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The agricultural industry is experiencing revolutionary changes through the latest advances in 
artificial intelligence and deep learning-based technologies. These powerful tools are being used for 
a variety of tasks including crop yield estimation, crop maturity assessment, and disease detection. 
The cotton crop is an essential source of revenue for many countries highlighting the need to protect 
it from deadly diseases that can drastically reduce yields. Early and accurate disease detection is quite 
crucial for preventing economic losses in the agricultural sector. Thanks to deep learning algorithms, 
researchers have developed innovative disease detection approaches that can help safeguard the 
cotton crop and promote economic growth. This study presents dissimilar state-of-the-art deep 
learning models for disease recognition including VGG16, DenseNet, EfficientNet, InceptionV3, 
MobileNet, NasNet, and ResNet models. For this purpose, real cotton disease data is collected from 
fields and preprocessed using different well-known techniques before using as input to deep learning 
models. Experimental analysis reveals that the ResNet152 model outperforms all other deep learning 
models, making it a practical and efficient approach for cotton disease recognition. By harnessing the 
power of deep learning and artificial intelligence, we can help protect the cotton crop and ensure a 
prosperous future for the agricultural sector.
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South Asia is the home of about half of the world’s malnourished population where agriculture is their primary 
source of livelihood1. These countries are known for their agricultural exports which comprise a significant 
portion of their gross domestic product (GDP). The fertile soil in the region allows for high crop yields, leading 
to surplus production and subsequent exports for over 50 years. This benefits farmers and cotton-related 
crops, which strengthens the country’s economy, thereby increasing the country’s GDP2. Therefore, to achieve 
economic stability and maximize crop revenue, it is crucial to achieve high-quality and high-quantity yields3. 
However, achieving better yield is difficult when pests, weeds, and animals attack the crops. Despite current 
practices, crop losses due to these factors remain substantial. In fact, between 2001 and 2003, 19 regions were 
reported bearing losses up to 50% for wheat, over 80% for cotton, as well as 26-29% for soybeans. These numbers 
are expected to increase in the near future2.

Pakistan is a developing country with a total area of 796,095 km2, out of which 24.44% is arable land. 
Agriculture is the most significant contributor to Pakistan’s economy, sharing approximately 19% of total GDP, 
although there is potential in the agriculture sector to increase this percentage4. However, climate change, pest 
attacks, and water shortages have hindered agricultural growth. Pakistan has two cropping seasons and the 
first season starts in April and continues till December. Crops such as cotton, maize, green gram, mash, barley, 
sorghum, rice, and sugarcane are grown in this season. The second season continues from December to April, 
and yields crops like wheat, gram, and lentil barley. Pakistan’s primary crops include cotton, sugarcane, rice, 
wheat, and maize.

Cotton is particularly important for Pakistan’s economy, accounting for 55% of the country’s total foreign 
exchange earnings and contributing 10% to GDP5. Pakistan is the fifth-largest cotton producer in the world, after 
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China, India, America, and Indonesia6. Cotton crop is primarily grown in the provinces of Sindh and Punjab 
which produce approximately 75% of the total cotton crop produced in Pakistan annually. This crop is sown in 
March and April in Sindh, and in May to August in Punjab7. There are 59 different cotton varieties, each suited 
to different environmental conditions, planting times, recommended areas, and yield potential6. However, these 
varieties have to face various issues including disease attacks, requiring diligent care and timely spraying to 
prevent significant crop losses. Figure 1 shows cotton production during recent years6.

The cotton crop, being the most vulnerable crop, is attacked by numerous pests and diseases that significantly 
affect its yield and quality. A number of diseases that affect cotton crops include Wilt, Rust, Anthracnose, Sore-
Shin, Minor Boll-Rots, Mealybug, and Thrips8. Early detection of these diseases is crucial for obtaining a high-
quality yield, and it is essential to implement effective management practices to control their spread. The cotton 
mealybug is a notorious sucking pest that feeds on the cell sap from cotton plants leaves, fruit, and twigs. This 
results in delayed growth and late opening of bolls, which can severely affect the yield. Mealybugs emit a sweet 
compound that draws ant colonies and encourages the growth of black sooty mold9. Thrips, a type of small 
insects, hardly visible to the unaided eye destroy the cotton crop seedlings at a mega level. With their pointed 
mouth parts, they suck the fragile leaves and terminal the buds and consume the juices. As a result, leaves get 
twisted and curl upward, develop a silvery tint, or grow brown edges. Light infestations of Thrips slow down 
the growth and maturation of plants, whereas strong infestations can kill terminal buds or even whole plants. 
Alternate branching patterns can also result from damaged terminal buds. Season and location have a significant 
impact on the length and severity of Thrips infestations9.

Anthracnose is another common cotton disease that affects both the leaves and fruits. It is caused by a fungus 
from the Colletotrichum plant pathogenic group, which causes water-soaked dark lesions to appear on both the 
fruits and leaves10. Blight is another disease that damages various fruits and crops, including cotton. Symptoms 
of blight infection include yellowish color and dry leaves, and it is caused by the Helminthosporium turcicum 
Pass fungus, which severely damages cotton crops and renders them useless11.

Deep learning (DL) has revolutionized numerous fields, showcasing remarkable success in areas such as 
healthcare for disease diagnosis12,13, autonomous systems for self-driving vehicles14, network security15, Natural 
language processing16, agriculture17, etc. Particularly in the agriculture domain, DL has been applied for tasks 
such as crop yield prediction18, classification using aerial imagery19, agricultural field monitoring20, stress 
identification in plants21, infected leaf detection22,23, etc. Highlighting the advancements of DL underscores its 
transformative potential and contextualizes its relevance to the present study24.

