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Abstract

Objectives: Mechanical ventilator plays a vital role in saving millions of lives. Patients with
COVID-19 symptoms need a ventilator to survive during the pandemic. Studies have reported that
the mortality rates rise from 50% to 97% in those requiring mechanical ventilation during COVID-
19. The pumping of air into the patient’s lungs using a ventilator requires a particular air pressure.
High or low ventilator pressure can result in a patient’s life loss as high air pressure in the ventilator
causes the patient lung damage while lower pressure provides insufficient oxygen. Consequently,
precise prediction of ventilator pressure is a task of great significance in this regard. The primary aim
of this study is to predict the airway pressure in the ventilator respiratory circuit during the breath.
Methods: A novel hybrid ventilator pressure predictor (H-VPP) approach is proposed. The
ventilator exploratory data analysis reveals that the high values of lung attributes R and C during
initial time step values are the prominent causes of high ventilator pressure. Results: Experiments
using the proposed approach indicate H-VPP achieves a 0.78 R?, mean absolute error of 0.028, and
mean squared error of 0.003. These results are better than other machine learning and deep
learning models employed in this study. Conclusion: Extensive experimentation indicates the
superior performance of the proposed approach for ventilator pressure prediction with high
accuracy. Furthermore, performance comparison with state-of-the-art studies corroborates the
superior performance of the proposed approach.
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Introduction

A mechanical ventilator is a mechanical machine that overcomes the issue of patient breathing
(ventilate) during critical illness." The ventilator is utilized when a patient cannot breathe naturally
and independently due to severe illness or syndrome like COVID-19.? The ventilator is connected to
the patient using a hollow tube (artificial airway). The ventilator supply tube helps pump the air into
the patient’s lungs. The ventilator saves the patient’s lives by giving them enough oxygen to the
body and improving their breathing mechanism. Although the ventilator has a significant role in
saving precious lives, it is also associated with many life risks. During the ventilation process in the
ventilator, the air is pumped into the patient’s lungs based on the air pressure.® The low or high
intensity of ventilator pressure can result in a patient’s life loss. The high air pressure intensity in the
ventilator causes the patient lung damage. To detect the ventilator pressure, an artificial intelligence-
based system must be attached to the ventilator to alert the high or low air pressure. The air pressure
in the ventilator can be controlled using the artificial intelligence-based system alert to save a
patient’s life risk.

Mechanical ventilation with correct air pressure is highly required for patients during COVID-19
illness to save them from respiratory distress syndrome and lung injury. According to a recent report,
the reported mortality rate is 50% to 65% in patients with COVID-19 syndrome in the intensive
care unit (ICU). With COVID-19 illness, 97% of patients require intensive mechanical ventilation
support. The studies have shown that the pandemic mortality rate was 100% amongst patients on
invasive mechanical ventilation.” The patient’s mortality on invasive mechanical ventilation was
reported as 97% in China,® 88.6% in New York,” 43% in the UK,® 31% in Spain,” 88.8% in
Australia,'® and between 40 and 60% in India.'' However, with later developments in ventilators,
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the fatality rate is reported to be reduced to 40%.'*! Despite that, a proper ventilator with normal
air pressure is a crucial need for patients.

Machine learning and deep learning-based techniques are the domains of artificial intelligence
that are utilized for ventilator pressure prediction in this research study. The artificial intelligence-
based systems are trained on historical data, and a predictive system is formed to predict the target
values for unseen data. The main motive of artificial intelligence-based techniques is to find the
patterns or relationships in data and learn from them to predict unseen data. Machine learning and
deep learning-based techniques achieve high-performance accuracy results in medical data pre-
dictions.'* Nowadays, artificial intelligence-based techniques have many applications. They are
most commonly used in bioinformatics for diagnosing patients, MRI-based image processing, drug
discovery,'> and many more. The following are our research key contributions to ventilator pressure
prediction

® A novel hybrid ventilator pressure predictor (H-VPP) approach is proposed based on a hybrid
of decision tree regressor (DTR) and random forest regressor (RFR). The approach is applied
to the historical data to predict the ventilator pressure prediction for COVID-19 patients.

® The ventilator exploratory data analysis (VEAA) is applied to determine the data patterns and
valuable insights from the ventilator dataset. The VEAA is applied to determine the sig-
nificant factors associated with the high or low pressure in the ventilator.

® For performance evaluation of the proposed approach, several machine learning and deep
learning-based models are employed in this study. Such models include multilayer perceptron
(MLP), linear regression (LR), DTR, RF, stochastic gradient descent regressor (SGDR),
Bayesian ridge (BR), and light gradient boosting machine regressor (LGBMR). In addition,
recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent units
(GRU) are also applied for experiments.

® The regression performance metrics mean absolute error (MAE), median absolute deviation
(MAD), mean squared error (MSE), root mean squared error (RMSE), R-squared (R?) score,
adjusted R? score, and variance are used for evaluating the performance of adopted models.
The regression analysis is applied based on the mapping difference between target predictions
and actual values of pressure.

