and test the model. The highlight of this research considers distributive learning by
applying machine learning model replication in the core processors to make the time
and cost minimam. The data parallel task is the simultaneous execution of the same
model on different parts of the input image dataset or the machine learning model being
replicated to execute different input datasets concurrently. Hence, an image da-
ta-intensive task of the classification of leaf images is experimented with here. The input
leaf image is shown in Figure 7; there is a data size of 100,000 images taken here to train
and test the model.

0
200000
400000
600000
800000

1000 sec 2000 sec 3000 sec 4000 sec 5000 sec

Data Parallel Task on Multicore
Resources

co
st

 in
 $

Cost Optimised Multicore
Model

Task on Multi core Task on Minimal core

Figure 6. Cost-optimized multi-core model with a deadline of 5000 s.

5.2. Experimental Evaluation for Data Parallelism Using Model Replication

Nowadays, machine learning and deep learning play vital roles in all multi-disciplinary
applications [39,40]. The models are developed to predict or classify the image data or
text data. The models are developed and deployed for prediction, classification, and rec-
ommendation. While developing the models, training and testing processes are carried
out. A total of 70% of text data or image data will be used for training, and 30% of text
data or image data will be used for the testing process to improve the learning rate of the
machine. If the dataset size is large, a huge number of image or text data could be used
for training and testing process. It will consume time and money to train and test the
model. The cost-optimized data parallel task scheduling is applied to train and test the
model. The highlight of this research considers distributive learning by applying machine

Electronics 2022, 11, 2022 11 of 13

learning model replication in the core processors to make the time and cost minimam. The
data parallel task is the simultaneous execution of the same model on different parts of the
input image dataset or the machine learning model being replicated to execute different
input datasets concurrently. Hence, an image data-intensive task of the classification of leaf
images is experimented with here. The input leaf image is shown in Figure 7; there is a
data size of 100,000 images taken here to train and test the model.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 14

Figure 7. Sample Augmented Images.

The algorithm uses the information about virtual resources. The primary idea be-
hind data parallelism is to boost the overall sample throughput rate by duplicating the
model over multiple machines and performing backpropagation in parallel to obtain
more information about the loss function faster. Finally, the various results are com-
bined and merged to create a new model [41,42]. The execution time tei is calculated
based on the concurrent processing time of an image on each core of virtual machine Ri.
Therefore, the machine learning model is replicated on each core of resource Ri. The time
taken to transfer a unit load to the resource is signified as tdi. The summation of the exe-
cution time and the communication time of resources are considered for the data parallel
model implementation. Distributed learning gives better performance instead of run-
ning the model in a machine, since batchwise running is executed to implement distrib-
uted learning.

The distributed training of deep learning models is implemented on both multi-core
machines and multiple machines or clusters. The multi-core machine gives better
throughput compared with multiple machines, as shown in Figure 8.

Figure 8. Comparison of execution of data parallel task on multiple machines with mul-
ti-cores [41].

6. Conclusions and Future Work
In this paper, we proposed an improvement to data parallel task-scheduling by al-

locating cores to the tasks with the intention of minimizing the overall execution time and
cost margin. The machine learning application with a bulky dataset was deployed to
examine the effectiveness of the concurrent execution on multi-core resources. A
cost-optimized data parallel task scheduling on multi-core resources is formulated. The
experimental results reveal that the concurrent execution of tasks in a multi-core envi-
ronment is able to complete the application within the deadline. The optimal solutions
are attained in terms of processing the data parallel task by the deadline while keeping

75

80

85

90

95

Throughput

Data Parallelism using Model Replication

Distributed learning in Multicore

Langer . et.al. (2020) Distributed Learning in Multiple machines
(Cluster)

Figure 7. Sample Augmented Images.

The algorithm uses the information about virtual resources. The primary idea be-
hind data parallelism is to boost the overall sample throughput rate by duplicating the
model over multiple machines and performing backpropagation in parallel to obtain more
information about the loss function faster. Finally, the various results are combined and
merged to create a new model [41,42]. The execution time tei is calculated based on the
concurrent processing time of an image on each core of virtual machine Ri. Therefore,
the machine learning model is replicated on each core of resource Ri. The time taken to
transfer a unit load to the resource is signified as tdi. The summation of the execution
time and the communication time of resources are considered for the data parallel model
implementation. Distributed learning gives better performance instead of running the
model in a machine, since batchwise running is executed to implement distributed learning.

