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Performance Evaluation of Support Vector Machine
and Stacked Autoencoder for Hyperspectral
Image Analysis

Brahim Jabir “, Bendaoud Nadif

Abstract—In the world of remote sensing, hyperspectral imaging
has emerged as a powerful tool that captures incredibly detailed
information about our environment. These images contain hun-
dreds of spectral bands that reveal what the human eye cannot
see, making them invaluable for applications ranging from preci-
sion agriculture to environmental monitoring. However, extract-
ing insights from complex data requires sophisticated analytical
approaches. Our research dives into the performance comparison
of two popular machine learning approaches: the support vector
machine (SVM) and the more recent deep learning-based stacked
autoencoder (SAE). We wanted to understand which approach
works better under different real-world conditions that researchers
and practitioners face. Through extensive experiments across five
diverse public hyperspectral datasets, we discovered that the choice
between these models is not straightforward, it depends signif-
icantly on your specific circumstances. When labeled data are
scarce, which is a common challenge in remote sensing, SVM
proves more reliable and efficient. Conversely, when abundant
training data are available, SAE demonstrates impressive capabil-
ities in learning complex patterns. One interesting finding was how
active learning as a technique that intelligently selects the most
informative samples for labeling, improved SAE’s performance
on medium-sized datasets, potentially offering a practical solution
to the data scarcity problem. The proposed approaches showed
vulnerability to noise, highlighting the importance of preprocessing
steps in real-world applications. Although SVM generally requires
less computational resources, SAE’s potential to handle large and
complex datasets makes it an attractive option when the appro-
priate computing infrastructure is available. The model training
also achieved high accuracy, compared to other models published
in the literature. The results achieved provide a practical path for
researchers and practitioners navigating the complex landscape of
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hyperspectral image analysis to help them choose the most suitable
approach for their specific constraints and requirements.

Index Terms—Active learning, deep learning, hyperspectral data
classification, remote sensing, stacked autoencoder (SAE), support
vector machine (SVM).

1. INTRODUCTION

EMOTE sensing has become such a game-changer across
Rtons of fields, giving people crucial insights for making
smarter decisions. Just look at agriculture—farmers are using
it to keep an eye on their fields, see how crops are doing,
and implement cutting-edge farming techniques like precision
irrigation and fertilizing [1]. With all this data now pouring in
from drones, ground sensors, and image processing software,
we seriously need better ways to analyze everything efficiently
[2]. Hyperspectral imagery, with its super-detailed spectral
information, is basically the backbone of most remote sensing
applications. Classifying these images is not easy though—we
are talking about extremely high-dimensional data with plenty of
noise, which means we need some pretty sophisticated feature
extraction and classification methods, this situation needs
powerful machine learning (ML) models that can handle and
analyze both the complexity and sheer volume of this data [3].

ML has completely transformed remote sensing, particularly
with regard to pixel classification in multispectral and hyper-
spectral images (HSIs) [4]. Indeed, HSI classification consists
of sorting pixels into distinct categories based on their spectral
signatures and this task is essential for many applications such as
environmental monitoring, agriculture, mining exploration, and
military surveillance. Therefore, accurate classification enables
not only detailed analysis but also informed decision-making
that because of the rich spectral information contained in these
images [5]. Among the many ML approaches, two models stand
out and dominate this field: support vector machines (SVMs)
and stacked autoencoders (SAEs). Although these models are
fundamentally different in design, they have both demonstrated
remarkable performance in processing hyperspectral data, for
that, we have chosen to focus on these two approaches in our
comparative study. Furthermore, a thorough comparison of these
two models will allow us to better understand their respective
strengths and weaknesses as well as the contexts in which one
may prove more effective than the other. Although SVMs are no
longer considered state-of-the-art for HSI classification on their
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own, they continue to serve as strong baselines in recent research.
Their reliability, solid generalization capabilities, and relatively
low computational demands make them enduring benchmarks,
providing a stable foundation upon which more advanced tech-
niques [6], [7]. SVM is still practical when labeled data is hard
to come by and computing power is scarce. That said, SVMs do
require careful parameter tuning, which can be time-consuming
and risks overfiting [8]. Including them in this study gives us
a clear, interpretable reference point to compare against more
complex deep learning approaches in many real-world remote
sensing scenarios and conditions, especially where resources are
limited.

The SAE, which is considered a deep learning model, offers
a powerful alternative by automatically learning hierarchical
representations of data. SAE have shown they are effective at
handling very large datasets and denoising data, making them
robust to noisy inputs [9]. Despite all these advanced deep
learning models that have emerged, like convolutional neural
networks (CNNSs), transformers, and spectral-spatial attention
mechanisms in HSI classification, we chose the SAE as a repre-
sentative of early deep learning models for this study. SAE hits
a nice balance between keeping things simple architecture-wise
while still being able to extract hierarchical features from com-
plex hyperspectral data. It is less computationally demanding
and has more predictable behavior, which makes it perfect for
controlled experiments alongside traditional methods like SVM.
Recent research still uses SAE or modified versions for stuff
like denoising, feature extraction, and semisupervised learning
in remote sensing projects [10], [11], [12].

Even with all the progress in ML for hyperspectral data anal-
ysis, we are still missing a thorough comparison between SVM
and SAE models especially when working with data collected
across diverse electromagnetic wavelengths and over diverse
conditions. Our research aims to bridge that gap by conducting
a comparative study of SVM and SAE models evaluating their
performance across various scenarios like parameter settings,
dataset sizes, and also active learning strategies while suggest-
ing improved parameter selection methods to improve model
performance. By comparing these traditional methods with con-
temporary methods like SAE we can illustrate the remarkable
enhancement and increase in performance of contemporary
deep learning algorithms compared to traditional algorithms.
Although SVMs are no longer utilized standalone as classifiers
nowadays, but as mentioned in the majority of research, SVMs
are still important to observe how HSI classification techniques
evolved over the years and by exploring these areas. Our study
therefore makes important new contributions to HSI data analy-
sis and to the application of ML in remote sensing, by presenting
a comprehensive comparative evaluation of two popularly used
spectral classifiers, SVM and SAE with various experimental
conditions that will be encountered by practitioners in the HSIR
application domain. We comprehensively evaluate their perfor-
mance on several benchmark datasets based on their parameter
sensitivity, time complexity, behavior under active learning, and
resistance to noise. This reproducible benchmark is a blueprint
for further work by offering a solid empirical foundation for the
comparison of newer or more complex models. Our study offers
several outstanding benefits like a comprehensive comparison.
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Unlike previous studies that focus on specific aspects, this re-
search provides a holistic comparison of SVM and SAE models
across various conditions, offering a thorough understanding of
their performance characteristics. Also, parameter optimization,
because the study delves into the impact of parameter settings
on the performance of both models, providing insight into
optimal configurations for different dataset sizes and conditions.
In addition to the dataset size sensitivity by evaluating the models
on both small and large datasets, the research highlights the
scenarios where each model excels, offering guidance on model
selection based on dataset size.

Active learning: The integration of active learning techniques
showcases how these methods can enhance model performance,
particularly for the SAE model with medium-sized datasets,
highlighting the importance of iterative learning processes. The
noise sensitivity analysis also has crucial benefits, understanding
the models’ sensitivity to noise is crucial for practical applica-
tions where data quality can vary, and this research provides
valuable insights into how each model copes with noisy data.
Finally, the computational efficiency aspect: the study compares
the computational efficiency of SVM and SAE, providing prac-
tical insights into resource allocation and processing time for
large-scale data analysis.

The rest of the article is organized as follows. Section II
presents a review of existing research on hyperspectral data
analysis using ML models, highlighting the gaps and justifying
the need for this study. Section III offers a detailed descrip-
tion of the methodologies and tools used for implementing the
experiments, including SVM and SAE models, active learning
techniques, and datasets. Section IV presents and analyzes the
experimental results, comparing the performance of SVM and
SAE models under different conditions. It also interprets the
results, discussing the implications, strengths, and limitations
of the results. Finally, Section V summarizes the research,
highlighting the main conclusions and suggesting directions for
future work.

II. RELATED WORKS

The research literature seems to emphasize the integration
of cutting-edge technologies, particularly ML techniques, to
address various challenges or explore new opportunities within
the field. The advancement of ML has allowed for the solving
of various problems across multiple fields through the use of
techniques such as deep learning and SVM. The recent advance-
ments in HSI processing have introduced a variety of algorithms
with enhanced classification accuracy and robustness [13]. Some
of the prominent strategies for our research in this section are
outlined later.

Class-aligned and class-balancing generative domain adap-
tation for HSI classification: It aims to solve the domain adapta-
tion issue in HSI classification by aligning and balancing source
and target class distributions. It applies generative models to cre-
ate a more balanced feature space with improved classification
performance on different datasets [14].

CFDRM: Coarse-to-fine dynamic refinement model: CFDRM
introduces a dynamic refinement model that is coarse-to-fine in
nature, enhancing moving vehicle detection in satellite videos.
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Fig. 1. Integration of ML in HSI analysis.