The remainder of this research study is divided into four sections. Section "Related work™ is
based on the related literature analysis and past applied state of art studies analysis. The study
methodology is examined in the Section ”Methodology”. It also contains the details of the employed
machine learning and deep learning models. The results and discussions are given in the Section
”Results”. Section ”Conclusion” provides the conclusion of the study.

Related work

This section is based on the related literature to the current study. The past applied state-of-the-art
studies are examined for ventilator pressure prediction along with the proposed techniques and
performance evaluation parameters.

The prediction of ventilator weaning success based on biosignal using machine learning was
proposed in'®. The biosignal data of 89 patients were utilized for model building and evaluations.
The RF classifier was proposed to predict ventilator weaning failure. The performance evaluation is
done by bootstrapping.'” The proposed model achieved a 0.81 accuracy score of the receiver
operating characteristic curve (ROC) with 95% confidence. The inspired oxygen prediction and
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ventilator modes prediction for COVID-19 patients were proposed in'® which followed a deep
learning approach. The proposed approach for the prediction task was the artificial neural network
developed using Python programming. The model building was based on real-time patient data. The
proposed model achieved a mean square error of 0.093 and an R-value of 0.81.

The authors proposed the prediction of fluid responsiveness in ventilator-induced variation in'°.
The patient’s data was utilized for model building and evaluations. The pulse-wave transit time
(PWTT) technique was utilized to predict fluid responsiveness. A 0.97 accuracy score for RoC is
obtained with a p value less than 0.0001 by the proposed PWTT technique. The prediction of
ventilator-associated pneumonia and respiratory distress syndrome using machine learning tech-
niques was proposed in”°. The patient data from the Early versus delayed enteral nutrition (EDEN)
was utilized for machine learning model building and evaluations. The multivariate binary logistic
regression was the proposed approach for the prediction task. The proposed model achieved a
0.74 accuracy score for the ROC curve while the p value is 0.185.

The prediction of mode shifting of the ventilator for adult patients in the medical intensive care
unit using machine learning technique was proposed by.”' The data of 1483 adult patients were
utilized for model training and testing. A modified XGBoost algorithm was used for experiments.
The proposed model achieved a 0.76 accuracy score for the ROC curve. The authors proposed a
deep learning-based model for predicting the magnitude of asynchrony breathing in machine
ventilators in”>. Data of 400,000 unique asynchrony breathing patients are utilized for model
building. The convolutional autoencoder model is used to carry out experiments. The proposed
model achieved a 0.008 median validation error using the K-fold analysis.

The study? introduces a multi-task Gaussian-based neural network designed to predict the need
for mechanical ventilators in COVID-19 patients. The study proposes a robust real-time prediction
model to determine the likelihood of in-hospital COVID-19 patients requiring mechanical ven-
tilation (MV). This end-to-end neural network model integrates the Multi-task Gaussian Process to
manage irregular sampling rates in observational data and employs a self-attention neural network
for the prediction task. The proposed model was evaluated using a large dataset of 9532 nationwide
in-hospital COVID-19 patients, achieving an area under the receiver operating characteristic curve
(AUROC) score of 0.79 and an area under the precision-recall curve (AUPR) score of 0.39. While
the performance of the proposed method is moderate, further performance enhancement strategies
are necessary.

The analysis of reviewed studies, as given in Table 1, indicates that machine learning approaches
are predominantly used for ventilator pressure prediction and other issues related to mechanical
ventilators. Results suggest that the produced accuracy is still lower than the desired output and
further research efforts are needed in this regard.

Methodology

This section describes the proposed approach in detail, along with a description of the machine
learning models used for experiments and the dataset. The architecture of the proposed meth-
odology is illustrated in Figure 1. Patients’ ventilator breath time series data is utilized for research
model building and evaluations. The ventilator exploratory data analysis (VEAA) is applied to
obtain the data patterns and insights that are the primary cause of low or high ventilator pressure.
The dataset normalization is applied to transform the dataset into a unit share, achieving the best
performance scores. The dataset is split with a ratio of 0.8 to 0.2, where 80% of the dataset is used for
training the employed models while 20% is used for testing. We also used the GroupKFold
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Table 1. The ventilator pressure prediction literature summary analysis.

Ref. Year Approach

Dataset

Accuracy/
Error value Research aim

¢ 2021 Random forest

18 2022 Artificial neural

network

92020
time (PWTT)

202020

21 2022 XGBoost

algorithm

22 2021 Convolutional
autoencoder

model

Biosignal data of
89 patients

Real-time patient data

Pulse-wave transit Patient’s data

Logistic regression Patient data from the early

versus delayed enteral
nutrition (EDEN)

Data of 1483 adult patients

400.000 unique
asynchrony breathing
patients

0.81 Prediction of ventilator weaning
success based on biosignal data
using machine learning

Inspired oxygen and ventilator
modes prediction using deep
learning technique for COVID-
19 patients

The prediction of fluid
responsiveness in ventilator-
induced variation using pulse-
wave transit time (PWTT) was
proposed

Prediction of ventilator-associated
pneumonia and respiratory
distress syndrome using
machine learning techniques

Prediction of mode shifting of
ventilator for adult patients in
the medical intensive care unit
using machine learning
techniques

A deep learning-based model was
proposed for predicting the
magnitude of asynchrony
breathing in machine
ventilators
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0.008
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Figure |. The architectural analysis of proposed methodology for ventilator pressure prediction.
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validation split approach for results validation. The proposed predictive model is trained and tested
on the ventilator dataset.