The distributed training of deep learning models is implemented on both multi-
core machines and multiple machines or clusters. The multi-core machine gives better
throughput compared with multiple machines, as shown in Figure 8.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 14

Figure 7. Sample Augmented Images.

The algorithm uses the information about virtual resources. The primary idea be-
hind data parallelism is to boost the overall sample throughput rate by duplicating the
model over multiple machines and performing backpropagation in parallel to obtain
more information about the loss function faster. Finally, the various results are com-
bined and merged to create a new model [41,42]. The execution time tei is calculated
based on the concurrent processing time of an image on each core of virtual machine Ri.
Therefore, the machine learning model is replicated on each core of resource Ri. The time
taken to transfer a unit load to the resource is signified as tdi. The summation of the exe-
cution time and the communication time of resources are considered for the data parallel
model implementation. Distributed learning gives better performance instead of run-
ning the model in a machine, since batchwise running is executed to implement distrib-
uted learning.

The distributed training of deep learning models is implemented on both multi-core
machines and multiple machines or clusters. The multi-core machine gives better
throughput compared with multiple machines, as shown in Figure 8.

Figure 8. Comparison of execution of data parallel task on multiple machines with mul-
ti-cores [41].

6. Conclusions and Future Work
In this paper, we proposed an improvement to data parallel task-scheduling by al-

locating cores to the tasks with the intention of minimizing the overall execution time and
cost margin. The machine learning application with a bulky dataset was deployed to
examine the effectiveness of the concurrent execution on multi-core resources. A
cost-optimized data parallel task scheduling on multi-core resources is formulated. The
experimental results reveal that the concurrent execution of tasks in a multi-core envi-
ronment is able to complete the application within the deadline. The optimal solutions
are attained in terms of processing the data parallel task by the deadline while keeping

75

80

85

90

95

Throughput

Data Parallelism using Model Replication

Distributed learning in Multicore

Langer . et.al. (2020) Distributed Learning in Multiple machines
(Cluster)

Figure 8. Comparison of execution of data parallel task on multiple machines with multi-cores [41].

6. Conclusions and Future Work

In this paper, we proposed an improvement to data parallel task-scheduling by allocat-
ing cores to the tasks with the intention of minimizing the overall execution time and cost
margin. The machine learning application with a bulky dataset was deployed to examine

Electronics 2022, 11, 2022 12 of 13

the effectiveness of the concurrent execution on multi-core resources. A cost-optimized
data parallel task scheduling on multi-core resources is formulated. The experimental
results reveal that the concurrent execution of tasks in a multi-core environment is able to
complete the application within the deadline. The optimal solutions are attained in terms
of processing the data parallel task by the deadline while keeping the computational cost
at an optimized rate. Further studies will investigate a specific application that implements
the proposed algorithm. The specific application is the comparison of machine learning
models that will be performed in parallel through the proposed task and data parallelism
scheduling process within the time and cost constraints.

Author Contributions: Conceptualization, N.R.R., A.D. and M.K.; methodology, R.S., A.G. and
S.V.A.; validation, R.S., A.G., S.V.A. and D.A.; formal analysis, R.S., A.G., S.V.A., D.A., I.D.N. and
D.H.E.; investigation, I.D.N. and D.H.E.; resources, R.S. and A.G.; data curation, R.S., A.G., S.V.A. and
D.A.; writing—original draft preparation, N.R.R., A.D. and M.K. All authors have read and agreed to
the published version of the manuscript.

Funding: The research was funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2022R238), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2022R238), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hajikano, K.; Kanemitsu, H.; Kim, M.W.; Kim, H.-D. A Task Scheduling Method after Clustering for Data Intensive Jobs in

Heterogeneous Distributed Systems. J. Comput. Sci. Eng. 2016, 10, 9–20. [CrossRef]
2. Kezia Rani. B, Vinaya Babu, A. Scheduling of Big Data Application Workflows in Cloud and Inter-Cloud Environments. In

Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, CA, USA, 29 October–1 November 2015;
pp. 78–84.