Cotton is an important cash crop, and its diseases significantly impact the yield. Detection of diseases at 
an early stage helps farmers in taking preemptive measures to help improve cotton crop yields. DL-based 
object detection can automate the process, saving time and resources. These are the key factors that encourage 
researchers to work on these diseases and are the real motivation behind this study as well. This research 
primarily focuses on the accurate and timely detection of diseases in cotton crops. In this regard, the following 
are the main contributions of this study.

Fig. 1.  An overview of cotton production for 2016 to 2021 in Pakistan6.
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•	 Collecting real-world data concerning four diseases found in cotton crops. The data are collected for diseases 
including ‘mealy bug’, ‘anthracnose’, ‘thrips’, and ‘blight’.

•	 Evaluating deep learning models, particularly, convolutional neural networks (CNNs) variants for their capa-
bility to detect diseases involving image processing.

•	 Preprocessing image data involving various steps such as color conversion, noise removal, etc., to improve 
the model’s training.

•	 Comparing results of various models with respect to their accuracy, sensitivity, and specificity for detecting 
cotton crops, so that a robust and efficient approach can be provided for the best detection accuracy.

The rest of this paper is organized as follows. Section "Literature review" provides an overview of AI and DL 
models. Section "Methodology" is allocated to methodology which describes the experimentation methodology 
applied in this paper. Moving forward, Section "Experimental results" contains all the details about experiments 
and result predictions. Finally, the discussion is concluded in Section "Conclusions".

Literature review
As technology advances, experiments lead to new inventions, and these experiments and inventions are applied in 
new fields. One such technology is artificial intelligence (AI), which has significantly impacted various domains 
including agriculture25. AI has facilitated a shift from hard-coded (non-evolving) solutions to automated 
mechanisms for a range of tasks through machine learning and DL. For example, to identify unique patterns 
across a large volume of resources, pages, links, and more, data mining is an effective technique26. During the 
COVID pandemic and beyond, researchers have utilized software engineering techniques and DL to enable 
remote learning, detect COVID based on images of X-ray, and analyze COVID-19 tweets for sentiment27–29. 
The problem addressed in30 is the detection of cotton plant diseases in order to yield healthy crops without any 
disease. The proposed work in the paper is to use deep transfer learning, specifically, the advantages of ResNet 
trained on ImageNet combined with the Xception component, for the recognition of cotton crop leaf diseases. 
Disease detection in cotton plants is accomplished in31 using DL techniques, more specifically deep CNNs. It 
applies a pre-trained model that was obtained from typical huge datasets to a particular job that was taught using 
their own data. Based on the experimental findings, ResNet-50 achieved validation and training accuracy of 0.98 
and 0.95, respectively, with validation training loss of 0.5 and training loss of 0.33%.

In agriculture, AI in conjunction with advanced algorithms and approaches to computer vision and DL, is 
highly beneficial in tasks such as detecting fruit and crop maturity, disease detection, and classification, based on 
feature extraction32 and other techniques33. Disease detection has been a major focus of research in agriculture, 
with many methods employed to achieve the most accurate results possible. Utilizing photographs of numerous 
cotton leaf spots that have been infected with various illnesses, sophisticated computing systems have been 
created, and pattern recognition techniques have been applied to improve disease detection accuracy33,34.

DL has revolutionized how diseases are detected and classified in plants using computer-based techniques35. 
Due to its useful applications, it has been widely accepted in a variety of industries and is growing in popularity36. 
DL provides a mapping between input and output, making it an ideal choice for automated disease detection 
and classification. DL has been effectively used in recent years to recognize diseases in rice plants37, wheat 
disease detection and classification38, maize crop disease detection34,39, tomato disease detection40, soybean 
disease detection41, oilseed rape pest detection42, brain tumor detection and classification43, medical image 
steganalysis44, and transportation management, among many others45. CNNs are the most commonly used DL 
models46. In CNN, each node in a neural network is a mathematical function that takes numerical input from 
incoming edges, processes it, and then outputs numerical results. The challenge is to get as close as possible to the 
actual label/classification, which is the accuracy of that model. Deep learning has also been utilized for projects 
like predicting traffic47, object recognition48, natural language processing49, and autonomous unmanned aerial 
vehicle weed management50.

The researchers collected a dataset of affected leaves from cotton crops from various locations in Sindh, 
Pakistan11. They employed the Inception v4 architecture as a CNN to recognize diseased plant leaves, and 98.26 
accuracy has been achieved. DL and ML algorithms were used for crop disease identification. The Inception v4 
architecture was utilized as a CNN for disease prediction.

The problem addressed in the article30 is the detection of cotton plant diseases in order to yield healthy 
crops without any disease. The proposed approach uses deep transfer learning, for the diagnosis of cotton plant 
diseases, specifically a combination of the advantages of ResNet pre-trained on ImageNet and the Xception 
component. Disease detection in cotton plants is accomplished using DL techniques, more specifically deep 
CNNs. It applies a pre-trained model that was obtained from typical huge datasets to a particular job that was 
taught using their own data. According to the experimental findings, ResNet-50 achieved training and validation 
accuracy of 0.95 and 0.98, respectively, with training loss of 0.33 and validation loss of 0.5%.

Due to plant diseases, the agricultural industry experiences substantial losses in food production and 
the extinction of species. Early detection of plant leaf ailments is essential to minimize economic losses and 
enhance food production quality51. The article52 utilized CNN-based pre-trained models, such as DenseNet-121, 
ResNet-50, VGG-16, and Inception V4, for efficient plant disease identification. The authors focused on fine-
tuning the hyperparameters of popular pre-trained models and evaluated the performance through prediction 
of precision, recall, accuracy, and F1 score. DenseNet-121 achieved a classification accuracy of 99.81, which 
outperformed cutting-edge models. Future research will focus on issues with real-time data collecting and 
create a multi-object DL model that can identify plant diseases from a group of leaves, helping farmers and the 
agricultural industry identify leaf diseases in real-time leaf disease recognition53.