Dataset

The ventilator breaths time-series data®® of patients was produced using a modified open-source
ventilator® connected to an artificial bellows test lung®® using a respiratory circuit. The time-series
data represents an approximately three-second breath. Each row in the dataset is a time step in a
breath and gives the two control signals. The control signals are relevant attributes of the lung and
the resulting airway pressure. The dataset-related feature descriptive analysis is presented in Table 2.
It shows the details of the attributes, attribute types, and related descriptions.

® R - lung attribute indicating how restricted the airway is (in cm H,O/L/S). Physically, this is
the change in pressure per change in flow (air volume per time). Intuitively, one can imagine
blowing up a balloon through a straw. We can change R by changing the diameter of the straw,
with higher R being harder to blow.

® (- lung attribute indicating how compliant the lung is (in mL/cm H,0O). Physically, this is the
change in volume per change in pressure. Intuitively, one can imagine the same balloon
example. We can change C by changing the thickness of the balloon’s latex, with higher C
having thinner latex and easier to blow.

® Pressure - the airway pressure measured in the respiratory circuit, measured in cm H,O.

Ventilator exploratory data analysis

The VEDA is a crucial process of determining hidden data patterns, hypotheses, assumptions, and
cussing factors. The VEDA is based on the summary of graphical representations and statistics on
data to discover patterns. The VEDA contains statistical data analysis, graphs, and charts. The
VEDA helps us in our research study to find out several factors that cause high or low pressure in
ventilators.

The statistical data analysis is applied to each feature present in the dataset, as shown in Table 3.
The analysis is based on the factors of dataset count, mean, standard deviation, minimum values,
25%, 50%, 75%, and maximum values. The analysis demonstrates that 6,036,000.0 is the total count

Table 2. The ventilator dataset descriptive features analysis.

Sr

no. Feature Data type Description

| breath_id Inté4 The unique time step for patient breaths globally

2 R Int64 Physically, this is the change in pressure per change in flow (air volume per time).
The lung attribute indicates how restricted the airway is (in cm H,O/L/S)

3 C Int64 Physically, this is the change in volume per change in pressure. The lung attribute

indicates the lung’s compliance (in mL/cm H,O)

4 time_step floaté4 The actual timestamp

5 u_in float64 The control input for the inspiratory solenoid valve. It ranges from 0 to 100
6 u_out Int64 The control input for the exploratory solenoid valve. It can be either 0 or |
7

Pressure float64 The airway pressure measured in the respiratory circuit is measured in cm H,O
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for each feature. Analyzing the target pressure feature, the mean value is 11.220,408, the minimum
value is —1.895,744 as low ventilator pressure, and the maximum value is 64.820,992 as high
ventilator pressure. This analysis represents that data variance is based on different statistical
factors.

The time series analysis based on the pressure, u_in, and u_out features using the different
sample values of lung attributes breath id, R, and C is analyzed in Figure 2. The analysis dem-
onstrates that at the time steps 0 to 1, the ventilator pressure and inspiratory solenoid valve control
values are high. The ventilator pressure is high when the value of R and C features is above 20. The
analysis shows that after time step value 1, the pressure remains normal. This analysis shows that the
ventilator pressure and inspiratory solenoid valve have high values during the initial time step
values. The values of lung attributes R and C above 20 also increase the ventilator pressure.

The joint plot regression analysis based on 1000 data points is examined in Figure 3. A joint pilot
is based on three data plots. The first is a bivariate graph representing the regression distribution
between the data of two involved variables. The second graph is placed at the top of the bivariate
graph horizontally and represents the distribution of the x-axis feature. The third graph is assigned
on the right side of the main bivariate graph vertically and represents the distribution of the y-axis
feature. The joint plot regression analysis has the univariate and bivariate graphs together to
summarize patterns in data distributions.