3. Arunarani, A.R.; Manjula, D.; Sugumaran, V. Task scheduling techniques in cloud computing: A literature survey. Future Gener.
Comput. Syst. 2018, 91, 407–415. [CrossRef]

4. Cheng, D.; Rao, J.; Jiang, C.; Zhou, X. Resource and Deadline-aware Job Scheduling in Dynamic Hadoop Clusters. In Proceedings
of the IEEE 29th International Parallel and Distributed Processing Symposium, Hyderabad, India, 25–29 May 2015.

5. Khan, T.; Singh, K.; Son, L.H.; Abdel-Basset, M.; Long, H.V.; Singh, S.P.; Manjul, M. A Novel and Comprehensive Trust Estimation
Clustering Based Approach for Large Scale Wireless Sensor Networks. IEEE Access 2019, 7, 58221–58240. [CrossRef]

6. Sahu, D.P.; Singh, K.; Manju, M.; Taniar, D.; Abdel-Basset, M.; Long, H.V. Heuristic Search Based Localization in Mobile
Computational Grid. IEEE Access 2019, 7, 78652–78664. [CrossRef]

7. Kaur, G. A DAG based Task Scheduling Algorithms for Multiprocessor System—A Survey. Int. J. Grid Distrib. Comput. 2016, 9,
103–114. [CrossRef]

8. Xu, H.; Liu, Y.; Lau, W.C.; Guo, J.; Liu, A. Efficient Online Resource Allocation in Heterogeneous Clusters with Machine Variability.
In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May2019;
pp. 89–95.

9. Ghafarian, T.; Javadi, B. Cloud-aware data intensive workflow scheduling on volunteer computing systems. Futur. Gener. Comput.
Syst. 2014, 51, 87–97. [CrossRef]

10. Thoman, P.; Dichev, K.; Heller, T.; Iakymchuk, R.; Aguilar, X.; Hasanov, K.; Nikolopoulos, D.S. A taxonomy of task-based parallel
programming technologies for high-performance computing. J. Supercomput. 2018, 74, 1422–1434. [CrossRef]

11. Tyagi, R.; Gupta, S.K. A Survey on Scheduling Algorithms for Parallel and Distributed Systems. In Silicon Photonics & High
Performance Computing; Advances in Intelligent Systems and Computing; Springer: Singapore, 2018; Volume 718. [CrossRef]

12. Bharadwaj, V.; Ghose, D.; Robertazzi, T.G. Divisible Load Theory: A New Paradigm for Load Scheduling in Distributed Systems.
Clust. Comput. 2003, 6, 7–17. [CrossRef]

13. Buyya, R.; Murshed, M. A Deadline and Budget Constrained Cost-Time Optimisation Algorithm for Scheduling Task Farming Applications
on Global Grids; Technical Report CSSE-2002/109; Monash University: Melbourne, Australia, 2002.

http://doi.org/10.5626/JCSE.2016.10.1.9
http://doi.org/10.1016/j.future.2018.09.014
http://doi.org/10.1109/ACCESS.2019.2914769
http://doi.org/10.1109/ACCESS.2019.2922400
http://doi.org/10.14257/ijgdc.2016.9.9.10
http://doi.org/10.1016/j.future.2014.11.007
http://doi.org/10.1007/s11227-018-2238-4
http://doi.org/10.1007/978-981-10-7656-5_7
http://doi.org/10.1023/A:1020958815308

Electronics 2022, 11, 2022 13 of 13

14. Celaya, J.; Arronategui, U. Fair scheduling of bag-of-tasks applications on large-scale platforms. Futur. Gener. Comput. Syst. 2015,
49, 28–44. [CrossRef]

15. Gómez-Martín, C.; Vega-Rodríguez, M.A.; González-Sánchez, J.L. Fattened backfilling: An improved strategy for job scheduling
in parallel systems. J. Parallel Distrib. Comput. 2016, 97, 69–77. [CrossRef]