The weakly supervised approach utilizes minimal labeled data,
and therefore it is particularly useful for applications with small
annotated datasets [15].

Multifeature fusion: Graph neural network and CNN
combining for HSI classification: This approach combines
GNNs and CNN to take advantage of both spectral and
spatial features in HSI data. The multifeature fusion enhances
classification accuracy by capturing complex relationships
within the data, and it provides an efficient way for HSI
classification tasks [16].

A study by Omer et al. [17] compared deep learning and
SVMs but not the two and unsupervised learning. Yang et al.
[18] presented the significance of optimal parameter settings
in obtaining successful results in machine-learning algorithms.
The work conducted by Sankaran et al. [19] was centered
on minimizing overfitting when applying unsupervised
feature extraction, especially where deep learning models
such as autoencoders were involved. The article introduces
a novel regularization method known as L2,1-norm-based
regularization with the objective of enhancing the learning
capacity of autoencoders. The research conducted by Lary et al.
[20] introduces the capability of ML in dealing with multivariate,
nonlinear, and nonparametric regression or classification,
pointing toward its ability to solve intricate geoscience and
remote sensing issues. However, in-depth comparative research
on parameter mapping-based deep learning and SVMs on
regression and classification problems for hyperspectral remote
sensing images has not been conducted, Fig. 1 provides the
overview of the concept addressed in the literature review.
Another comparison between traditional classifiers and CNNs
for HSI classification showed that deep architectures generally
outperform shallow models in terms of classification accuracy,
especially when spatial information is incorporated [21], [22].

Though these studies have compared traditional and deep
learning methods for HSI classification, few have provided
comprehensive, side-by-side, especially across multiple datasets
and performance dimensions such as parameter sensitivity,
active learning behavior, noise robustness, and computational
efficiency. Our work aims to fill this gap by jointly analyzing
classification accuracy, parameter sensitivity, computational ef-
ficiency, active learning behavior, and robustness to noise across
multiple benchmark datasets. This multidimensional evaluation
complements prior comparative studies that typically focus on
newer deep models or accuracy alone.

Table I includes a selection of literature that has yielded
positive results in relation to this current study.

This highlights the advancement in remote sensing and ap-
plications of machine-learning techniques, i.e., deep learning
and SVM, to address different problems in different fields.
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Although other research works have compared the models, they
only look at certain features and lack a general comparison. For
instance, earlier research works have examined the excellence
and shortcomings of deep learning and SVM individually but not
compared them in detail for both supervised and unsupervised
scenarios.

III. METHODS AND TOOLS

This part describes the models and approaches that must be
employed in order to perform the experiment. We work with
Python as a programming language, TensorFlow, and Keras
libraries to implement the proposed algorithms. We worked with
a deep learning model based on SAE, and also with an SVM
for learning and classification. To improve the performance of
the models, we use some techniques such as active learning and
Tensorboard for the visualization of statistics and logs [33]. The
experiments were conducted in a controlled environment to en-
sure the consistency and reliability of the results. The hardware
and software configurations used for the implementation and
evaluation of the SVM and SAE models are as follows:

1) Processor: Intel Core i7-11700K CPU @ 3.60 GHz.

2) RAM: 32.

3) GPU: NVIDIA GeForce GTX 1660 Ti 6GB GDRDR6.

A. HSI Classification

HSI classification is a process that involves assigning each
pixel in an HSI to a specific class based on its spectral proper-
ties. Unlike traditional RGB images, HSIs capture information
across a wide spectrum of wavelengths, providing a detailed
spectral signature for each pixel. This richness of data aids in
more precise identification and differentiation of material [34].
According to Datta et al. [35], several major problems come up
with HSI classification.

High dimensionality: HSIs may contain hundreds of spec-
tral bands, resulting in a high-dimensional feature space. High
dimensionality tends to necessitate dimensionality reduc-
tion methods to counteract the curse of dimensionality and en-
hance classification performance.

Noise: Hyperspectral data are likely to be exposed to var-
ious forms of noise, such as sensor noise, atmosphere noise,
and other environmental noises. The right approach in noise
handling is required to enhance accuracy in classification.

Feature extraction: Effective feature extraction methods are
crucial to extracting the relevant spectral and spatial data from
HSIs. Techniques such as principal component analysis (PCA),
independent component analysis (ICA), and deep learning-
based techniques are extensively used.

Classification algorithms: The proper selection of classifi-
cation algorithms is pivotal in terms of high accuracy. SVMs
and SAEs are two popular methods that have shown po-
tential in HSI classification. SVM performs well in high-
dimensional space, whereas SAE uses deep learning to learn in-
tricate features.
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TABLE I
APPLICATIONS OF DEEP LEARNING FOR A GROUP OF PROBLEMS
Ref. | Research problem Proposed model Description
[23] Automatic speech PSO-SVM hybrid Particle swarm optimization (PSO): Support vector machine (SVM) hybrid training: This
recognition (ASR) training approach combines PSO, a social behavior-based optimization algorithm with birds, and
SVM, a high-performance classification algorithm, to enhance the training process of ASR
systems, with improved accuracy and performance.
[24] Recognize image Gaussian binary Gaussian binary classification: Tt uses Gaussian distributions to classify data for binary
classification classification tasks. It performs well in image classification tasks where data can be best
approximated using Gaussian distributions.

[25] | System for detecting wheezes | SVM classifier and | SVM classifier and Artix-7 XC74100T FPGA (Xilinx): It uses an SVM classifier to detect

in respiratory sounds Artix-7 XC7A100T | wheezing in respiratory sounds and implements it on an Artix-7 FPGA to provide a hardware-
FPGA (Xilinx) accelerated solution to enhance the processing efficiency and speed.
[26] Neural seizure detection SVM and Xilinx SVM and Xilinx Spartan-6 FPGA: An SVM-based seizure detection neural system for
system Spartan-6 FPGA classification and deployed on a Xilinx Spartan-6 FPGA, utilizing the real-time data
processing and low-latency feature of the FPGA.
[27] Speaker recognition system | SVM with Modified | SVM with MSMO algorithm: An SVM optimized using the MSMO algorithm, a novel
Sequential Minimal | algorithm that enhances training with the ability to effectively solve SVM's optimization
Optimization problem.
(MSMO) algorithm
[28] | Facial expression recognition SVM multiclass: SVM multiclass: systolic array architecture: This method applies SVM toward multiclass
systolic array facial expression recognition, optimized with a systolic array architecture for improved
architecture computational speed and efficiency.

[4] Spectral-Spatial deep brief network | Deep belief network (DBN): DBN represents a generative graphical model consisting of

Classification of (DBN) multiple layers of hidden, stochastic variables. It is utilized for spectral-spatial classification
Hyperspectral Imagery of hyperspectral images, retrieving complicated data patterns for efficient classification.

[29] | La reconnaissance des fruits. EfficientNet EfficientNet: A family of convolutional neural networks (CNN) that provides a trade-off
between efficiency and accuracy. EfficientNet modifies the depth, width, as well as resolution
of the network, making it significantly effective in fruit recognition tasks.

[30] automatic target recognition Deep convolutional | Deep convolutional networks (ConvNets): ConvNets are specialized neural networks for

(SAR-ATR) networks processing grid-structured data such as images. They are applied for synthetic aperture radar
(ConvNets) (SAR) image automatic target recognition utilizing their feature learning capability in spatial
hierarchies of features.

[31] Predict soil moisture CNN and SVM Convolutional neural network (CNN) and SVM: 1t includes the application of CNN feature
extraction capability and SVM classification capability in accurately estimating soil moisture.

[32] Classification and detection ANN, SVM, KNN, | Artificial Neural Network (ANN), SVM, K-Nearest Neighbors (KNN), and Naive Bayes

of insects in field crops and NB (NB): An approach with a multimodel including various machine-learning algorithms (ANN,
SVM, KNN, and NB) for classification and identification of field crop pests using efficient
and proper analysis.

B. SVM Algorithm for HSI Classification

SVM is an ML algorithm that can be employed to classify and

where
w T and w called L1 norm or “Manhattan norm.”

regression problems. Its primary objective is to find the optimal
boundary, or “hyperplane,” that optimally separates different
classes in the training data. This is the margin that is chosen
to be maximized so that the distance from the hyperplane to the
nearest data points of every class, known as “support vectors,”
is maximized. This maximization makes SVMs have improved
generalization and stability in classification or regression tasks
despite having complex or high-dimensional data. Therefore,
SVMs are applied widely across various fields since they can find
the best decision boundary under the distribution of data points
[36]. The basic idea of SVM involves mapping input data points
into a higher-dimensional space where it becomes easier to find
a linear boundary that separates different classes or groups of
data points. This is achieved through the use of a kernel function
that implicitly maps the data into this higher-dimensional space.
The objective of an SVM is to find the optimal hyperplane repre-
sented by the equation (w,z) = w.z + b, where w is a weight
vector x€ R™is the input feature vector, and b is the bias term.
This hyperplane serves as a decision boundary that separates the
data points of two classes in the given dataset (Function 1).