The study54presents a hybrid DL method for evaluating leaf diseases against tomatoes. The method combines 
image features extracted by pre-trained CNNs with environmental metadata (e.g., temperature and humidity) 
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for enhanced accuracy. Bayesian optimization fine-tunes the model’s hyperparameters to achieve optimal 
performance. The proposed approach outperformed traditional methods in accuracy, precision, and recall, 
demonstrating the importance of integrating multimodal data. This framework provides a robust solution for 
precise and efficient disease classification in tomato plants.

The authors55 address the challenge of wheat leaf disease classification with limited datasets by evaluating 
data augmentation strategies and CNN-based models. Augmentation techniques like flipping, rotation, and 
cropping were applied to enhance dataset diversity. Pre-trained CNN architectures, including ResNet and 
VGG, were fine-tuned on the augmented data. Results showed significant performance improvements, with 
ResNet achieving the highest accuracy. The study highlights the effectiveness of data augmentation and CNNs in 
improving disease classification with limited data resources.

In56, the focus is on enhancing crop productivity and sustainability by manipulating advanced DL techniques 
for disease identification in maize leaves. A large dataset is utilized to train a Vision Transformer (ViT) model, 
enabling accurate and efficient detection of various maize leaf diseases. This approach not only improves 
agricultural diagnostics but also contributes to sustainable farming practices by minimizing crop loss and 
promoting early intervention. The study highlights the potential of state-of-the-art AI models in addressing 
critical challenges in agriculture. Similarly, excellent results are reported in57 for sugarcane classification using 
ViT model.

Along the same lines58, explores advancements in DL techniques for the precise classification of grape 
leaves and the effective diagnosis of grape diseases. By utilizing state-of-the-art models, the research aims to 
improve disease identification accuracy, contributing to better vineyard management and enhanced agricultural 
productivity. This approach highlights the role of modern AI in addressing challenges in viticulture and 
promoting sustainable farming practices.

The study59 presents a customized CNN approach for accurately identifying weeds in cotton crops. By 
tailoring the CNN architecture to the specific needs of agricultural environments, the model enhances weed 
detection and classification, enabling targeted weed management. This advancement supports precision farming, 
reduces the overuse of herbicides, and promotes sustainable cotton cultivation practices.

Convolution neural network
In the area of image processing, CNN is the commonly employed DL model. Input data is represented via 
multidimensional arrays in CNN35. It functions nicely for a lot of labeled data. The entire input images are 
extracted by CNN, and this area is referred to as the receptive field. By the important function of the receptive 
field, it distributes weights to each neuron60. The three main parts of CNN are the convolution layer, the pooling 
layer, and the fully linked layer. The following section contains a brief discussion of various DL techniques. The 
research aims to develop a DL method for the recognition of cotton crop diseases like blight, anthracnose, and 
curl leaf virus.

VGG16
A DL model named VGG was first presented in ILSVRC 2014. ImageNet large-scale visual identification 
challenge is the testbed for a few generations of large-scale image classification systems. VGG16 accepts images 
as input with fixed dimensions of 224×224. Afterward, preprocessing is done using a VGG16 preprocessor 
which performs the task of the meaning of subtracting RGB, using training data from each pixel to calculate, the 
image passes through the convolutional layers. 3×3 convolutional filters are employed. Three fully connected 
layers proceed to the convolutional layer stack. The first two have 4096 channels, third, however, has 1000 
classifications as ImageNet had thousand species to classify. The last layer is the SoftMax layer. For each network, 
the fully connected layer configuration is the same. This model has 138,357,544 parameters and is 528MBs in 
size. Its time per inference step for CPU and GPU is 69.50ms and 4.16ms respectively61.

DenseNet
DenseNet picks the idea of non-linear flow between layers. It proposes a different connectivity pattern, i.e. direct 
connections between every layer and every layer after it, which means that the last layer has a feature map of 
every layer before it.

	 X = H1([x0, x1, ..., xl−1� (1)

The combination of all the feature maps is referred to as x1, where x0 is the layer and l is another layer. Three 
dense blocks make up DenseNet, each with an equal number of layers. The input is subjected to a convolution 
of 16 output channels prior to entering the first dense block. Each side of the input for convolutional layers with 
3×3 kernel size is zero-padded by one pixel to maintain the fixed size of the feature map. Following a 1×1 filter, 
a 2×2 average pooling layer serves as a connecting layer between two dense blocks. After the last Dense Layer 
block a Softmax activation function is used. There are numerous versions with various layer depths62.

EfficientNet
This model is inspired by MnasNet which is a deep learning model designed with a focus on mobile phone 
devices. EfficientNet has no multi-objective neural architecture search, rather, it uses the same search space as 
Mnasnet63. It uses the following formula as an optimization goal.

	
ACC(m)x[F LOP S(x)]

T
].w� (2)
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where T is the goal FLOPS, w = -0.07 is the hyperparameter for managing the trade-off between accuracy and 
FLOPS, ACC(m) and FLOPS(m) denote the accuracy and flops of model m.

EfficientNet optimizes the flops rather than latency since this model does not target the hardware. 
Efficientnet-B0 is the base model. It contains 1 layer of convolution layer of 3×3 filters followed by 16 layers of 
MBConv layer where MBConv layer means mobile inverted bottleneck convolution layer and conv 1×1 layer 
and pooling layer. All other variants of this model are made by using different compound coefficients.63.

InceptionV3
InceptionV3 was first presented in the year 2015 and it is an improvement upon the already used InceptionV2 
model. It has 42 layers in total and results in a lower rate of error than its counterparts i.e. InceptionV1 and 
InceptionV2. Its improvements mainly come from Smaller convolutions as a result of factorization, grid size 
reduction done efficiently, etc.64.