16. Mishra, S.K.; Sahoo, B.; Parida, P.P. Load balancing in cloud computing: A big picture. J. King Saud Univ. Comput. Inf. Sci. 2020,
32, 149–158. [CrossRef]

17. Priya, B.; Gnanasekaran, T. To optimize load of hybrid P2P cloud data-center using efficient load optimization and resource
minimization algorithm. Peer-to-Peer Netw. Appl. 2019, 13, 717–728. [CrossRef]

18. Raja, C.V.; Jayasimman, D.L. A Cost Effective Scalable Scheme for Dynamic Data Service in Heterogeneous Cloud Environment.
Int. J. Adv. Sci. Technol. 2019, 28, 764–776.

19. Kuo, C.-F.; Lu, Y.-F. Scheduling algorithm for parallel real-time tasks on multiprocessor systems. ACM SIGAPP Appl. Comput. Rev.
2016, 16, 14–24. [CrossRef]

20. Luque, C.; Moreto, M.; Cazorla, F.J.; Gioiosa, R.; Buyuktosunoglu, A.; Valero, M. CPU Accounting for Multicore Processors. IEEE
Trans. Comput. 2012, 61, 251–264. [CrossRef]

21. Alebrahim, S.; Ahmad, I. Task scheduling for heterogeneous computing systems. J. Supercomput. 2017, 73, 2313–2338. [CrossRef]
22. Blake, G.; Dreslinski, R.G.; Mudge, T. A Survey of multi-core processors. IEEE Signal Process. Soc. 2009, 26, 45–53.
23. Chen, Y.; Alspaugh, S.; Borthakur, D.; Katz, R. Energy efficiency for large-scale MapReduce workloads with significant interactive

analysis. In Proceedings of the 7th ACM European Conference on Computer Systems, Bern, Switzerland, 10–13 April 2012;
pp. 43–56. [CrossRef]

24. Ghafouri, R.; Movaghar, A.; Mohsenzadeh, M. A budget constrained scheduling algorithm for executing workflow application in
infrastructure as a service clouds. Peer-to-Peer Netw. Appl. 2018, 12, 241–268. [CrossRef]

25. Khan, M.A. Task scheduling for heterogeneous systems using an incremental approach. J. Supercomput. 2017, 73, 1905–1928.
[CrossRef]

26. Popa, A.; Hnatiuc, M.; Paun, M.; Geman, O.; Hemanth, D.J.; Dorcea, D.; Ghita, S. An Intelligent IoT-Based Food Quality
Monitoring Approach Using Low-Cost Sensors. Symmetry 2019, 11, 374. [CrossRef]

27. Sulistio, A.; Buyya, R. A Time Optimization Algorithm for Scheduling Bag-of-Task Applications in Auction-based Proportional
Share Systems. In Proceedings of the 17th International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD’05), Rio de Janeiro, Brazil, 24–27 October 2005. [CrossRef]

28. Terzopoulos, G.; Karatza, H.D. Power-aware Bag-of-Tasks scheduling on heterogeneous platforms. Clust. Comput. 2016, 19,
615–631. [CrossRef]

29. Pop, F.; Dobre, C.; Cristea, V.; Bessis, N.; Xhafa, F.; Barolli, L. Deadline scheduling for aperiodic tasks in inter-Cloud environments:
A new approach to resource management. J. Supercomput. 2015, 71, 1754–1765. [CrossRef]

30. Rho, J.; Azumi, T.; Nakagawa, M.; Sato, K.; Nishio, N. Scheduling Parallel and Distributed Processing for Automotive Data
Stream Management System. J. Parallel Distrib. Comput. (JPDC) 2017, 109, 286–300. [CrossRef]

31. Rajalakshmi, N.R.; Arulkumaran, G.; Santhosh, J. Virtual Machine Consolidation for Performance and Energy Efficient Cloud
Data Centre using Reinforcement Learning. Int. J. Eng. Adv. Technol. 2019, 8, 78–85.