P
min %wtw +c Z max (0,1 —y} (w'z; + b)) (1)

=1

C: arandom value called the penalty parameter; this value is
selected using hyperparameter optimization.

y: true label, and wlz + biis the predictive function.

The function (2) is represented as L1-SVM, with the standard
hinge loss. Its differentiable counterpart, L2-SVM (Function 3)
provides more stable results.

P
min %Hw”% +c Z max (0,1 — y} (w”z; + b))2 (2)
i=1
where ||w||2 is the Euclidean norm (also called L2 norm), with
the squared hinge loss.

Given the training data and their corresponding labels
(Tp,tn), n = 1,...,N,z,€ RP t,€{~1,1}, to predict the
class label of a test data x SVM uses the formula (3), this formula
gives if a new example x belongs to class —1 or class +1.

arg, max (WTX) t. (3)

As the prediction formula shows, the class prediction is not
the same as Softmax, because basic SVM can only predict
binary problems. However, there are approaches to make SVM
multiclass, to predict multiple objects. The simplest way is to use
the so-called one-vs-rest approach. For k-class problems. This
approach uses a change of variable of the function W by a , then
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the output of the SVM is designated as follows (Function 4).
ap (z) =Wt x. 4)

The function ay, presents the different classification functions
of the SVM associated with the classes (i.e., uses k decision
functions) instead of just one function, this function determines
the class of each input x. After this operation, the predicted class
would be (Function 5)

arg, max ay, (). (5)

It should be noted here that prediction using SVM becomes
multiclass, i.e., it offers the possibility of detecting multiple
classes, it is no longer a binary problem.

Specific to the problem of HSI classification, SVMs have sev-
eral important technical advantages. Hyperspectral data present
certain special difficulties: high dimensionality (often hundreds
of bands), limited number of labeled samples, and high correla-
tion between adjacent bands. The success of these data of SVMs
relies on several modified principles [37], [6].

First, unlike parametric classifiers that make assumptions
regarding the data distribution, SVMs rely on the support vec-
tors alone and therefore are less affected by multimodal and
non-Gaussian distributions of spectral signatures in data. For
hyperspectral data, the RBF (radial basis function) kernel

K (z;,2;) = exp(—7|zi — 2] (6)

Equation (6) works best as it encapsulates the high-
dimensional nonlinear interdependence between spectral bands
without directly calculating the transformation. The “kernel
trick” allows the SVM to maintain manageable computational
complexity even when faced with high dimensionality [38].

Optimization of the regularization parameter C in the hyper-
spectral setting is a must: a high one leads to overfitting of small
spectral variations (noise or atmospheric variation), while a low
one ignores large spectral variations among similar substances.
Similarly, the v parameter for the RBF kernel must be optimized
to capture the scale of the useful spectral variations. In practice,
in the hyperspectral case, cross-validation with a logarithmic
range of values (C, ) is standard practice, and in most typical
datasets such as Pavia and Salinas, optimal values tend to be from
C €10, 10000] and v € [103, 10°']. To address the multiclass
problem prevalent in remote sensing applications (separating
numerous land cover classes), One-Against-One (OAO) and
One-Against-All methods are broadly used. For hyperspectral
data in particular, the OAO method is favored as it constructs
more decision boundaries, allowing more subtle discrimination
between spectrally similar classes. The method does entail train-
ing k(k-1)/2 binary classifiers for k classes, but is computation-
ally affordable considering the SVM’s high-dimensional data
efficiency in training [39].

One of the key benefits of SVM in remote sensing is its ability
to learn well from a few labeled samples, which is a common
case in land cover mapping where the terrain data acquisition
process may be expensive. Experience has revealed that SVMs
are capable of yielding good classification accuracy from as
few as 10-30 samples per class, unlike most other classifiers
requiring large sets for training.
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C. SAE Fr HSI Classification

As mentioned earlier, one of the main challenges with HSIs
is the curse of dimensionality. Each pixel can contain hundreds
of spectral bands, making traditional algorithms susceptible to
overfitting, especially when the number of annotated samples is
not enough. SAEs address this issue by automatically learning
compact latent representations capable of capturing the most
important factors of spectral variation while ignoring redundan-
cies [12], [40]. In the context of HSI classification, SAEs offer
several key advantages.

Nonlinear dimensionality reduction [41]: Unlike linear meth-
ods such as PCA, SAEs can capture complex and nonlinear
structures present in spectral data, which improves separation
between classes.

Hierarchical learning [21]: By stacking multiple autoen-
coders (SAEs), the network learns increasingly abstract rep-
resentations, enabling better discrimination between materials
with similar spectral signatures.

Robustness to noise [42]: SAE training can include noise
(viadenoising autoencoders), making them particularly robust to
disturbances often present in hyperspectral data acquired under
real-world conditions.

Adaptability [43]: Thanks to their architectural flexibility,
SAEs can be adapted to different dataset sizes, provided there
are sufficient annotated examples to avoid overfitting.

Consequently, in this study, we chose the SAE as a repre-
sentative of early deep architectures to analyze its performance
compared to a classic classifier (SVM) in various scenarios:
dataset sizes, active learning, and presence of noise.

An Autoencoder is a unique type of artificial neural network
where the output is identical to the input. Through training, the
Autoencoder modifies its parameters such that the input samples
are transformed into a compressed representation, and then de-
coded to closely approximate the original features. Equation (7)
likely represents the mathematical expression for mapping the
input data x to the hidden layer / within the Sparse Autoencoder
framework. SAE, it constitutes of (encoder, decoder, and hidden
layer).

h = f(x) =S5 (W+b). ©

Syis the activation function used in the encoder is often a
nonlinear function such as the sigmoid function (8)

1

sigmoid (z) = T,
z

®)

After the data is encoded into the hidden layer, the decoder
function g(h) reconstructs the original data. The output of the
decoder is denoted as y (function 9), and it aims to closely
approximate the input data (function 8)

y =g(h) =S, (Wh+b,). ©)

S, is the activation function of the decoder being typically a
sigmoid function, allowing the decoder to transform the hidden
representation back into the original data space.
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Fig. 2. SAE for HSI classification.

Training objective: The training process of the autoencoder
involves optimizing the parameters 6 = {W,b,, by} to min-
imize the reconstruction error on the sample set D. The recon-
struction error is calculated using a loss function L(z, g(f(x))),
which measures the difference between the original input x and
the reconstructed output g(f(x)).

Loss function: The reconstruction error of the autoencoder is
denoted as .J4 g (function 10)

Jap =Y L(z,9(f(x))).

zeD

(10)

The reconstruction error function L in an autoencoder can be
expressed using different loss functions depending on the nature
of the data and the task at hand. Here are two commonly used
loss functions (11) and (12)

L (z,y) = |z -yl (11)

dy
L (z,y) = Zl‘i logyi; + (1 —;)log (1 —y;).  (12)
=1

The following Fig. 2 illustrates the functioning of a SAE for
HSI classification. The encoder transforms the input spectrum
into a compressed representation according to the formula h
= f(x). The connections between the numerous spectral bands
of the input and the intermediate layer can be observed. The
hidden layer represents the compressed latent space where the
number of neurons is reduced, forcing the network to learn a
sparse representation of the data. This layer is denoted by h. The
decoder reconstructs the output spectrum from the compressed
representation according to the formula y = g(h).

To further place our model selection and underscore their
relevance to HSI analysis, we illustrate in Table IT how SVM
and SAE key features complement the intrinsic properties of
hyperspectral data. This complementarity permits us to explain
why these models were chosen for examination and how their
design activities address key issues such as high dimensionality,
noise, few labeled samples, and spectral correlation.

D. Active Learning Method

Active learning is a category of ML where the algorithm
actively selects data points to label from an unlabeled dataset
instead of having a completely random process. The underlying
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TABLE II
ALIGNMENT OF SVM AND SAE CHARACTERISTICS WITH HST PROPERTIES

Hyperspectral SVM SAE
data property
High Handles high-dimensional ILearns low-dimensional latent

dimensionality [spaces well using kernel
functions (e.g., RBF)

representations through
unsupervised hierarchical
encoding

Interband Captures complex nonlinear  |Learns hierarchical features

correlation  [relationships via kernel that model spectral band
mapping dependencies

Limited IPerforms well in small sample [Can leverage unlabeled data

Labeled sizes due to support vector  (during pretraining to enhance

Samples optimization |generalization

Noise Sensitive to noise; mitigated |Can be trained as denoising

sensitivity by tuning soft-margin and lautoencoders to improve

kernel parameters robustness against spectral
Inoise
ComputationalRelatively low for small-to- [Higher computational cost
complexity  |medium datasets; scalable due to deep architecture and

with efficient implementations|iterative training

assumption is that the algorithm would select informative or
uncertain data points for labeling with the goal of achieving
maximum learning efficiency and model performance. After the
data is annotated, the model is retrained or trained incrementally
on the new batch of labeled data, and so the cycle goes until
the level of desired accuracy is achieved. The active learning’s
primitive assumption is that with a careful choice of points to
learn from, the algorithm can be just as good or even better on a
smaller set of labeled examples than passive learning techniques.
In contrast, passive learning employs an indiscriminate selection
of data points from the dataset for labeling, regardless of their
informativeness or uncertainty. Active learning methods are
especially useful in cases where there is not enough labeled
data or where it is too expensive, as they allow the model to
make the most out of sparse labeling resources by focusing on
the most valuable data points for training [44]. Active learning
exploits explicit criteria, i.e., entropy, to assist in selecting data
points for labeling. This is not the same as passive learning,
which is utilized in training data selection methods (SVM and
SAE). Passive learning can result in poor models and requires a
large amount of data, resulting in increased memory usage and
training time [45]. Active learning addresses these problems as
it has the ability to do better with less data and in less time.
Moreover, the cost of labeling data is so significant that one
must use less labeled data to achieve successful models and
hence active learning is a well-worth technique. The novelty
of this study in comparing the use of SVM and SAE in active
learning, specifically with the use of the entropy heuristic known
as the entropy query by bagging, as follows:

N

1
& =arg max “Toa () ;p(yi = wlz;) log p(y; = wlx;)
(13)

where
w : The label assigned to each class.
SVM/SAE receives the data x; to predict ;.

p(yf = wl|z;) : The probability for the given input data ( x;)
belonging to class w, as predicted by the classifier.
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This equation shows that we can use data annotation to
increase the performance of the classifier. To this, we allocate
two (14) and (15), the first ( X ) for the labeled data and the
second ( U ) for the unlabeled data.

X ={zi, 4}
U = {xb}:in+1 .

The entropy query by bagging technique selects the most
informative samples for labeling by evaluating prediction un-
certainty across an ensemble of models. This section elaborates
on the mathematical formulation (13) and provides detailed
implementation steps for reproducibility. The method proceeds
as follows:

Ensemble construction: We construct an ensemble of N =
10 models (either SVMs or SAEs) each trained on a bootstrap
sample drawn with replacement from the current labeled dataset
X. For SVMs, all ensemble members share the same kernel
parameters (C and +), but differ in training subsets. For SAEs,
we use the same network architecture while introducing slight
learning rate variations (+10%) to promote diversity.

Entropy-based uncertainty estimation: For each unlabeled
instance xj€U, the prediction probability distributions from all
N models are averaged to obtain a consensus vector.

Sample selection and labeling: At each iteration, the top q
= 200 samples with the highest entropy values are selected,
labeled, and added to the training set. These samples are removed
from U, and all ensemble models are retrained on the updated
labeled set X.

For SVMs, we used LIBSVM with Platt scaling (-b 1) to gen-
erate probability outputs. To ensure well-calibrated estimates,
we applied 5-fold internal cross-validation in each ensemble
member. And For SAEs Probabilities are directly extracted from
the softmax output layer. To approximate Bayesian uncertainty,
we applied Monte Carlo dropout (dropout rate = 0.3, with 20
stochastic forward passes per sample) during inference.

The entropy computations are vectorized using NumPy, en-
abling efficient processing of batches of 1000 samples at a
time to manage memory usage on large datasets. The active
learning loop terminates after 20 iterations or earlier if accuracy
improvement drops below 0.5% for three consecutive rounds.

The entire framework is implemented in Python 3.8, using
TensorFlow 2.4 for SAE models and LIBSVM 3.25 for SVMs.
Multiprocessing is used to parallelize the ensemble predictions,
which significantly accelerates the process, especially on larger
datasets such as Salinas and Pavia University.

(14)
15)

E. Dataset and Models Configuration

This research focuses on training models using multispectral
data, with a particular emphasis on the Pavia University dataset,
a public hyperspectral dataset containing remote sensing data.
This dataset comprises 38 400 labeled pixels divided into 7
classes, with images having a resolution of 1096 x 715 pixels.
Out of these pixels, 38 000 are allocated for training, divided
into two sets: a training set (denoted as X) and a candidate set
(denoted as U). To maintain accuracy and prevent bias, three
classes with over 40 000 labeled pixels are excluded from the
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Algorithm: Implementation of entropy-based active learn-
ing for HSI classification.

Input: X = Labeled dataset

U = Unlabeled dataset

N = Number of ensemble models (N = 10)

q = Query batch size (q = 200)

T = Max iterations (T = 20)

t=0
while t < T and accuracy_improvement > 0.5%:
B = [train_model(sample_bootstrap(X)) for _ in
range(N)]

entropy_scores = []

for x in U:
probs = [model.predict_proba(x) for model in B]
avg_probs = np.mean(probs, axis = 0)
entropy = -np.sum(avg_probs * np.log(avg_probs +

le-10)) / np.log(C)

entropy_scores.append((x, entropy))

Q = select_top_q(entropy_scores)

labels = oracle_label(Q)

X + = labeled(Q, labels)

U-=Q

t+=1

analysis to avoid potential disproportionate influence on other
classes. The dataset is then split into train and test groups, with
2940 images assigned to the train group and 35 460 images to the
test group. Within each class, 420 images are randomly chosen as
training samples, with the remaining images reserved for testing,
ensuring a systematic and unbiased approach to model training
and evaluation.

The second dataset used in this experiment is also the Pavia
University dataset, which was collected using the Reflective
Optics System Imaging Spectrometer, an advanced sensor de-
signed for detecting spectral fine structures in coastal waters.
The images in this dataset have a resolution of 610 x 340 pixels
and contain 150 bands collected at a close distance between
041 and 0.91 pm relative to the electromagnetic spectrum. The
resolution = 14 m per pixel, providing high resolution and
avoiding mixed pixels. The dataset has been preprocessed to
remove some bands due to noise, leaving around 100 channels
suitable for classification. The classes in this dataset are 9, with
a total of 25 000 pixels. However, only 3200 pixels were used
for training the set X, providing 400 pixels for each class, and
the remaining 21 800 pixels were used for the candidate set U.
Some classes were also eliminated as they contain more than
10 000 labeled pixels. The third dataset called “KSC Data Sets”
contains an image with 512 x 614 pixels spread over 13 classes
of different land cover, collected by NASA AVIRIS in 224 bands
with a width of 400-2500 nm in the infrared spectrum and 10
nm in the reflected visible at a spatial resolution of 16 m...
One-third of the samples are randomly selected for training, and
the rest (two-thirds) for testing data.

The fourth dataset used in this study is the Indiana dataset,
which was collected using AVIRIS sensors over an Indiana site.
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It contains images with a resolution of 145 x 145 pixels and 224
spectral reflectance bands in the wavelength range of 04-25 X
10~% m. The dataset includes sixteen classes, with two-thirds of
the samples randomly selected as test samples and the remaining
data used for training.

The last dataset used is the Salinas dataset, which includes
43 000 samples divided into 15 classes. Each image has a
resolution of 512 x 217 pixels, and the dataset is divided into
a training split with 7800 samples and a test split with 35 200
samples, which are randomly selected during the training and
testing phase. Four classes were eliminated due to their larger
data size than the others, to avoid any issues with the accuracy
of other classes.

‘We trained models (SVM and SAE) on these datasets to com-
pare them with an extension that uses sample selection methods
such as maximum uncertainty (MU) and random selection (RS).
Since the data in some classes is limited, while others have more
data, we used a sample selection method. It is important to note
that the models used require parameter settings, making these
two steps (sample selection and parameter settings) crucial in
the experiment. For the sake of achieving perfect accuracy, it
is desirable that there is a great understanding of the model
and its parameterizations, especially for the SAE, which is
parameter-sensitive at this stage. The parameters required by
the SAE are batch size and hidden units.

For each layer, the noise ratio, activation function, learning
rate, and iterations. In the case of supervised learning, the learn-
ing rate will dictate how quickly the model weights are updated
based on the loss gradient during training. If a high learning
rate is used, the model will overshoot the optimal weights and
diverge or converge. When a low learning rate is used, training
will be sluggish. It is generally best to start with a relatively high
learning rate and decrease it as training progresses.

In unsupervised learning, the learning rate plays a crucial role
in the adaptive adjustment of the model weights in relation to the
input data. Compared to supervised learning where the updates
to the model are guided by labeled training data, unsupervised
learning is done in the absence of direct labels and the aim is to
find underlying patterns or structures in the data autonomously.
Thus, in the case of unsupervised learning, learning is typically
made much smaller compared to supervised learning situations.
With the reduced learning rate, the model can update its weights
at a slower pace, facilitating slower exploration of the data
landscape and preventing sudden wild fluctuations or divergence
during learning. When a lower learning rate is employed, unsu-
pervised learning algorithms are able to learn from the data’s
inherent complexity and converge to useful representations or
clusters without being flooded by noise or irrelevant structures.

We configured our model to consist of three layers of 100-200
neurons and altered the momentum from O to 1. The learning
rate for the unsupervised training ranged between 0,000005 to
01 with the same rate for all the hidden layers, while for the
supervised training it was between 0,0005 to 01. For SVM, we
used Gaussian kernels with soft-margin parameter (c) and kernel
size (0, denoted by g) ranging from 01 to 1 00 000 and 10~
to 1, respectively. These were all tried and executed using the
LIBSVM library, which is well known for simplicity and rapid
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Fig. 3. Overview of the dataset and the model.

execution in SVM problems [46]. Fig. 3 gives a rough idea about
the datasets and models used.