MobileNet
As a type of factorized convolution, depth-wise separable convolution layers that factorize a standard 
convolution are split into a depth-wise convolution and a pointwise convolution, which is a 1×1 convolution are 
the foundation of Mobilenet. It has 6 pairs of convolution layers followed by the depth-wise convolution layer 
with a variable filter shape. Then a convolution layer with 1×1 × 256 × 512 filter shape followed by 5 pairs of 
DWConv of 3×3×512 dw layer and Conv layer with 1×1×512×512. Then, two pairs of DWConv layer and 
Conv layer, average pooling layer, flatten layer, and softmax at last65. MobileNetV2 supports input sizes larger 
than 32 × 32 and employs inverted residual blocks with bottlenecking techniques66.

NasNetMobile
This model was introduced by Google. It is a DL model that comes trained on images of the popular dataset 
ImageNet having almost a million images. It is capable of classification of images into almost 1000 categories 
based on their classes. It takes input images of size 224×224 dimensions. This model has 5,326,716 parameters 
and is 23MB in size. Its time per inference step for CPU and GPU is 27.04ms and 6.70ms respectively.

ResNet
ResNet is inspired by the VGG DL model. The residual network is shown in Fig. 3. In traditional convolutional 
feed-forward networks, the output layer of the lth layer is connected to the input layer of the (l + 1)th layer. 
ResNet includes a skip connection that omits the identity function’s non-linear changes.

	 x = H(x − 1) + x − 1� (3)

The convolution layers have 3×3 filters following two rules. First, the output feature map size of the layers uses 
the same number of filters. Second, if the feature map is cut in half, the number of filters must be increased 
in addition to maintaining the layer’s time complexity. Convolutional layers that have a stride of 2 perform 
downsampling. Because of ImageNet classification, the network has 1000 fully connected layers and a global 
average pooling layer at the end. The total number of weighted layers is the name of the model. So, ResNet-50 
has 50 layers, 101 having 101 layers67.

Xception
Xception model has its influences from VGG-16, Inception, ResNet, and a number of other deep learning-based 
models that have more than 30 layers to form out the feature extraction process. With the exception of the first 
and last, these are divided into 14 modules and have linear residual connections surrounding them7. This model 
has 22,910,480 parameters and is 88MB in size. Its time per inference step for CPU and GPU is 109.42ms and 
8.06ms respectively. Table 1 provides hyperparameters for all models used for experiments.

Methodology
Cotton crops suffer from a plethora of diseases. In this work, authors have focused mainly on the detection of 
Mealybug, Anthracnose, Thrips, and Blight diseases in cotton crops using DL-based models. Figure 2 depicts the 

Model Learning Rate Optimizer Dropout Rate Batch Size Epochs

VGG-16 0.001 Adam 0.5 32 50

DenseNet 0.0001 SGD 0.4 64 50

NasNet Mobile 0.0005 RMSprop 0.3 32 50

EfficientNet 0.001 Adam 0.2 16 50

Inception V3 0.001 SGD 0.4 32 50

MobileNet 0.0005 Adam 0.2 32 50

ResNet 0.0001 SGD 0.3 64 50

Xception 0.0002 Adam 0.3 32 50

Table 1.  Hyperparameter settings for training different models.
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proposed disease detection methodology that consists of four main phases. Data collection, data preprocessing, 
model training, and validation and detection.

The first layer in the proposed methodology refers to the collection of input data or information that is 
provided to our system for training of detection model. This input dataset includes images of cotton crops 
including healthy and disease-affected plants in this case. After data collection, the augmentation technique 
is used to expand in scope and variety of input datasets by applying different techniques to the same data. For 
example, in image processing, augmentation may involve randomly cropping, rotating, or flipping images. After 
the application of augmentation techniques, images are labeled as per defined disease classes. Model training 
is the process of using the preprocessed input data and associated labels to train a DL algorithm or CNN. 
It involves feeding the data through the model and adjusting its parameters to reduce the variance between 
valuable output and real labels. Output is the final result produced by the proposed model, which can take many 
forms depending on the specific task being performed. As shown in Fig. 2, labeled images are used as input to the 
detection model and it is trained to achieve the goal of accurate detection of diseases in cotton crops.

Dataset collection
In this work, real data on cotton crop diseases is collected from a cotton crop field located in South Punjab, 
Pakistan. Image data was collected when the crop was 7 weeks old. The data is collected in the month of August 
and during this month, the sun rises around 5:35 am and sets around 6:40 pm in the selected region of south 
Punjab. So, the first interval starts early morning before sunrise from 5:30 am to 7:00 am. Then after a break of 2 
hours, data is collected around the midday time starting from 9:00 am to 11:00 am. The third interval starts after 
noon from 12:30 pm to 2:00 pm and the fourth interval starts in the evening from 5:00 pm to 7:00 pm. In the 
month of August, the weather of South Punjab remains very hot and dry and the temperature in a day remains 
between 88◦ F 100◦ F and sometimes goes beyond the upper limit. Humidity is always high during this period 
and remains between 40 to 50%. The dataset consisted of 5,600 color images of cotton plants captured by Vivo S1 
Pro having a rear camera of 48MP. Using this device, high-resolution images of 4000×3000 pixels were captured. 
The data was collected in different illumination conditions and images were captured at three different time 
intervals of the day i.e. morning, afternoon, and evening to avoid the uniformity in data.

Uniform datasets can possibly suffer from overfitting problems and result in higher accuracy but actually fail 
in the detection of diseases in real environments. Mealybugs and thrips do not specifically attack leaves, so the 
images of plant stems were collected for this purpose. For instance, the mealybug starts attacking the plant stem 
and then slowly moves towards the leaves. An overview of the disease-affected plants is given in Fig. 3.