Figure 3(a) analyzes the bivariate regression data distribution between the u_in and pressure
feature. The time step unit represents an approximately three-second breath. Each row in the dataset
is a time step in a breath and gives the two control signals. The control signals are relevant attributes

breath_id=55604, R=[50], C=[20] breath_id=61990, R=[5], C=[10] breath_id=98911, R=[20], C=[20] breath_id=122125, R=[20], C=[20]
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o —_— | | —— 7 [ ]
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Figure 2. The effects of breath_id with lung attributes R and C on ventilator pressure are analyzed in time
series analysis.
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Figure 3. The joint plot regression analysis of the features u_in and u_out with the ventilator pressure
feature, (a) The inspiratory solenoid valve control input analysis with pressure, and (b) The exploratory
solenoid valve control input analysis with pressure.

of the lung and the resulting airway pressure. The bivariate regression analysis demonstrates the
strength of correlation between features and indicates that u_out — pressure has a 0.61 correlation
while u_in - pressure has a 0.31 correlation. The bivariate density curve shows that when the
pressure values are between 0 and 30, the u_in has a strong distribution relationship. The regression
line is also drawn among the data distributions. This analysis represents a high relationship between
u_in and the pressure feature. The bivariate regression data distribution between the u_out and
pressure feature is analyzed in Figure 3(b). The analysis represents that the regression line goes
negative, which shows that the u_out and pressure features have less relationship strength. The
bivariate density curve shows that when the pressure values increase, the u_out has the same value.

The correlation analysis between the dataset features is examined in Figure 4. The analysis
demonstrates that all correlation values are positive. The high correlation between the u_out and
time_step feature is 0.84 followed by the correlation values of 0.61 between the pressure and u_out
feature. This analysis represents that the dataset features have good correlation values, which are
best for learning techniques training for ventilator pressure predictions.

Normalize dataset

The data normalization is applied to transform all dataset feature data into a unit sphere. The min-
max scaler is utilized for ventilator data scaling and normalization. The min-max scaler transforms
the feature values into a unit variance scaling range. This min-max scaler scales and translates each
feature individually as it is in the given range on the dataset; for example, the scale ranges between
one and zero. The data normalization in this research improves the performance of employed
learning techniques.

MinMaxScaler is a widely employed data preprocessing technique in machine learning. This
normalization helps mitigate the influence of outliers and varying scales among different features,
promoting improved model performance. MinMaxScaler preserves the relationships between data
points, ensuring that the overall structure and patterns within the dataset remain intact. In summary,
the advantages of MinMaxScaler include its ability to normalize data, mitigate the impact of
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Figure 4. The correlation analysis among the ventilator dataset features used for pressure prediction.

outliers, preserve relationships between data points, and its simplicity of implementation. These
attributes collectively make MinMaxScaler a valuable tool in the preprocessing toolbox, enhancing
the performance and interpretability of machine learning models across diverse applications.

Dataset splitting

The data splitting is required for the training and testing of employed machine learning models. The
dataset splitting is needed to split the data into train and test subsets where the test subset is used to
validate the models on unseen test data. The dataset splitting is performed to split the ventilator
dataset for training and testing. The splitting ratio is 0.8 to 0.2 for training and testing, respectively.

Employed learning techniques

The applied machine learning and deep learning-based techniques for ventilator pressure prediction
are detailed in this section. A total of ten state-of-the-art advanced machine learning and deep
learning techniques are employed to predict ventilator pressure. Artificial intelligence (AI) has been
widely used in the medical domain over the past decade.?’

As the data in the medical is increasing exponentially, the issues of extracting valuable insights
from data arise. Machine learning and deep learning models are involved in the predictive process in
this regard. The typical applications of Al systems are biology,”® disease diagnosis, virtual nursing
assistant, enhanced gene editing, proteomics, genomics, microarrays, bioinformatics®> > and many
more. The Al systems solve the problem of obtaining valuable insights from large biological
datasets. The machine learning models utilize less computation power as compared to deep learning.
Deep learning handles big data efficiently and is mainly used for vision-based applications like
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image classification in MRI,* wireless capsule endoscopy.** This study utilizes machine learning
and deep learning approaches for predicting ventilator pressure. A brief description of employed
state-of-the-art machine learning and deep learning techniques is presented here.

Multilayer Perceptrom MLP*” is a family of feed-forward neural networks. MLP architecture
contains the input, output, and hidden layers to process the input data. MLP utilizes back-
propagation®® techniques during training. The MLP can be used for both classification and re-
gression problems.

Logistic Regression LR®’ is a supervised machine learning model mainly used to solve re-
gression problems. The target prediction value is based on the independent data variables. The
prediction is obtained by determining the linear relationship between input and output variables.

Decision Tree Regressor DTR*® builds the tree-like flow chart structure for predicting the target
values. The input data variables are split and placed into the tree’s internal nodes. The target values
are placed in the leaf of the tree.

Random Forest Regressor RFR? is based on creating a forest of multiple trees. The prediction
from multiple trees is combined, and the majority prediction is selected as the final prediction value.

Stochastic Gradient Descent Regressor SGDR™ is an efficient approach for fitting the linear
regressor under loss functions such as logistic regression. The SGDR works by randomly selecting a
few data samples instead of the complete dataset during every iteration in the prediction task. The
SGDR determines the gradient to minimize the cost function.

Bayesian Ridge BR*' is suitable to solve the problem where the data is insufficient. The BR uses
probability distribution by formulating linear regression. The target prediction values in BR are
drawn from a probability distribution.

Light Gradient Boosting Machine Regressor LGBMR* is an ensemble learning model used for
regression and classification by constructing decision trees. The multiple involved trees in LGBMR
determine the prediction values.

