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Abstract 

Faced with anomalies in medical images, Deep learning is facing major challenges in detecting, diagnosing, 
and classifying the various pathologies that can be treated via medical imaging. The main challenges 
encountered are mainly due to the imbalance and variability of the data, as well as its complexity. The 
detection and classification of skin diseases is one such challenge that researchers are trying to overcome, 
as these anomalies present great variability in terms of appearance, texture, color, and localization, which 
sometimes makes them difficult to identify accurately and quickly, particularly by doctors, or by the 
various Deep Learning techniques on offer. In this study, an innovative and robust hybrid architecture is 
unveiled, underscoring the symbiotic potential of wavelet decomposition in conjunction with EfficientNet 
models. This approach integrates wavelet transformations with an EfficientNet backbone and 
incorporates advanced data augmentation, loss function, and optimization strategies. The model tested 
on the publicly accessible HAM10000 and ISIC2017 datasets has achieved an accuracy rate of 94.7%, and 
92.2% respectively. 

Keywords: skin lesion; transfer learning; wavelet decomposition; image processing; convolutional neural networks 

Introduction 
Deep learning has had a huge impact on this 

century, resulting in considerable advances in many 
sectors [1]. It has made a significant contribution and 
revolutionized many fields, including image 
recognition where convolutional neural networks 
(CNNs) have demonstrated their ability to 
automatically extract relevant features from images 
[2], often outperforming traditional methods. Also in 
natural language processing, where recurrent neural 
networks (RNNs) and transformers have achieved 
impressive results in various translation tasks and text 
generation [3], and computer vision where techniques 
such as suturing have been greatly improved thanks 
to neural networks [4]. 

Deep learning has opened up new opportunities 
in the realm of medicine, allowing for more accurate 
diagnosis of diseases from medical images, such as 
cancer detection, brain scan interpretation, and 
disease prediction from genetic data [5]. It has also 
been employed in applications like health monitoring, 
medical records management, and drug discovery [6]. 
In medical imaging, deep learning has additional 
challenges during the diagnosis of anomalies, such as 
the availability of a large amount of high-quality data 
annotated appropriately [7], which will undoubtedly 
contribute to the development of more efficient 
models. The imbalance between different classes of 
some diseases is present in various datasets, making it 
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difficult for models to learn to detect abnormalities 
effectively [8]. Models might be skewed toward the 
majority class, making it harder to detect uncommon 
cases correctly. The variability of data is also a real 
issue, which might make learning a generalizable 
model capable of detecting different anomalies in 
different contexts difficult [9]. 

Deep learning models, on the other hand, tend to 
learn from the special properties of the datasets on 
which they are trained. This can make it challenging 
to generalize and transfer learned information to new 
datasets or anomalies [10]. Model generalization and 
transfer can be improved using techniques such as 
knowledge transfer, domain learning, and 
unsupervised learning [11]. 

Skin disorders are frequent conditions that can 
develop for a variety of reasons and have many 
causes. Many skin disorders, including psoriasis, 
eczema, and various kinds of dermatitis, are 
influenced by genetic factors. Allergic reactions to 
things such as chemicals, medications, cosmetics, or 
allergens in the environment are other common 
causes of skin illness. Another prevalent cause of skin 
illness includes bacterial, viral, or fungal infections, 
which can lead to conditions such as acne, warts, 
herpes, ringworm, or candidiasis, among other skin 
problems [12]. One emerging challenge is the rapid 
evolution of skin disease presentations, particularly 
due to environmental changes and evolving pathogen 
strains [13]. Climate change and pollution are 
contributing to new dermatological conditions and 
altering the presentation of existing ones, making it 
more difficult for both clinicians and diagnostic 
models to keep up with these changes [14]. 

Furthermore, the integration of digital health 
technologies in dermatology has led to the 
development and widespread adoption of 
computer-aided diagnosis (CAD) systems. These 
systems have the potential to significantly enhance 
the accuracy and efficiency of diagnosing skin 
diseases. By leveraging advanced algorithms and 
machine learning models, CAD systems can assist 
clinicians in quickly identifying both common and 
rare skin conditions, facilitating faster 
decision-making in clinical settings. This rapid 
diagnostic capability is particularly beneficial in busy 
healthcare environments, where early and accurate 
detection is crucial for effective treatment and 
improved patient outcomes. CAD systems can serve 
as valuable tools, especially for less experienced 
practitioners, by providing reliable second opinions 
and reducing the likelihood of diagnostic errors [15]. 