There were 1400 images for each disease i.e. mealy bug, anthracnose, thrips, and blight in the dataset. The 
dataset was cleaned by removing the noisy and blurred images before further processing. As a result of this 
process, one thousand images for each category were selected and augmentation was performed to increase 
dataset size which ended up with a total of 8000 images for all diseases. DL models were trained on 2,000 
images from all classes i.e. mealy bug, anthracnose, thrips, and blight. The reason for selecting an equal number 
of images from all classes is to avoid model biases or leaning towards a specific class by learning more of its 
features while avoiding other classes. For training, images were resized to 224×224 pixels. Table 2 shows image 
augmentation details.

Data preprocessing
Data preprocessing is crucial for model training as well. It enhances the quality of data to get meaningful features 
from the data. The process of the data input to output is shown in Fig.  4. Data preprocessing refers to the 
technique(s) of converting raw data into processed data to make it suitable for training deep learning models. 
VGG16 preprocessor transforms images from RGB to BGR, after this each color channel is centered zero. In 
this procedure, input data are normalized to have a mean of 0 and standard deviation of 1 with respect to the 
ImageNet dataset, without scaling.

Fig. 2.  An overview of cotton disease detection methodology.
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Training of models
For experimentation, 18 DL CNN ground models were trained on the collected dataset to see which model 
achieved high accuracy for recognition and classification on the basis of performance metrics and hyper-
parameters. All models have distinct configurations of convolution layer, flatten layer, dense layer, and pooling 
layers, For instance, VGG16 has 23 layers and it has two sets of two convolution layers and the pooling layer, 
then 3 sets of 3 convolution layers followed by the pooling layer and at the end, there is a global pooling layer. In 
each model, an input layer was added to obtain the images. Afterward, a rectified linear unit (ReLu) was added 
as an activation function, and a flatten layer with 64 nodes was added after the dense layer. Then, another flatten 

Image Transformation Mealy Bug Thrips Anthracnose Blight

Original Images 1000 1000 1000 1000

Mixing Background Noise 250 250 250 250

Geometric Transformations 250 250 250 250

Color-based Transformations 250 250 250 250

Blurring and Sharpening 250 250 250 250

Total Images 2000 2000 2000 2000

Table 2.  Image augmentation data for different classes.

 

Fig. 3.  Cotton crop diseases, (a) Mealy bug, (b) Thrips, (c) Anthracnose, and (d) Blight.
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layer proceeded by a dense layer with 2 nodes as it is an output layer and the number of classes to be detected 
is two, and SoftMax as an activation function was used. Input layer, flatten, and dense layers configuration was 
integrated into all models. This was done to have a fair comparison while analyzing the results of these models. 
Each model was executed for 20 epochs and one epoch is defined as the number of forward and backward 
passes of the entire training dataset the learning algorithm has completed. The 20 epochs were selected on the 
observation that most of the models give the highest prediction within 20 epochs, not after that.

Experimental results
This section briefly discusses performance metrics and experimental setup first. Afterward, the results of all 
models are discussed. For the evaluation of trained models on the basis of prediction, different well-known 
performance metrics are used which are discussed here.

Performance metrics
The formula for calculating accuracy is given below.

	
Accuracy = T P + T N

T P + F P + T N + F N
� (4)

Basically, four things are needed for obtaining accuracy i.e., true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN). TP is the number of actual positives that the model predicted correctly. TN is the 
actual positive that the model predicted incorrectly. FP is actual negatives that the model predicted incorrectly. 
FN is the actual negatives that the model predicted correctly. Recall is the measure of the model correctly 
recognizing true positives. It basically tells about the correctly recognized disease spots in plants. Mathematically 
it could be defined as shown below4.

	
Recall = T P

T P + F N
� (5)

Recall serves as a gauge of how well the model can locate the pertinent facts. It is also known as the true positive 
rate (TPR). Precision is the ratio between the TP and all the Positives. In this case, it could be used to highlight 

Fig. 4.  Flowchart of proposed methodology.
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the disease spots that were correctly recognized out of the total number of disease spots in the given testing 
dataset. The mathematical formula to calculate the Precision value is given below28.

	
P recision = T P

T P + F P
� (6)

We considered the accuracy of the model as the performance metric. Also, results are finalized after multiple 
successful iterations of models on the same data27.

Experimental setup
All the experiments are executed on a machine with a dedicated graphics card for model training and testing. 
Specifications for the used machine include Core i5 10th Gen Clocked at 2.90 GHz and NVIDIA GTX 970 4GB 
GPU. To evaluate how well-trained CNN models perform on unknown data, the dataset was split in the ratio of 
70%, 20%, and 10% for training, testing, and prediction purposes respectively39. Below is the detail of all results 
achieved from all the applied deep learning models on the same dataset using this experimental setup.

Results using VGG16
The experiments were started with the VGG16 model which achieved higher than 98% accuracy and the loss 
value reported during the training process was 0.0042. Training and validation results of the VGG16 model for 
accuracy and loss are shown in Fig. 5. In the figure, training epochs are represented on the x axis while loss or 
accuracy values are shown on the y axis50. It can be seen that the accuracy of VGG16 improved during epochs 
and the model achieved its maximum performance after the 17th epoch. The performance remained almost 
constant after that point towards the ending epochs.

Results of DenseNet model
After experimenting with the VGG16 model, DenseNet is applied for the task of cotton disease detection i.e. 
mealy bug, anthracnose, thrips, and blight. Three variations of DenseNet i.e. DenseNet121, DenseNet169, and 
DenseNet201 are applied. All three models performed similarly with a minor detection difference in terms of 
accuracy. Training and validation graphs for accuracy and loss for different deployed DenseNet models are shown 
in Fig. 6. Graphs contain epochs for all deployed models on the x axis and other metrics such as accuracy, loss, 
etc. on the y axis. It can be seen that DenseNet models have shown sudden graph ups and downs (variations) in 
near about the 10th epoch. All the models i.e. DenseNet121, DenseNet169, and DenseNet201 reported accuracy 
of more than 98% with loss of 0.217, 0.007, and 0.015, respectively.