Recurrent Neural Network RNN* is a deep learning-based model best known for sequential
data. In a traditional neural network, the outputs and inputs are independent. However, the RNN
follows the looping mechanism, which is based on the working of the previous step. Outputs are
input to the current step to predict the output of the layer. This way, RNNs remember the inputs
because of their internal memory. The RNN works in the same behavior as the human brain’s
function.

Long Short-Term Memory The RNN has the problem of vanishing gradients. LSTM* model is
an extension of RNN to overcome this issue by extending the memory. The LSTM uses three gates:
input gate, output gate, and forget gate. With the help of these gates, LSTM assigns data weights.
The series of gates in LSTM controls the information sequence data that enters, stores, and leaves
the model network.

Gated Recurrent Unit GRU® is a type of RNN model with several advantages over LSTM. The
GRU has less memory computation and is much faster than LSTM. Similar to LSTM, GRU utilizes
gates to control input information. The GUR uses the update and reset gates to overcome the
vanishing gradient problem.*® The information passing to output is decided by these two gates.

Deep learning models are used with customized architecture and have a different number of
layers, as well as, the number of neurons. Details regarding the architecture of deep learning models
are given in Table 4.

In a similar fashion, the performance of the machine learning models is optimized by fine-tuning
several of the available hyperparameters. The hyperparameter tuning is applied to machine learning
and deep learning techniques.*’ The iterative learning model training and testing process selects the
best-fit hyperparameters. The best-fit hyperparameter analysis of employed learning techniques is
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examined in Table 5. The hyperparameters achieve the best performance accuracy scores in
predicting ventilator pressure.

Novel proposed approach

Our novel proposed H-VPP approach is based on a hybrid of DTR and RFR techniques. The
architectural analysis of the H-VPP approach is analyzed in Figure 5. The whole ventilator dataset is
fitted to both DTR and RFR techniques. The ventilator pressure is predicted from the DTR and RFR

Table 4. The layers stack architectural analysis of employed deep learning techniques.

Layer Neurons unit Output shape Total parameter
RNN

Recurrent neural networks 16 (None, 6, 16) 288
Dense 8 (None, 6, 8) 136
Output | (None, 6, I) 9
LSTM

Long short-term memory 16 (None, 6, 16) 1152
Dense 8 (None, 6, 8) 136
Output | (None, 6, 1) 9
GRU

Gated recurrent units 16 (None, 6, 16) 912
Dense 8 (None, 6, 8) 136
Output | (None, 6, I) 9

Table 5. The best-fit hyperparameters settings for employed learning techniques.

Technique Hyper-parameters

MLP

LR

DTR

RFR

SGDR

BR
LGBMR
RNN

LSTM
GRU

Hidden_layer_sizes = 10, Max_iter = |0, activation = ’relu’, solver = 'adam’, alpha = 0.0001,
learning_rate =’constant’, learning_rate_init = 0.001, tol = | e-4, momentum = 0.9, epsilon = | e-
8, max_fun = 15000

fit_intercept = True, normalize = False, copy_X = True, n_jobs = None, positive = False

criterion = “squared_error”, splitter = "best”, max_depth = 20, ccp_alpha = 0.0,
min_samples_split = 2, min_samples_leaf = |, max_features = None

n_estimators = |0, max_depth = 10, criterion = "squared_error”, max_features = 1.0, bootstrap =
True, ccp_alpha = 0.0, random_state = None

max_iter = 10, loss =’squared_error’, penalty =’I2’, alpha =0.0001, || _ratio = 0.15, fit_intercept =
True, tol = le-3, epsilon = 0.1, learning_rate = ’invscaling’, eta0 = 0.01, power_t = 0.25,
validation_fraction = 0.1

n_iter = 10, tol = le-3, alpha_| = le-6, alpha_2 = le-6, lambda_| = le-6, lambda_2 = le-6,
fit_intercept = True

n_estimators = |0, boosting_type =’gbdt’, num_leaves = 31, learning_rate0. |, n_estimators = 100,
subsample_for_bin = 200000, min_child_weight = le-3, importance_type = ’split’

Optimizer = "adam’, Metrics = 'mse’, Loss = 'mean_squared_error’, Activation = ’linear’

Loss = 'mean_squared_error’, Optimizer = 'adam’, Metrics = 'mse’, Activation = ’linear’

Activation = ’linear’, Optimizer = ’adam’, Loss = 'mean_squared_error’, Metrics = 'mse’
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Figure 5. The architectural analysis of the proposed H-VPP approach.

techniques. The average from individual predictions is taken using a voting regressor to form a final
prediction. Then a final prediction of ventilator pressure outcome with high accuracy.

The voting regressor”® is an ensemble learning method designed for solving regression tasks.
This method combines the predictions of multiple individual regressors to produce a more robust
and accurate prediction. This ensemble technique falls under the category of model averaging,
where diverse base regressors are trained independently, and their predictions are aggregated to form
the final output. The ensemble’s strength lies in its ability to reduce overfitting and enhance
generalization performance by leveraging the collective wisdom of diverse models.