IV. RESULTS AND DISCUSSION

In the experiment, we utilized various models and trained
them on the selected hyperspectral datasets. The configura-
tion of the models was tailored to each dataset such that the
unique characteristics and needs of each dataset were consid-
ered. Experimental results of wide coverage for accuracy and
parameters of each model and dataset are presented in the
following. We varied the parameters systematically to see how
they affected the performance of the models, allowing us to
infer the best configurations for each data set. The provided
tables and figures give an exhaustive overview of the measured
performance metrics during the experiments, enabling a good
comparison and analysis of how various models and parameter
settings affect the outcomes. They assist in better comprehension
of the performance of different modeling approaches for HSI
analysis.

A. Result

Table III shows the result of the first SVM-RBF model. It
shows that accuracy changes with a change of parameters. For
dataset Salinas, the highest accuracy was 99.60% when c and g
were 1 00 000 and 001, respectively. Similarly, for dataset Pavia,
the highest accuracy was 96.20% when c and g were 100 and
1, respectively. On the KSC dataset, it was 93.60% when c and
g were 1 00 000 and 1. For the PaviaU dataset, the highest was
92.39% when c and g were set to 1000 and 1. Lastly, on the
Indiana dataset, the highest accuracy reached was 91.39% when
c and g were set to 1000 and 1.

Table IV shows the results of training using the SAE model.
The results reflect the same pattern as the accuracy of train-
ing and changes according to the modifications of parameters
regarding the number of hidden layers, Nu = (005, 009, 01),
respectively, and the learning rates for unsupervised and super-
vised are 10. The number of iterations was fixed at 1000 epochs.

The results for the Salinas dataset show that the best accuracy
was 94.48% when Nu = (200, 200, 200). For the Pavia dataset,
the highest accuracy was 91.13% when Nu = (200, 200, 200).
The PaviaU dataset had a test accuracy of 87.34% when the
parameters of hidden layers were set to Nu = (200, 100, 100).
The Indiana dataset had the best accuracy of 86.59% when Nu
= (200, 200, 200). Lastly, for the KSC dataset, when Nu = (200,
200, 100), the accuracy was 64.13%.

Table V the impact of various parameters, including the
number of iterations, learning rate, and units in the hidden layer,
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c g 1077 10~° 103 10~ 1073 1072 107! 1
Salinas dataset
0,1 15,77% 15,77% 15,77% 15,77% 8,53% 48,59% 72,24% 93,97%
1 15,77% 15,77% 15,77% 8,53% 48,53% 72,18% 93,95% 96,45%
10 15,77% 15,77% 8,53% 48,53% 72,21% 93,90% 96,48% 98,20%
100 15,77% 8,53% 48,52% 72,21% 93,89% 96,47% 98,21% 99,17%
1000 8,53% 48,53% 72,23% 93,90% 96,46% 98,11% 99,15% 99,55%
10000 48,91% 72,50% 93,89% 96,46% 98,09% 99,19% 99,56% 99,59%
100000 73,45% 93,79% 96,46% 98,06% 99,12% 99,60% 99,60% 99,58%
Pavia dataset
0,1 6,27% 6,27% 6,27% 6,27% 46,99% 68,10% 84,62% 89,31%
1 6,27% 6,27% 6,27% 46,81% 80,75% 85,16% 89,28% 91,51%
10 5,39% 5,39% 46,79% 80,67% 85,21% 89,27% 91,17% 94,17%
100 6,27% 46,79% 80,65% 85,21% 89,19% 90,81% 93,73% 96,20%
1000 46,84% 80,64% 85,22% 89,18% 90,71% 93,39% 95,92% 95,45%
10000 80,55% 85,21% 89,18% 90,70% 93,28% 95,47% 95,57% 95,40%
100000 85,59% 89,17% 90,70% 93,31% 95,10% 95,24% 94,88% 95,40%
KSC dataset
0,1 4,44%6 4,27% 16,80% 28,81% 38,15% 30,54% 60,13% 56,45%
1 5,84% 27,56% 54,48% 49,09% 47,64% 55,70% 58,40% 59,82%
10 15,93% 52,41% 27,64% 28,17% 47,57% 57,81% 45,18% 63,24%
100 34,54% 45,79% 35,81% 44,39% 51,01% 56,57% 59,63% 74,34%
1000 38,08% 34,73% 47,68% 30,72% 51,84% 60,63% 73,06% 80,58%
10000 33,67% 44,08% 51,29% 29,62% 61,90% 72,72% 79,09% 87,40%
100000 24,52% 49,99% 31,57% 49,57% 73,15% 77,19% 83,41% 93,60%
PaviaU dataset
0,1 8,17% 8,17% 8,17% 8,17% 41,16% 63,91% 73,38% 79,70%
1 8,17% 8,17% 8,17% 41,21% 64,15% 73,10% 79,81% 84,28%
10 8,17% 8,17% 41,21% 64,13% 73,13% 79,58% 83,97% 89,81%
100 8,17% 41,21% 64,13% 73,13% 79,27% 83,79% 90,76% 92,30%
1000 41,21% 64,10% 73,15% 79,22% 83,70% 90,07% 92,36% 92,39%
10000 64,07% 72,99% 79,23% 83,69% 89,58% 92,19% 92,20% 91,15%
100000 73,05% 79,38% 83,61% 89,50% 91,13% 91,99% 91,27% 90,78%
Indiana dataset
0,1 43,96% 42,41% 42,56% 44,24% 51,75% 57,26% 58,33% 58,06%
1 47,74% 46,15% 48,23% 52,07% 53,89% 59,07% 60,51% 71,13%
10 24,66% 44,53% 51,33% 54,39% 58,27% 61,07% 71,45% 85,51%
100 47,98% 50,32% 46,38% 58,54% 61,66% 69,46% 83,52% 90,57%
1000 49,13% 55,99% 58,71% 61,24% 69,29% 82,38% 88,45% 91,39%
10000 51,84% 58,71% 61,45% 69,19% 81,56% 87,20% 89,65% 91,29%
100000 56,52% 61,48% 69,22% 81,20% 86,84% 88,07% 89,53% 91,30%
TABLE IV
A SUMMARY OF THE RESULTS OBTAINED BY THE SAE MODEL WITH THE PARAMETERS APPLIED FOR EACH DATASET (NUMBER OF UNITS IN THE THREE HIDDEN
LAYERS)
Dataset Salinas dataset
N, 100, 100, 100 100, 100,200 100, 200, 100 | 100,200,200 | 200, 100, 100 | 200, 100,200 | 200,200, 100 | 200, 200, 200
Accuracy 97,29% 97,28% 97,45% 97,43% 97,26% 97,37% 97,17% 97,48%
Dataset Pavia dataset
N, 100, 100, 100 100, 100, 200 100, 200, 100 | 100,200,200 | 200, 100, 100 | 200, 100,200 | 200,200, 100 | 200, 200, 200
Accuracy 24,10% 80,29% 84,23% 84,51% 87,88% 89,68% 90,21% 91,13%
Dataset Pavia data sets
N, 100, 100, 100 100, 100, 200 100, 200, 100 | 100,200,200 | 200, 100, 100 | 200, 100,200 | 200,200, 100 | 200, 200, 200
Accuracy 85,29% 84,53% 86,35% 86,76% 87,34% 86,01% 86,55% 86,41%
Dataset Indiana dataset
Nu 100, 100, 100 100, 100,200 100, 200, 100 | 100,200,200 | 200, 100, 100 | 200, 100,200 | 200,200, 100 | 200, 200, 200
Accuracy 85,22% 86,12% 87,31% 85,94% 83,99% 86,05% 84,39% 86,59%
Dataset KSC dataset
Nu 100, 100, 100 100, 100, 200 100, 200, 100 | 100,200,200 | 200, 100, 100 | 200, 100,200 | 200,200, 100 | 200, 200, 200
Accuracy 70,82% 54,17% 60,28% 15,22% 69,95% 66,12% 64,12% 60,84%
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TABLE V
ACCURACY OF SAE TRAINING WITH DIFFERENT PARAMETERS (SUPERVISED AND UNSUPERVISED LEARNING RATE R1 AND R2) APPLIED TO EACH DATASET

Dataset Pavia dataset

R1 0,0005 0,005 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Accuracy 36,76% 36,86% | 82,72% | 84,88% | 85,43% | 85,56% | 85,64% | 85,71% | 85,88% | 86,02% | 86,13% | 88,42% | 74,85%
using rl

R2 0,000005 | 0,00005 | 0,0005 | 0,005 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,1
Accuracy 87,99% 87,85% | 86,87% | 85,12% | 85,00% | 84,88% | 84,86% | 84,99% | 85,08% | 85,12% | 85,13% | 85,12% | 85,36%
using r2