Results using EfficientNet model
EfficientNet model was deployed for cotton disease detection after three variations of DenseNet models. 
The efficientNet model comes in different variations; we opted for the first three models i.e. EfficientNetB0, 
EfficientNetB1, and EfficientNetB2 for our experiments. For this model the learning rate is set to 1e-2, the 
dropout rate is 0.2 and the batch size used for this model is 64. Training and validation graphs for all these 
EfficientNet models are given in Fig. 7. As with the above graphs, similarly, epochs are given at the x axis and 
other metrics are given at the y axis of graphs.

It can be seen that there are variations in accuracy graphs till the 10th epoch. After the 10th epoch, all 
EfficientNet models are performing almost the same in terms of accuracy. The accuracy reported from all the 
EfficientNet models reaches up to 99%.

Fig. 5.  Training and validation accuracy and loss of VGG16.
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Results Using InceptionV3 model
The Inception V3 model from Google is used for the detection of mealybug, anthracnose, thrips, and blight 
diseases. It has reported a loss of 0.0022 with more than 95% accuracy. For this model the learning rate is set to 
0.0001, the dropout rate is 0.6 and the batch size used for this model is 64. Graphs for training and validation 
accuracy and loss for the InceptionV3 model are shown in Fig. 8.

Fig. 8.  Training and validation accuracy and loss of InceptionV3 model.

 

Fig. 7.  Training and validation accuracy and loss of EfficientNet model.

 

Fig. 6.  Training and validation accuracy and loss of DenseNet model.
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It can be observed that InceptionV3 models fluctuate a bit in both the training and validation phases and it 
takes more time to slowly reach the maximum accuracy. It takes more time in comparison to other models that 
have already been tried.

Results using MobileNet
The next model in the line of experiments is MobileNet. It is a DL-based model optimized and created with 
a focus on mobile devices. These kinds of models are optimized well to work under lower specifications to 
achieve maximum detection accuracy and performance out of mobile hardware. These models are prime options 
for developing mobile-based detection applications. For our experimentation, we chose the MobileNetV1 
and MobileNetV2 models. For this model the learning rate is 0.01, the dropout is 0.9, and the batch size is 
32. Validation accuracy and loss graphs can be seen below in Fig. 9. MobileNetV1 and MobileNetV2 models 
achieved almost similar training and validation accuracy of 97%.

Results using Xception model
Similar to other models, the Xception model is implemented for cotton crop disease detection. This model 
performed quite well and achieved an accuracy of more than 98%. Graphs for training and validation accuracy 
and loss are given in Fig. 10. Xception’s accuracy graph went straight up in the first few epochs then it struggled 
a bit and slowly increased accuracy within more epoch cycles.

Results using NasNet mobile
Continuing on with experiments, the next model online for testing is NasNet mobile architecture. NasNet 
performed badly in comparison to other applied DL models. The NasNet mobile model has been able to achieve 
maximum training accuracy of 95% and validation accuracy of up to 95%. It is certainly not the better option to 
try while other DL models are available. It even took more time, and yet did not perform up to the mark. For this 
model the learning rate is 0.01, dropout is 0.6 and the batch size used for this model is 64 as well. Its graphs for 
training and validation accuracy as well as loss can be seen in Fig. 11.

Fig. 10.  Training and validation accuracy and loss of Xception model.

 

Fig. 9.  Training and validation accuracy and loss of MobileNet model.
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Results using ResNet model
In the end, an array of deep learning models that were trained for cotton disease detection are a collection of 
different variants of ResNet models. Different variations of ResNet models are applied and their graphs are 
shown in Fig. 12 to Fig. 17.

The graphs of ResNet52 training and validation accuracy and loss are shown in Fig. 12, followed by graphs of 
ResNet52V2 and ResNet101 training and validation accuracy and loss in Fig. 13, and Fig. 14. Similarly, training 

Fig. 13.  ResNet52v2 model accuracy and loss.

 

Fig. 12.  ResNet52 model accuracy and loss.

 

Fig. 11.  Training and validation accuracy and loss of NasNet mobile model.
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and validation accuracy and loss for ResNet101V2, ResNet152, and ResNet152V2 are given in Figs.  15,  16, 
and 17, respectively. Results show that out of all the tested ResNet models, ResNet152 outperformed all the other 
competing variations of ResNet models in terms of inference time and accuracy for cotton disease detection. For 
the ResNet model, the learning rate is 0.01, dropout is 0.2 but the batch size was set as 32 or 64 for six different 
models of ResNet. A summary of results for all variants of ResNet is provided in Table 3.

Fig. 16.  ResNet152 model accuracy and loss.

 

Fig. 15.  ResNet101v2 model accuracy and loss.

 

Fig. 14.  ResNet101 model accuracy and loss.
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Top performing models
After analyzing the results and performance metrics of all the models, the results of the top four best models are 
discussed here with respect to their overall, as well as, class-wise performance.

Table 4 shows the comparative analysis of the top four best-performing models concerning the accuracy, 
precision, F1 score, and recall metrics. It can be observed that the models perform well in general obtaining 
a 0.97 to 0.99 score for all metrics except for variations in class-wise performance. For example, the DenseNet 
model obtains an accuracy score of 0.95 for the healthy class. Similarly, the precision of the Tharpis class is 0.95 
using the EfficientNet model, and recall for the Blight class is also 0.95 from the same model. The DenseNet 
model shows an F1 score of 0.96 for the Belight class. For the rest, the scores for all performance metrics vary 
between 0.97 and 0.99 indicating the superb performance of transfer learning models.