The VotingRegressor in scikit-learn can be represented mathematically as follows:

- I =
Yensemble = N Zymodel,- (1)
i=1

where V... 18 the ensemble’s predicted output, N is the number of individual regressors, and
Vmodel, Tepresents the prediction of the i-th regressor.
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In the case of using DecisionTreeRegressor and RandomForestRegressor as base
estimators, the ensemble prediction becomes:

~ L ~
Yensemble = E (yDecisionT ree + Y RandomForext) (2)

where Vp,cisiontree A Vrandomrores: ar€ the predictions of the DecisionTreeRegressor and
RandomForestRegressor, respectively.

Results

Experimental results and evaluation are analyzed in this section. The comparative results of
employed machine learning and deep learning techniques are validated using the performance
metrics®’ MAE, MAD, MSE, RMSE, RZ, Adjusted R2, and variance. These regression metrics are
analyzed through mathematical notations and computation scores for employed learning
techniques.

Experimental setup

Python 3.0 programming language is used for data analysis, model building, and evaluations. The
Scikit-learn library module with a version of 1.0.2 is used for machine learning model building and
testing. The TensorFlow library module with a version of 2.8.2 and the Keras library module with a
version of 2.8.0 are utilized for building deep learning models and testing. The experiments are
completed on the platform with a model Intel(R) Xeon(R), 2.20 GHz CPU, 13 GB RAM, cache size
of 56,320 KB, and 12 GB NVIDIA Tesla K80 GPU.

Scientific evaluations

The scientific performance evaluations are examined using the regression metrics. This study
employs seven evaluation metrics for this purpose.

MAE is the L1 loss function most commonly used for regression problems. MAE measure is the
magnitude of difference between the prediction and the actual value of the dataset. It takes the
average of absolute errors. It can be calculated using

wag = 10 =2l 3)
n
where y; is the actual value, y, is the predicted value, and 7 is the total number of samples in the
dataset.

MAD measures the model’s median deviation between the actual and predicted values. MAD is
best for outliers in the target variable, which is the significant reason to use MAD in combination
with MAE. MAD is calculated by

MAD :w 4

where the X ; is the median of the data sample, y; is the prediction, and # is the total sample values.
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MSE is determined by calculating the square average of the difference between the predicted and
actual values. MSE is very sensitive to outliers in the data. The mathematical notation to calculate
the MSE is

n ~\|2
MSE = Zi:l |()}1 xl)| (5)
n
where 7 is the total number of samples while X; and y; represent the median and prediction,
respectively.
RMSE metric is the same as the MSE; however, the root of values is taken while calculating the

MSE. RMSE is robust to the outliers. It is the best measure that shows how accurate the proposed
model is with respect to prediction. RMSE is calculated using

l n N
RMSE =~ [ > | (v = %)’ (6)
i=1

R? accuracy score is a statistical performance metric utilized to determine how well an employed
regression technique is in prediction for unseen data samples. R accuracy score is also referred to as
the coefficient of determination. It explains the proportion of variance for a target (dependent
variable) by a feature (independent variable). R score always lies between zero and one. R is
calculated using

~\2
RZ -1 Z(,yl _yt)
= —\2
> —»)
Adjusted R? is another version of R* which determines the variation in the dependent variable and

only the explained features have higher effects in making predictions. The adjusted R is calculated
using the following

™)

Adjusted (R*) =1 — <(l ) %) ®)

where N and M are the total number of rows and columns, respectively.

The explained variance score is relatively similar to the R* score. The variance score explains the
dispersion of errors in an input dataset. The variability of the prediction’s proportions is measured by
variance for a learning model. The variance score is based on the difference between the expected
and the predicted values. It is calculated using

Var(y —3)
Var(y)

where Var(y — ) is the variance of prediction errors and Var(y) is the variance of actual values.

©)

Variance score = 1 —

Results of deep learning models

The training and validation performance with each epoch in employed deep learning techniques is
examined in Table 6. The analysis demonstrates that the RNN model has high training loss at the
first epoch and MSE values of 0.0112. The validation loss and validation MSE are also higher with a
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Table 6. The training and validation performance by epochs for deep learning models.

Epoch Training time (sec) Training loss MSE Validation loss Validation MSE
RNN

| 365s 3 ms/step 0.0112 0.0112 0.0104 0.0104
2 335s 3 ms/step 0.0103 0.0103 0.0102 0.0102
3 331s 3 ms/step 0.0102 0.0102 0.0101 0.0101
4 333s 3 ms/step 0.0101 0.0101 0.0101 0.0101
5 329s 3 ms/step 0.0101 0.0101 0.0101 0.0101
LSTM

| 505s 4 ms/step 0.0108 0.0108 0.0102 0.0102
2 457s 4 ms/step 0.0101 0.0101 0.0101 0.0101
3 488s 4 ms/step 0.0101 0.0101 0.0100 0.0100
4 458s 4 ms/step 0.0100 0.0100 0.0100 0.0100
5 454s 4 ms/step 0.0099 0.0099 0.0100 0.0100
GRU