Dataset Salinas dataset

R1 0,0005 0,005 0,05 0,1 0,2 0,3 0.4 0,5 0,6 0,7 0,8 0,9 1
Accuracy 19,58% 24,25% | 74,16% | 71,96% | 88,87% | 90,87% | 83,82% | 77,13% | 77,39% | 76,17% | 68,51% | 59,57% | 54,64%
using rl

R2 0,000005 | 0,00005 | 0,0005 | 0,005 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,1
Accuracy 64,12% 64,04% | 63,59% | 66,72% | 68,35% | 69,44% | 70,84% | 71,57% | 72,35% | 72,88% | 73,36% | 73,72% | 74,15%
using r2

Dataset PaviaU dataset

R1 0,0005 0,005 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Accuracy 28,18% 29,77% | 66,51% | 74,22% | 75,61% | 76,81% | 77,25% | 77,52% | 77,91% | 78,62% | 79,13% | 79,58% | 79,60%
using rl

R2 0,000005 | 0,00005 | 0,0005 | 0,005 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,1
Accuracy 62,21% 79,39% | 79,32% | 79,52% | 79,46% | 79,59% | 79,99% | 80,12% | 80,16% | 80,29% | 80,17% | 79,94% | 80,02%
using r2

Dataset Indiana dataset

R1 0,0005 0,005 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Accuracy 39,53% 39,77% | 27,80% | 29,30% | 38,99% | 38,39% | 36,74% | 38,05% | 38,77% | 39,67% | 38,89% | 39,13% | 40,06%
using rl

R2 0,000005 | 0,00005 | 0,0005 | 0,005 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,1
Dataset KSC dataset

R1 0,0005 0,005 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Accuracy 18,36% 18,46% | 18,63% | 18,58% | 18,58% | 8,63% 8,65% 8,63% 21,08% | 17,05% | 16,82% | 16,71% | 17,08%
using rl

R2 0,000005 | 0,00005 | 0,0005 | 0,005 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,1
Accuracy 16,44% 16,43% | 20,65% | 20,67% | 16,73% | 16,76% | 16,82% | 16,89% | 17,08% | 17,10% | 17,05% | 17,07% | 21,08%
using 12

on the accuracy of training using the SAE model. The SAE
model is configured with 50 iterations and a specific number
of Nu 200 and 100. Additionally, it employs two learning rates
for supervised learning and r2 for unsupervised learning. The
reported results for each dataset are as follows: for the Pavia
dataset, with a fixed, the accuracy was 88.42% at rl = 09; and
with a fixed r1, the accuracy was 87.99% at r2 = 0,000005. For
the Salinas dataset, with a fixed 12, the accuracy was 90.87% at
rl = 03; if rl was fixed, the accuracy was 74.15% at r2 = Ol.
For the PaviaU dataset, with a fixed 12, the accuracy was 79.60%
whenrl = 10; if r1 was fixed, the accuracy reached its maximum
80.29% at r2 = 07. For the Indiana dataset, if we fixed r2, the
accuracy was 40,05% atrl = 10; when 1 was fixed, the accuracy
was 52.27% at r2 = 01. For the KSC dataset, if r2 was fixed,
the accuracy reached a maximum of 21,08% at r1 = 06; when
rl was fixed, the accuracy was 21,08% at r2 = 10.

Table VI depicts the correlation between the number of iter-
ations and the accuracy of the SAE model across five datasets.
The findings reveal that as the number of iterations employed
during training increases, there is a corresponding improvement
in the accuracy of the SAE model. In this analysis, a fixed
supervised learning rate (r1) of 10 and an unsupervised learning
rate (12) of 006 are maintained. Additionally, the number of units
in the three hidden layers (Nu) is fixed at 200, 100, and 100,
respectively. This setup allows for a controlled examination of
how varying the number of iterations impacts the performance
of the SAE model across different datasets. The observed trend
underscores the importance of iterative refinement in the training

process, suggesting that prolonged training iterations contribute
to enhanced model accuracy by allowing the network to learn
more intricate patterns and representations within the data.

Table VII shows the comparison of the execution time of
different learning algorithms, such as SAE and SVM. Execu-
tion time is an important consideration for comparing different
algorithms. We ran each algorithm eight times, and each time we
ran it, we utilized the parameters we had set. The results shown
in Table VI are such that overall SAE took longer than SVM,
but changing the parameters can alter the execution time.

Table VI illustrates the impact of noise levels on the learning
results. We added different levels of noise, as a percentage, to
each image of each dataset for eight executions (eight times of
training for each model with different parameters). The noise
percentages used were 0,0195, 0,0781, 0,0391. To understand
the significance of these percentages, it is important to note that if
an image has a pixel value between 0 and 255, a noise percentage
of 0,0391 means that the noise variance is: 0,0391 x 256 = 10.

Figs. 1- 5 demonstrate the training accuracy of SVM with
MU sampling as well as SVM with RS sampling. The training
curves on the different datasets show that SVM training with the
MU method (red curve) generalizes better and gives a higher
accuracy compared to SVM with the RS method (blue curve).
The batch size used is 200 and the active learning algorithm is
executed with a step of 200. The starting value of the accuracies
obtained differs from one dataset to another (3200, 2800, 6000,
3000, 1500). The same figures show also that the SAE with
MU method generalizes better than SAE with RS, and it gets
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TABLE VI
RESULTS OF SAE LEARNING IN RELATION TO THE NUMBER OF ITERATIONS APPLIED TO EACH DATASET
Dataset Salinas
Number of 10 50 100 200 300 500 600 1000
iterations
Accuracy 18,74% 67,22% 90,87% 96,12% 96,77% 97,29% 97,34% 97,80%
Dataset Pavia
Number of 10 50 100 200 300 500 600 1000
iterations
Accuracy 34,72% 36,04% 88,94% 89,23% 91,13 92,47% 93,23% 94,93%
Dataset PaviaU
Number of 10 50 100 200 300 500 600 1000
iterations
Accuracy 24,10% 80,29% 84,23% 84,51% 87,88% 89,68% 90,21% 91,13%
Dataset India
Number of 10 50 100 200 300 500 600 1000
iterations
Accuracy 41,59% 52,27% 53,06% 57,53% 62,56% 65,26% 69,38% 71,04%
Dataset KSC
Number of 10 50 100 200 300 500 600 1000
iterations
Accuracy 16,71% 35,17% 20,82% 18,76% 21,25% 17,22% 37,65% 25,00%
As the number of iterations increases, the accuracy of the SAE model also increases
TABLE VII
CONSUMPTION TIME OF EACH ALGORITHM (SAE AND SVM) IN EACH EXECUTION (1,8) ON DATASETS
Execution Order 1 2 3 4 5 6 7 8
SVM on PaviaU Dataset 14 9 7 6 7 8 13 6
SAE on PaviaU 1232 1472 1195 1385 1627 13411 1745 1805
SVM on Pavia 17 11 7 6 5 6 5 6
SAE on Pavia 1702 1924 1834 2106 2303 2127 2254 2576
SVM on Salinas 109 72 42 32 31 31 31 34
SAE on Salinas 2468 2558 2529 3156 31310 3768 3686 3893
SVM on Indiana dataset 1611 171 191 188 176 173 153 121
SAE on Indiana 1101 1161 1271 1581 1505 1663 1705 1808
SVM on KSC 46 46 47 47 48 48 48 48
SAE on KSC 422 717 771 7874 724 7311 913 998
Accuracy of SVM and SAE models when utilizing the RS and MU techniques on the Paviall dataset SVM and SAE models when utilizing the RS and MU techniques on the Pavia dataset
3150 3300 3450 3600 Epgzjus 3900 4050 4200 4350 EpocHs
Fig. 5. Performance comparison on the Pavia dataset.

Fig. 4. Performance comparison on the PaviaU dataset.

the best results at each iteration. The SVM-MU and SAE-MU
algorithms are able to generalize better because they are able to
learn features and representations from the data that are more.
This Fig. 4 shows the performance comparison between SVM
and SAE on the PaviaU dataset. The orange curve (SVM-MU)
achieves the highest accuracy (around 96%), demonstrating
that the MU approach allows the SVM to generalize better
than the RS method. The green curve (SAE-MU) also shows
good progress, reaching an accuracy comparable to SVM-MU
toward the end of training. Both MU curves (SVM and SAE)

consistently outperform their RS counterparts, confirming the
effectiveness of the active learning method.