Discussion and analysis
The comparative analysis of state-of-the-art models for cotton disease detection reveals that while several 
architectures like EfficientNet, ResNet101, and DenseNet exhibit decent performance, their accuracy remains 
below 85%, as shown in Table 5. This limitation can be attributed to suboptimal feature extraction or shallow 
learning for complex patterns in disease images. Lightweight models such as MobileNet and NasNet Mobile 
trade accuracy for faster inference, making them unsuitable for high-precision applications. In contrast, 
ResNet152 surpasses these models by achieving an accuracy of 99%, due to its deeper architecture and efficient 
residual connections. These features enable robust feature representation and mitigate vanishing gradient issues, 
ensuring better generalization. While ResNet152 is computationally heavier than MobileNet, its performance 
justifies its use for real-world scenarios requiring high accuracy and reliability in disease classification tasks. 
This study highlights ResNet152’s potential as a superior solution for cotton disease detection and its significant 
contribution to advancing precision agriculture practices. Future work could explore hybrid architectures and 
optimized lightweight models to balance accuracy and efficiency.

Many DL CNN models such as VGG16, AlexNet, DensNet, EfficientNet, Inception, MobileNet, NasNetMobile, 
Resnet, Xception, etc. have been proposed for the detection and classification of various weeds and diseases 
for cotton crops. These different methods include machine learning models, deep learning models, and image 
processing techniques. In addition, in the existing research, both supervised and unsupervised learning, as 
well as, reinforcement learning-based models have been designed and deployed for various tasks related to 
agriculture. Taken from Punjab, Rahim Yar Khan Pakistan, very little work has been done on cotton crops due to 
scarcity of data. This research particularly contributes in that direction and collects a large data from the actual 
fields from the process of germination to the arrival of the product. A rich variety of deep learning models have 
been implemented on the gathered dataset to analyze their performance for cotton crop disease detection.

Model Training Accuracy Validation Accuracy Testing Accuracy

ResNet50 100% 100% 100%

ResNet50v2 92.8% 83.5% 89.9%

ResNet101 88.8% 88.5% 89.9%

ResNet101v2 87.1% 87.1% 94.9%

ResNet152 100% 100% 100%

ResNet152v2 77.7% 87.8% 88.3%

Table 3.  ResNet model results.

 

Fig. 17.  ResNet152v2 model accuracy and loss.
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While pre-trained models differ in terms of convolutional layers, their results also vary. Disease detection 
in crops is a difficult task as different diseases may look similar on crop leaves. Researchers have worked on 
various datasets that are available on GitHub and Kaggle. Since these datasets are generally on a small scale, deep 
learning models do not provide sufficient results. Therefore, a large dataset for the cotton crop in this research is 
expected to solve this issue.

Timely detection of cotton diseases is an important requirement of modern agriculture. In this regard, the 
proposed model has given excellent results. Dataset obtained from real fields, which included images of different 
classes including Blight, Thrips, Mealybug, and Anthracnose, is used to train different CNN models. The model 
was trained on a larger dataset with the layers transformation, and the augmentation technique was applied to 
further increase the data size. In the data augmentation technique, we used various means to augment the data 
like horizontal shift, rotation, vertical shift, and zooming. This research trained several models like MobileNet, 
NasNetMobile, Resnet, Xception, etc., and used performance metrics like precision, F1 score, recall, and 
accuracy. Results indicate that the VGG16 has an accuracy score of 0.943, DenSeNet achieved a 0.98 accuracy 
score while the EfficientNet models reached up to 0.99 accuracy score.

On the other hand, Inception has more than a 0.95 accuracy score, and MobileNetV1 and MobileNetV2 
models achieved almost similar training and validation accuracy of 0.97. The Xception model performed quite 
well and achieved an accuracy score of 0.98 percent. The NasNet Mobile model has been able to achieve a 
maximum accuracy score of 0.95. In addition, an array of deep learning models that were trained for cotton 
disease detection are a collection of different variants of ResNet models. Different variations of ResNet models 
are also applied. It is observed that the ResNet152 model obtains the best results for training, validation, and 
testing.

The quality and diversity of the dataset play a significant role; a well-annotated and balanced dataset allows 
CNNs to generalize better, minimizing overfitting. The choice of hyper-parameters, including kernel size, 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG-16 82.5 80.3 81.2 80.7

DenseNet 84.2 83.1 82.7 82.9

NasNet Mobile 83.5 81.9 81.5 81.7

EfficientNet 84.8 83.6 84.1 83.8

Inception V3 84.5 83.3 82.8 83.0

MobileNet 84.0 82.7 83.0 82.8

ResNet101 84.7 83.5 83.9 83.7

Xception 83.8 82.4 82.6 82.5

Table 5.  Comparison of cotton disease detection methods.

 

Model

Accuracy

Belight Tharips Healthy MiliBug

ResNet50 0.99 0.99 0.99 0.99

ResNet152 0.99 0.98 0.97 0.98

DenseNet 0.96 0.99 0.95 0.97

EfficientNet 0.98 0.97 0.99 0.98

Precision

ResNet50 0.98 0.98 0.98 0.99

ResNet152 0.99 0.98 0.99 0.98

DenseNet 0.98 0.98 0.98 0.96

EfficientNet 0.99 0.95 0.98 0.93

Recall

ResNet50 0.99 0.99 0.99 0.99

ResNet152 0.98 0.99 0.99 0.96

DenseNet 0.99 0.97 0.99 0.98

EfficientNet 0.95 0.97 0.99 0.98

F1 score

ResNet50 0.99 0.99 0.99 0.99

ResNet152 0.99 0.98 0.99 0.99

DenseNet 0.96 0.98 0.99 0.97

EfficientNet 0.99 0.98 0.98 0.96

Table 4.  Best-performing models for each class.
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number of layers, activation functions, and optimization techniques, also influences model performance. 
Furthermore, data augmentation techniques such as rotation, scaling, and flipping enhance model robustness 
by introducing variability. Lastly, the computational resources available, including high-performance GPUs and 
efficient training strategies, contribute to optimizing model convergence and improving overall classification 
performance. These factors collectively explain why certain models outperform others on the given dataset.