| 505s 4 ms/step 0.0107 0.0107 0.0102 0.0102
2 511s 4 ms/step 0.0101 0.0101 0.0100 0.0100
3 455s 4 ms/step 0.0099 0.0099 0.0099 0.0099
4 455s 4 ms/step 0.0098 0.0098 0.0098 0.0098
5 456s 4 ms/step 0.0098 0.0098 0.0098 0.0098

score of 0.0104. In the second epoch, the training and validation loss is decreased, which shows that
the model is now fitting on data well by reducing the error. At the last epoch during training, the
RNN model has the 0.0101 score value for training loss, MSE, validation loss, and validation MSE.
Results show that RNN has a high error score during data training.

By analyzing the LSTM model training, during the first epoch of the model, the training loss and
MSE have a value of 0.0108, which is less than the RNN model’s first epoch. The validation loss and
validation MSE have scores of 0.0102. The time computations for the LSTM model are high during
training. During the LSTM model training, the training and validation errors are decreased as the
number of epochs increases. In the last epoch, the LSTM model has a training loss and MSE value of
0.0099, much less than the first epoch. The validation loss and validation MSE have scores of 0.0100 in
the last epoch. The analysis demonstrates that the LSTM model has low error scores during training.

The GRU model has almost similar error rates as compared to LSTM. During the first epoch of
the GRU model, the training loss and MSE have a value of 0.0107, which is less than the LSTM
model’s first epoch. The validation loss and validation MSE also have scores of 0.0102, the same as
the LSTM model. The GRU model has fewer time computations during training as compared to the
LSTM model. The error rates decrease as the GRU model epochs are increased. In the last epoch, the
GRU training loss and MSE have a value of 0.0098, much less than the first epoch. The validation
loss and validation MSE also have scores of 0.0098 in the last epoch. The analysis demonstrates that
the GRU model has lower error scores during training than the LSTM model.

Prediction results of models

The comparative performance analysis of employed machine learning and deep learning techniques
on unseen test data is given in Table 7. The analysis demonstrates that the novel proposed approach
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Table 7. Comparative performance of employed machine learning and deep learning models.

Technique MAE MAD MSE RMSE R? score Adjusted R? score Variance
MLP 0.041 0.014 0.005 0.072 0.64 0.64 0.640
LR 0.059 0.009 0.023 0.095 0.38 0.38 0.383
DTR 0.029 0.007 0.003 0.059 0.76 0.76 0.760
RFR 0.031 0.008 0.003 0.061 0.74 0.74 0.747
SGDR 0.059 0.023 0.009 0.095 0.38 0.38 0.383
BR 0.059 0.023 0.009 0.095 0.38 0.38 0.383
LGBMR 0.049 0.029 0.005 0.076 0.60 0.60 0.608
RNN 0.082 0.077 0.008 0.094 0.39 0.39 0.603
LSTM 0.078 0.072 0.008 0.091 0.43 0.43 0.629
GRU 0.079 0.074 0.008 0.091 0.43 0.43 0.648
Proposed 0.028 0.007 0.003 0.056 0.78 0.78 0.782

outperforms all the used machine learning and deep learning models. By analyzing the MAE, the
lowest score value is 0.028, which is achieved by the proposed approach. The highest MAE score of
0.082 is by the RNN model. The MAD analysis shows that the lowest score value of 0.007 is
commonly achieved by the proposed approach and DTR model while the highest MAD of 0.077 is
by the RNN model. Similarly, the best value for MSE, that is, 0.003 is obtained by three models
including DTR, RFR, and the proposed approach. On the other hand, the highest MSE of 0.023 is
achieved by the LR technique.

For the RMSE, 0.056 is the lowest score which is obtained by the proposed hybrid approach
while the highest RMSE of 0.095 is achieved by LR, BR, and SGDR techniques. Scores of MAE,
MAD, MSE, and RMSE show the error between the predicted and actual values, and higher values
show the inability of the model to predict a correct output. Obtained scores from the proposed
approach indicate that the proposed hybrid model performs much better than other employed
approaches. R* and adjusted R accuracy scores have the same values in this analysis. The highest R>
score of 0.78 is achieved by the proposed approach whereas the minimum R? score of the study is
0.38 which is obtained by LR, BR, and SGDR techniques. R? values for the proposed model suggest
that it outperforms other models regarding the R? score. This analysis demonstrates that the novel
proposed approach has less error rate than other approaches, leading to high accuracy for ventilator
pressure prediction.

The bar chart shows the comparative analysis of the R* accuracy score for all employed machine
learning and deep learning techniques, as given in Figure 6. The analysis demonstrates that a high
accuracy score of 78% is achieved by the proposed approach in comparison with other techniques.
The DTR and RFR techniques also achieved good accuracy scores. The lowest R score of 38% is
achieved by LR, SGDR, and BR models.