Fig. 5 illustrates the performance of the Pavia dataset. SVM-
MU (orange line) shows superior performance, reaching nearly
98% accuracy toward the end of training. SAE-MU (green line)
starts with lower accuracy (around 81%) but quickly progresses
to around 98%. Note that SAE with RS (purple line) shows
significantly lower performance with stagnation around 85%,
suggesting that active learning is particularly beneficial for the
SAE model on this dataset.
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TABLE VIIT
RESULTS OF ADDING NOISE TO THE IMAGES OF THE DATASETS AND ITS EFFECT ON THE LEARNING PROCESS
Execution 1 | 2 |3 | 4 |5 | 6 [ 7 | 8
The variance of the noise 0,0195
SVM on PaviaU Dataset 69,78% 78,96% 82,00% 82,60% 81,08% 81,46% 81,97% 82,79%
SAE on PaviaU Dataset 86,68% 86,82% 83,80% 84,26% 86,99% 83,26% 84,15% 83,20%
SVM on Pavia Dataset 84,78% 88,80% 90,13% 90,78% 89,69% 88,82% 89,39% 91,19%
SAE on Pavia Dataset 88,28% 88,16% 88,05% 88,03% 88,09% 88,19% 88,13% 88,17%
SVM on Salinas Dataset 74,97% 92,12% 94,71% 94,61% 92,28% 91,23% 92,03% 93,67%
SAE on Salinas Dataset 94,36% 94,82% 94,59% 94,73% 94,73% 94,94% 95,08% 95,13%
SVM on Indiana dataset 53,04% 58,52% 64,77% 74,87% 77,37% 76,66% 78,21% 82,39%
SAE on Indiana dataset 84,95% 84,08% 83,30% 83,98% 83,08% 82,78% 77,78% 84,27%
SVM on KSC Dataset 26,60% 25,02% 24,63% 24,10% 24,10% 24,79% 23,33% 24,65%
SAE on KSC Dataset 11,63% 11,92% 12,38% 11,95% 12,55% 12,38% 11,92% 12,46%
The variance of the noise 0,0391
SVM on PaviaU Dataset 71,72% 78,13% 79,54% 78,32% 76,96% 77,97% 78,01% 78,89%
SAE on PaviaU Dataset 79,76% 79,55% 79,81% 81,07% 80,96% 81,26% 80,26% 80,04%
SVM on Pavia Dataset 83,40% 87,99% 89,05% 88,20% 86,17% 85,91% 86,02% 88,06%
SAE on Pavia Dataset 89,21% 89,16% 89,56% 89,98% 89,49% 89,43% 89,76% 89,83%
SVM on Salinas Dataset 66,84% 88,59% 89,46% 86,55% 83,82% 83,66% 84,57% 87,22%
SAE on Salinas Dataset 90,15% 90,20% 90,19% 90,15% 90,09% 90,15% 90,19% 90,22%
SVM on Indiana dataset 45,81% 50,21% 50,63% 48,98% 49,68% 53,15% 55,30% 57,81%
SAE on Indiana dataset 48,63% 47,89% 47,31% 47,94% 48,13% 48,77% 48,67% 47,39%
SVM on KSC Dataset 16,32% 21,13% 21,72% 20,54% 20,85% 21,79% 20,63% 20,82%
SAE on KSC Dataset 9,44% 9,30% 10,17% 10,49% 10,22% 9,52% 10,08% 9,49%
The variance of the noise 0,0781
SVM on PaviaU Dataset 73,99% 75,41% 75,16% 73,15% 71,98% 71,45% 73,01% 74,53%
SAE on PaviaU Dataset 96,36% 95,83% 76,27% 75,70% 75,58% 76,47% 76,25% 76,00%
SVM on Pavia Dataset 80,13 85,80% 85,90% 84,25% 82,91% 82,78% 82,87% 84,52%
SAE on Pavia Dataset 84,85% 84,60% 84,25% 84,78% 84,25% 83,57% 83,49% 83,61%
SVM on Salinas Dataset 64,50% 79,57% 77,46% 74,01% 71,40% 71,64% 73,25% 76,81%
SAE on Salinas 77,55% 77,67% 77,69% 77,36% 77,97% 77,69% 77,90% 78,59%
SVM on Indiana dataset 45,83% 47,39% 49,59% 50,69% 50,98% 49,96% 50,32% 50,35%
SAE on Indiana dataset 38,13% 37,80% 38,00% 38,08% 37,48% 37,64% 37,38% 37,69%
SVM on KSC Dataset 20,38% 20,32% 20,66% 20,57% 20,47% 20,44% 20,44% 20,72%
SAE on KSC Dataset 9,25% 8,55% 10,05% 9,60% 9,25% 9,00% 9,79% 9,17%

Accuracy of SVM and SAE modals whan wlilizing the RS and MU techniques on the Salinas datasat

ACCURACY

a0 3100 3150 00 2000 = 4 a0

70
EPOCHS

Fig. 6. Performance comparison on the Salinas dataset.

On the Salinas dataset, all methods achieve high accuracies.
SVM-MU (orange line in Fig. 6) shows the best performance,
reaching 99% toward the end of training. SVM-RS (blue line)
already starts at a high accuracy of 96%, suggesting that this
dataset is relatively easy to classify. SAE models also show good
performance, with SAE-MU reaching around 98% and SAE-RS
around 95%. This figure demonstrates that on well-structured
datasets like Salinas, even RS methods can achieve acceptable
performance.

This figure presents the results of the KSC (Kennedy Space
Center) dataset. Both SVM models significantly outperform the
SAE models. SVM-MU (orange line in Fig. 7) achieves the
best accuracy at around 94%, followed closely by SVM-RS at

Accuracy of SYM and SAE models when utilizing the RS and MU techniques on the KSC dataset

000 ats0 300 uso a0 3000 1080 1200 1350

3800
EPOCHS

Fig. 7. Performance comparison on the KSC dataset.

93%. The SAE models show slower progress, with SAE-MU
reaching around 86% and SAE-RS stagnating around 80%. This
notable difference in performance between SVM and SAE can
be attributed to the complex nature of the KSC hyperspectral
data, where SVMs appear to be better suited to capturing the
distinctive features of this dataset.

On the Indiana dataset, we observe the greatest disparity
between methods. SVM-MU (orange line in Fig. 8) significantly
outperforms other approaches, maintaining a high accuracy of
around 85%—-89% throughout training. SAE-MU (green line)
shows a steady improvement, increasing from 64% to 80%.
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Accuracy of SVM and SAE models when utilizing the RS and MU technigues on the Indiana dataset
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Fig. 8.  Performance comparison on the Indiana dataset.

SVM-RS (blue line) and SAE-RS (purple line) exhibit unsta-
ble performance with significant fluctuations, notably SVM-RS
dropping to 56% at the end after reaching 71%. This instability
suggests that the Indiana dataset has complex and heterogeneous
features that require an active learning approach for stable and
accurate classification.

B. Discussion

The observed performance trends of SAE and SVM are
closely tied to the structural and statistical properties of hy-
perspectral data. SAE’s advantage becomes more pronounced
with larger datasets due to its ability to learn hierarchical and
abstract representations from high-dimensional spectral inputs.
This makes it particularly suitable for denoising and com-
pressing redundant spectral bands—an inherent characteristic of
hyperspectral imagery. We found that certain configurations of
SAE (e.g., three hidden layers with 200 units and learning rates
between 0.05 and 0.3) achieved better generalization, suggesting
a sweet spot between depth and training stability. These config-
urations enabled the network to converge effectively without
overfitting. The use of dropout during inference also helped
capture uncertainty, improving robustness in the presence of
noise. On the other hand, SVM’s effectiveness in small-sample
regimes can be attributed to its reliance on support vectors,
making it resilient in high-dimensional, low-sample settings.
This behavior aligns with the sparsity and limited annotation
issues common in remote sensing. The combined interpretation
of these results gives rise to theory-informed explanations be-
yond levels of general assertions about “deep learning power,”
linking model performance explicitly to HSI characteristics. The
key findings of the work can be summarized as follows:

1) Parameter Comparison Between SVM and SAE: SVM
and SAE employ different types of parameters. SAE employs
simple parameters such as W and b, while SVM utilizes param-
eters such as « for the purpose of setting its kernel functions
and so forth. SAE also possesses supporting parameters such as
the number of hidden layers, hidden layer nodes, and learn-
ing rates. Simple parameters are normally tuned at training,
while supporting parameters are chosen manually based on
experience. Notably, SAE entails more helping parameters with
correlated relationships, as seen in observations of Tables IV-VI.
Parameters like learning rates and numbers of hidden nodes are
tunable in SAE. Contrarily, SVM entails a limited number of
parameters whose selection is very simple, as shown in Table III.
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Comparison experiments reveal that determining parameters
in SAE poses greater challenges compared to SVM, particularly
in hyperspectral classification tasks. This difficulty arises from
the ambiguity surrounding the importance and optimal range of
SAE parameters. While the number of layers in SAE may hold
significance to some extent, proving its theoretical importance
remains challenging.

2) Data Size and Model Complexity: HSI data files are usu-
ally between 10 and 1000 megabytes (MB) in size. In the context
of remote sensing, it is common to analyze one scene’s worth of
image data at a time. Despite this data being relatively large, it
is not considered big data. Additionally, the number of samples
with known labels, which are used to train machine-learning
models, is limited. For traditional SVM classifiers, the require-
ment for a significant number of training samples is not crucial.
This is because of a concept known as the Vapnik—Chervonenkis
(VC) dimension, proposed by Vapnik in statistical ML. How-
ever, the SAE model, used in this research, has substantially
more parameters compared to SVM, especially when the SAE
network is deep and has numerous layers. Additionally, the pa-
rameters in SAE interact multiplicatively rather than additively,
making the model more complex. Hence, autoencoder (SAE)
models would have a larger VC dimension than other models,
although it is still hard to determine it precisely for deep net-
works. SAE requires more training samples and computational
resources with more parameters. In this study, we found that SAE
performs very well when there are enough training samples.
However, it should be observed that SAE takes much more
training samples than SVM to achieve optimum performance.