Certain models, such as NasNetMobile, underperformed due to various challenges inherent to their 
architecture and computational requirements. While NasNetMobile achieved a maximum accuracy of 
95%, it exhibited slower convergence and higher computational demands compared to other models. This 
underperformance may be attributed to its architectural complexity, which requires substantial computational 
resources and careful hyperparameter tuning to optimize performance. A computational analysis of trade-offs 
between lightweight models like MobileNet and complex models such as ResNet152 reveals critical differences. 
For instance, NasNetMobile, with a moderate number of trainable parameters, balances accuracy, and resource 
consumption but still requires longer training times compared to MobileNet. MobileNet, being lightweight, offers 
faster training and inference times, making it suitable for deployment in resource-constrained environments, 
albeit with slightly lower accuracy.

Practical implications
The findings of this study highlight the potential of the ResNet152 model as a reliable tool for cotton disease 
detection, with practical applications in real-time agricultural management systems. By integrating the model 
into mobile or web-based applications, farmers can upload images captured by smartphones or drones for instant 
disease analysis and actionable recommendations, enabling early detection, reduced crop losses, and optimized 
pesticide usage. However, practical deployment faces challenges, including the high computational demands 
of ResNet152, which require powerful hardware like GPUs or optimized edge devices, making it less accessible 
in resource-limited regions. Additionally, the costs associated with hardware, cloud integration, and model 
maintenance could hinder adoption among small-scale farmers, necessitating cost-effective solutions. Scalability 
across diverse environments and field conditions, along with the need for periodic model retraining, further 
complicates deployment. Lastly, in areas with limited internet access, offline capabilities or edge computing 
solutions will be crucial. Addressing these challenges can enable ResNet152 to become a key component in 
precision agriculture, empowering farmers with advanced technology for sustainable crop management. In 
particular, the following benefits can be obtained.

•	 Improved precision agriculture: By leveraging deep learning models like ResNet152, this study highlights 
the potential for AI-driven automated disease detection, enabling early intervention to prevent crop losses. 
This can enhance precision agriculture practices, leading to higher yields and optimized pesticide usage, re-
ducing costs and environmental impact.

•	 Need for scalable and low-cost solutions: The study’s reliance on high-computation models suggests the 
necessity of developing lightweight, mobile-friendly alternatives for real-time disease detection. Edge com-
puting and cloud-based models can help farmers in resource-limited settings by providing accessible, cost-ef-
fective solutions without requiring powerful GPUs.

•	 Integration with IoT and smart farming technologies: Deep learning-based disease detection could be 
integrated with IoT-enabled smart farming systems, allowing real-time monitoring using drones, sensors, 
and automated spraying systems. This can help create a fully automated crop management system that alerts 
farmers to infections and suggests targeted treatments.

Challenges and limitations
The study on cotton crop disease detection using deep learning, particularly ResNet152, demonstrates high 
accuracy but has several limitations. The model’s real-world applicability is restricted due to its reliance on 
high-resolution images, which may not always be feasible in real farming conditions with poor lighting, extreme 
weather, or newly emerging diseases not included in the training dataset. Additionally, the model requires high 
computational power, making it unsuitable for real-time applications on mobile devices or resource-limited 
environments. The dataset, though diverse, includes only four disease types and may not generalize well 
across different regions. Moreover, the risk of overfitting exists due to dataset augmentation and uniform class 
distribution, which may not reflect real-world disease occurrence. The study lacks real-time deployment testing 
and does not address cost-effective solutions, such as lightweight models or edge computing for offline detection.

One of the primary limitations of this study is the potential performance drop of the ResNet152 model under 
extreme real-world variations, such as severe weather conditions (e.g., excessive rain, drought, or poor lighting) 
and the presence of atypical or newly emerging cotton diseases not included in the training dataset. These 
factors could lead to reduced accuracy and misclassification due to the lack of robust generalization for such 
out-of-distribution data. Additionally, the model’s reliance on high-quality images might limit its effectiveness in 
scenarios involving blurred, noisy, or low-resolution images, which are common in real-world field conditions.

Conclusions
Recent advancements in deep learning have opened up new opportunities for the deployment of artificial 
intelligence techniques in various fields, including agriculture. In particular, deep learning models have shown 
excellent performance in crop management practices and particularly in disease detection. In this work, four 
cotton diseases were targeted Mealybug, Anthracnose, Thrips, and Blight. To explore the effectiveness of 
different deep learning models for cotton disease detection, eighteen deep learning models were trained and 
tested for performance comparison. Models were trained on the dataset collected from real fields, under various 
illumination conditions. The dataset was preprocessed and augmented to make it suitable for deep learning 
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models. Through experimentation with different configurations and hyperparameters, it was observed that 
DenseNet169, EfficientNetB1, MobileNetV2, and ResNet152 outperformed other models in terms of detection 
accuracy and performance. Among these four models, the ResNet152 model demonstrated the highest accuracy 
in terms of training, testing, and validation. This leads to the conclusion that ResNet152 has the capability to 
detect crop diseases with high accuracy and it can be used in real-time scenarios. This research demonstrates 
the potential of deep learning models to improve significant disease detection in agriculture and other fields. 
In the future, these models can be embedded into the variable rate spraying technologies for precise spraying 
agrochemicals in the fields. In the future, integrating IoT devices and edge computing for real-time, lightweight 
disease detection and extending the model to other crops using transfer learning. Additionally, collaboration 
with agronomists and expanding datasets for diverse conditions will enhance accuracy and generalizability.

Data availability
The data can be requested from the corresponding authors.
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