The regression analysis is demonstrated based on the mapping of actual ventilator pressure
values with the predicted pressure values. The 10,000 data points are taken under consideration for
regression analysis. In Figure 7(a), the DTR technique is analyzed for ventilator pressure prediction.
The DTR prediction regression analysis shows that the model poorly predicts the pressure values
from 0.5 or above. In Figure 7(b), the FRR model for ventilator pressure prediction is analyzed. The
RFR prediction regression analysis shows that the model poorly predicts the pressure values from
0.4 or above. The RFR model has a higher error rate than the DTR model. In Figure 7(d), the
proposed technique is examined for ventilator pressure prediction. The proposed H-VPP prediction
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Figure 6. The R? score performance analysis for employed models.

regression analysis demonstrates that the pressure values are almost correctly predicted and have
high accuracy compared to DTR and RFR. Only a few data points have an error in predicting the
pressure values of 0.6 or above predicted by the proposed model.

Performance comparison with existing approaches

The comparative performance analysis of the proposed approach with other state-of-the-art studies
is conducted in Table 8. For this purpose, the models from the selected studies are built and used
with the dataset used in this study for a fair comparison. The state-of-the-art models XGBoost, light
GBM, RNN, LR, DT, and CNN are applied for comparison. The comparative performance
evaluations are based on the MAE, MSE, R? score, and RMSE metrics. The analysis demonstrates
that the proposed approach outperforms with state of the art models with a 0.78 R* score. Similarly,
the error metrics show that the proposed approach has lower error scores as compared to existing
models.

Discussions

Mechanical ventilator plays a vital role in saving millions of lives. Patients with COVID-19
symptoms need a ventilator to survive during the pandemic. The pumping of air into the patient’s
lungs using a ventilator requires a particular air pressure. High or low ventilator pressure can result
in a patient’s life loss as high air pressure in the ventilator causes the patient lung damage while
lower pressure provides insufficient oxygen. Consequently, precisely predicting ventilator pressure
is a task of great significance in this regard. The analysis of previous studies indicates that machine
learning approaches are predominantly used for ventilator pressure prediction, and results suggest
that the produced accuracy is still lower than the desired output, and further research efforts are
needed in this regard.

This study presents a novel H-VPP approach for precise and accurate ventilator pressure
prediction. The proposed H-VPP approach is based on the hybrid of DTR and RFR, where the
predictions from these models are regressed to predict the final output. Extensive experiments are
performed involving seven machine learning and three deep learning models to investigate the
performance of the proposed approach regarding MAE, MAD, MSE, RMSE, R? score, adjusted R*
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Table 8. Performanc comparison with state-of-the-art approachses.

Ref. Year Learning type Technique MAE MSE R”score RMSE
0 2021 Machine learning XGBoost 0.127 0018 024 0.135
3! 2021 Machine learning LightGBM 0.049 0.005 0.60 0.076
32 2021 Deep learning  Recurrent neural network 0.082 0.008 0.39 0.094
2 2022 Machine learning XGBoost 0.127 0.018 0.24 0.135
53 2021 Machine learning XGBoost 0.127 0018 0.24 0.135
. 2022 Machine learning Linear regression 0.059 0.009 0.38 0.095
33 2021 Machine learning Decision tree 0.029 0.003 0.76 0.059
36 2021 Deep learning Convolutional neural networks 0.059 0.009 0.38 0.095
Proposed 2022 Machine learning Novel H-VPP 0.028 0.003 0.78 0.056

score, and variance. Results suggest that the proposed approach outperforms all the employed
models with a 0.78 R* score. The applied VEDA reveals that the prominent cause of high ventilator
pressure is the high values of lung attributes R and C during initial time step values.

Limitations

In this research study, we have proposed a novel H-VPP approach for precise and accurate ventilator
pressure prediction. However, the proposed research has some limitations. The R* score of our
approach could be enhanced by minimizing the Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE) rates. Additionally, the applied deep learning models are computationally expensive
and can be optimized by reducing their layered architectures. Regarding study limitations and future
work, a transfer learning-based model will be developed for ventilator pressure predictions.

Conclusion

Mechanical ventilators have become important considering the recent surge in the COVID-19
pandemic and play an integral part in saving countless lives. However, high or low ventilation
pressure can cause lung damage to patients, and pressure prediction is important to avoid such
complications. This study presents a novel H-VPP approach for precise and accurate ventilator
pressure prediction. The proposed H-VPP approach is based on the hybrid of DTR and RFR where
the predictions from these models are regressed to predict the final output. Extensive experiments
are performed involving seven machine learning and three deep learning models to investigate the
performance of the proposed approach regarding MAE, MAD, MSE, RMSE, R? score, adjusted R*
score, and variance. Results suggest that the proposed approach outperforms all the employed
models with a 0.78 R? score. Error metrics also show the superior performance of the proposed
approach. Performance comparison with existing state-of-the-art corroborates the superior per-
formance of the proposed model. The applied VEDA reveals that the prominent cause of high
ventilator pressure is the high values of lung attributes R and C during initial time step values.
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