3) Computational Efficiency Analysis: When looking at the
computational efficiency of SVM and SAE, the iterations to
converge are critical. SVM requires fewer iterations than SAE
in most instances, as shown in Table VII. Consequently, SVM
consumes less computational time, especially in medium or
small sizes of datasets. The computational complexity of SAE
primarily stems from two factors: its extensive parameter set and
its relatively slow convergence rate, even with larger rates. In
contrast, SAE shares similarities with online learning, allowing
training instances to be processed sequentially. This feature
facilitates easy adaptation and implementation on parallel com-
puting platforms such as clusters or GPUs. Looking ahead,
advancements in hardware and computational capabilities may
enhance the efficiency of SAE, potentially closing the perfor-
mance gap with SVM in terms of computational time.

4) Dataset Selection and Performance Evaluation: It is es-
sential to employ diverse datasets that adequately cover various
aspects of our models. We utilized multiple public hyperspectral
datasets to assess the accuracy of both SVM and SAE. However,
it is crucial to recognize that classification outcomes might
not generalize to Synthetic Aperture Radar (SAR) data, mul-
tispectral data, etc. In this study, we evaluated the models using
commonly used hyperspectral datasets in the literature to ensure
the comprehensiveness of our analysis. Itis important to consider
the representativeness of these experiments when applying deep
network-based classification to other hyperspectral datasets. Our
observations, as depicted in Tables IV-VI, reveal that SVM
generally outperformed SAE in most cases. However, there were
instances where the accuracy of SAE was comparable to SVM.
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TABLE IX
COMPARISON WITH PRIOR STUDIES

Study Compared models Classification Spectral-spatial Active Noise Parameter Computation
performance (%) (best learning | robustness | sensitivity analysis
accuracy achieved)

Zhao et al., 2021 Autoencoder ~95.4 Yes No No No No

[10] (spectral—spatial)

Tian et al., 2024 Sparse autoencoder ~90.2 No No No No No

[11] (unsupervised)

Zhouhan et al., | SAE (spectral- | ~96.5 Yes No No No No

2013 spatial)

[12]

Zhong et al., 2018 | 3D CNN vs. SVM ~98.6 Yes No No Partial No

[21]

Chen et al., CNN vs. SVM/ELM | ~97.0 Yes No No Partial No

[22]

Our study SVM vs. SAE SVM~ 97 No Yes Yes Yes Yes
SAE ~99

This discrepancy may be attributed to the fact that SAE tends
to excel primarily in scenarios involving very large datasets,
whereas its advantages may be less pronounced when dealing
with relatively small datasets.

5) Active Learning and Model Performance: The active
learning method’s ability to improve the model’s performance
is shown or proven by the data presented in Figs. 4 and 5. SVM
and SAE models can utilize an active learning algorithm. This
algorithm helps them automatically identify which samples from
the dataset are the most informative or useful for improving
the classification accuracy of the model. When you use active
learning to pick which examples the model learns from, it usually
does better than just picking examples randomly. However, how
much this helps depends on the type of model. In this case,
when SAE and SVM are each provided with an identical set of
training data, SVM learns faster and more accurately than SAE,
especially when there are only a few examples to learn from.
Typically, the number of training samples available for a single
scene of hyperspectral data is sufficient for SVM but inadequate
for SAE. In Figs. 4 and 5, SVM starts with a high accuracy, but
its accuracy does not improve much after that. Consequently,
the curves representing SVM in these figures appear relatively
flat. Conversely, the curves representing SAE exhibit a steep
incline, indicating substantial accuracy improvement with active
learning. Hence, we conclude that for datasets of medium size,
the active learning approach is more crucial for enhancing the
performance of SAE compared to SVM.

6) Noise Sensitivity Analysis: We conducted an assessment
of the sensitivity of both methods to noise using various datasets.
It was difficult to determine which method is more resistant to
noise, but our analysis, illustrated in Table VIII , showed that
both SAE and SVM are affected by noise. For instance, on the
Indiana dataset, the accuracy exceeded 90% in the absence of
noise. However, upon introducing noise, the accuracy of both
methods plummeted to below 60%. This trend was consistent
across other datasets, indicating that noise has a substantial
detrimental impact on the accuracy of both methods. Our ex-
perimental results highlight the comparative performance of
different classification methods on hyperspectral data, it includes
traditional machine-learning methods such as SVM and simpler

deep learning models like SAE to provide a comprehensive
perspective.

7) Performance Analysis and Comparison With Prior Stud-
ies: Table IX presents a comparative summary of recent
studies and our proposed work. Even if previous research
has investigated either traditional or deep models, most of
these studies were limited to classification performance and
spectral-spatial representation. On the other side, our study
offers a broader experimental design by integrating dimensions
such as active learning, noise sensitivity, and parameter tun-
ing, which are essential for the practical deployment of HSI
classifiers.

Our study reports peak accuracies of 99.6% for SVM
(achieved on the Salinas dataset with optimized parameters ¢
= 100000, g = 0.01) and 97.5% for SAE (achieved with three
hidden layers of 200 units each after 1000 iterations). These
results are competitive with state-of-the-art approaches like 3D
CNN (98.6% reported by Zhong et al.) and CNN (97.0% by
Chen et al.).

What is notable is that our models achieve these compet-
itive accuracies without incorporating spatial information, re-
lying solely on spectral features. In contrast, most previous
high-performing studies (like Chen, Zhong, and Lin) explicitly
leveraged spatial context through specialized architectures like
3D CNNs. This suggests that properly optimized spectral-only
models can approach the performance of spectral-spatial models
under certain conditions.

The performance differences between datasets are also sig-
nificant. Both SVM and SAE performed exceptionally well on
the Salinas dataset (99.6% and 97.5%, respectively), which has
well-separated class structures. However, the performance gap
between SVM and SAE widened on more challenging datasets
like KSC, where SVM reached 93.6% while SAE managed only
64.1%. This underscores SVM’s robustness in scenarios with
limited training samples.

Furthermore, our active learning experiments discovered that
even though SVM has better accuracy initially, SAE learns much
better with entropy-based sample selection, which can be clearly
observed from the Indiana dataset results. This demonstrates that
diligent training data selection can compensate to some extent
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for SAE’s need for larger training data sets.

Our comparison of SAE and SVM, notwithstanding the fact
that SAE is not the state of the art in deep learning for HSI
classification, is nevertheless significant for a few reasons. First,
it serves as an exploratory examination of the different archi-
tectural impacts on hyperspectral data as a precursor to more
sophisticated models. Second, the comparison is of educational
value in allowing readers to grasp how the field has progressed
from traditional to modern algorithms. Lastly, with resource
constraints in consideration, older methods like SVM and sim-
pler deep learning models like SAE are less computationally
resource-intensive. By including them in our comparison, we
emphasize the tradeoff between classification accuracy and com-
putational resources, demonstrating that even less computation-
ally intensive methods can yield insights of value.

Another key limitation related to these models is that they
do not leverage spatial context, which is often critical in HSI
classification. Spatial information, such as pixel neighborhood
structures or textures, can significantly enhance classification
performance, especially in complex environments where spec-
tral signatures alone are ambiguous. Recent studies have shown
that combining spectral and spatial features using CNNs, graph
convolutional networks (GCNs), and spectral—spatial attention
mechanisms leads to superior results achieved by Zhong. How-
ever, our objective was to isolate and analyze the behavior of
purely spectral models under varying conditions of data size,
noise, and active learning, in order to establish a clear perfor-
mance baseline. We consider this spectral-only focus a necessary
first step before extending the analysis to more complex, spatial-
aware architectures. Future work should incorporate spatial—
spectral models for a more comprehensive evaluation and to
align more closely with current state-of-the-art approaches in
the field.

V. CONCLUSION

ML significantly depends on a vast number of labeled sam-
ples, but obtaining these samples can be both time-consuming
and expensive. Achieving a precise classification map necessi-
tates the availability of a large quantity of high-quality training
samples. This requirement is especially critical when training
deep networks, where the choice of an appropriate training
dataset becomes even more vital compared to the less demanding
data needs of SVM. In this study, we compared the performance
of SVM and SAE in the classification of hyperspectral remote
sensing images. Our findings reveal that while SVM excels
in computational efficiency and performs well with smaller
datasets, SAE has the potential for better generalization with
larger datasets. The study highlights the importance of parameter
selection and active learning in enhancing SAE’s performance.
Noise sensitivity remains a challenge for both models,
suggesting the need for robust noise-handling techniques
in future research. Future research will benefit from including
techniques like attention mechanisms and spectral-spatial
fusion architectures (such as CNNs, GCNs, and Transformers)
for improving classification accuracy by capturing both local
spatial context and global spectral relationships. Additionally,
developing hybrid or attention-enhanced SAE variants tailored
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for hyperspectral applications could address more practical
real-world deployment scenarios.
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