32. Ranaldo, N.; Zimeo, E. Time and Cost-Driven Scheduling of Data Parallel Tasks in Grid Workflows. IEEE Syst. J. 2009, 3, 104–120.
[CrossRef]

33. Yang, J.; He, Q. Scheduling Parallel Computations by Work Stealing: A Survey. Int. J. Parallel Program. 2018, 46, 173–197.
[CrossRef]

34. Marri, N.P.; Rajalakshmi, N. MOEAGAC: An energy aware model with genetic algorithm for efficient scheduling in cloud
computing. Int. J. Intell. Comput. Cybern. 2021. [CrossRef]

35. Rajalakmi, N.R.; Balaji, N. A Vikor Method For Distributing Load Balanced Virtual Machine in Cloud Data Center. Int. J. Appl.
Eng. Res. 2015, 10, 10127–10136.

36. Xiong, F.; Yeliang, C.; Lipeng, Z.; Bin, H.; Song, D.; Dong, W. Deadline based scheduling for data-intensive applications in clouds.
J. China Univ. Posts Telecommun. 2016, 23, 8–15. [CrossRef]

37. Wang, B.; Song, Y.; Sun, Y.; Liu, J. Managing Deadline-constrained Bag-of-Tasks Jobs on Hybrid Clouds with Closest Deadline
First Scheduling. KSII Trans. Internet Inf. Syst. 2016, 10, 2952–2971. [CrossRef]

38. Tripathy, B.; Dash, S.; Padhy, S.K. Dynamic task scheduling using a directed neural network. J. Parallel Distrib. Comput. 2015, 75,
101–106. [CrossRef]

39. Zhang, S. Distributed Stochastic Optimization for Deep Learning. Ph.D. Dissertation, New York University, New York, NY, USA, 2016.
40. Zheng, S.; Meng, Q.; Wang, T.; Chen, W.; Yu, N.; Ma, Z.M.; Liu, T.Y. Asynchronous Stochastic Gradient Descent with Delay

Compensation. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017;
pp. 4120–4129.

41. Langer, M.; He, Z.; Rahayu, W.; Xue, Y. Distributed Training of Deep Learning Models: A Taxonomic Perspective. IEEE Trans.
Parallel Distrib. Syst. 2020, 31, 2802–2818. [CrossRef]

42. Roy, S.K.; De, D. Genetic Algorithm based Internet of Precision Agricultural Things (IopaT) for Agriculture 4.0. Internet Things
2020, 18, 100201. [CrossRef]

http://doi.org/10.1016/j.future.2015.03.002
http://doi.org/10.1016/j.jpdc.2016.06.013
http://doi.org/10.1016/j.jksuci.2018.01.003
http://doi.org/10.1007/s12083-019-00795-3
http://doi.org/10.1145/3040575.3040577
http://doi.org/10.1109/TC.2011.152
http://doi.org/10.1007/s11227-016-1917-2
http://doi.org/10.1145/2168836.2168842
http://doi.org/10.1007/s12083-018-0662-0
http://doi.org/10.1007/s11227-016-1894-5
http://doi.org/10.3390/sym11030374
http://doi.org/10.1109/cahpc.2005.9
http://doi.org/10.1007/s10586-016-0544-2
http://doi.org/10.1007/s11227-014-1285-8
http://doi.org/10.1016/j.jpdc.2017.06.012
http://doi.org/10.1109/JSYST.2008.2011299
http://doi.org/10.1007/s10766-016-0484-8
http://doi.org/10.1108/IJICC-07-2021-0134
http://doi.org/10.1016/S1005-8885(16)60064-X
http://doi.org/10.3837/tiis.2016.07.005
http://doi.org/10.1016/j.jpdc.2014.09.015
http://doi.org/10.1109/TPDS.2020.3003307
http://doi.org/10.1016/j.iot.2020.100201

	Introduction
	Related Works
	Need of Data Parallel Task Implementation on Multi-Cores
	Scheduling Methodology
	Problem Modeling
	Time and Cost-Constrained Cost Optimization
	Time and Cost-Constrained Cost-Optimized Scheduling Algorithm
	Self-Learning Agent for Cost-Optimized Scheduling

	Results and Discussion
	Experimental Evaluation
	Experimental Evaluation for Data Parallelism Using Model Replication

	Conclusions and Future Work
	References