However, the effective use of CAD systems is not 
without its challenges. Skin disorders can exhibit a 
wide range of clinical symptoms, making exact 

diagnosis challenging [16]. The same skin conditions 
might manifest differently in various individuals, 
necessitating a thorough understanding of each 
disease’s distinctive characteristics [17]. Moreover, the 
similarity between many skin conditions can further 
complicate the diagnostic process, even for advanced 
CAD systems. Ensuring that these systems can 
accurately distinguish between similar conditions 
remains a critical area of focus in dermatology [18]. 
Many skin diseases might have similar symptoms and 
characteristics, making precise differentiation 
difficult. Even experienced dermatologists may face 
difficulties distinguishing certain diseases based on 
visual observations [19]. These difficulties highlight 
the importance of a rigorous approach to diagnosing 
skin diseases using deep learning. Continuous 
research efforts are required to overcome these 
challenges, improve the quality of data sets, and 
develop deep learning models that are precise, 
interpretable, and capable of generalizing to different 
populations and environments [20]. 

Indeed, there have been many contributions to 
using deep learning in the diagnosis of skin diseases 
[21]. These approaches have leveraged various deep 
learning techniques, such as the ability of networks to 
extract complex features from images and perform 
accurate classifications. Models trained on large 
databases of dermatological images can identify 
specific patterns, such as lesions, spots, or textures, 
enabling precise classification of skin diseases [22]. 
For example, a multistage multiclass CNN-based 
framework has set a benchmark with an accuracy of 
0.96 [23], demonstrating the potential of deep learning 
models in this domain. However, this method 
employs a two-stage classification process, which, 
while effective, introduces additional complexity that 
could increase computational costs and limit 
scalability in practical applications. 

In contrast, the proposed approach integrating 
wavelet features into a CNN achieved a competitive 
accuracy of 0.947. Although slightly lower than the 
benchmark, this method simplifies the classification 
process by directly enhancing the CNN with wavelet 
features, thereby avoiding the need for a multi-stage 
approach. This not only reduces computational 
complexity but also offers distinct advantages in 
capturing both spatial and frequency domain 
information, potentially leading to better 
generalization and robustness in clinical settings. 
Unlike methods such as the Ant Colony and Whale 
Optimization Algorithms [24], which focus on 
optimizing neural networks, or the integration of 
handcrafted and deep learning features, this approach 
systematically combines wavelet features with CNNs 
to improve classification performance in challenging 
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cases. Additionally, while Vision Transformers have 
gained attention for modeling global dependencies, 
this method emphasizes capturing both local and 
multi-scale information, providing a complementary 
approach to these recent advances. 

This study introduces a novel hybrid 
architecture combining wavelet decomposition with 
EfficientNet models for skin cancer classification. 
Wavelets are mathematical functions used to analyze 
images by decomposing the data into different scales 
and frequencies [25]. This approach enables 
significant information to be extracted at different 
spatial and frequency resolutions. By integrating 
wavelet features with EfficientNet, the model 
leverages the powerful representational capabilities of 
EfficientNet while enhancing the ability to capture 
fine-grained details in skin lesions. This hybrid model 
aims to strike a balance between complexity and 
performance, ensuring that high accuracy is 
maintained without the need for overly complex 
processing pipelines. The extracted wavelet 
coefficients can be used as input for layers of the 
EfficientNet neural network, known for its robustness 
[26], to improve the model’s discrimination capability, 
as wavelets can be used to analyze the textural and 
structural characteristics of dermatological images. 
This hybrid approach leverages the strength of 
EfficientNet and enhances it with the wavelet 
transform’s ability to decompose images into 
frequency sub-bands, capturing both spatial and 
frequency information. The main contributions of this 
paper are: 
• Analyzing the effect of the Wavelet 

decomposition on skin disease images. 
• Conception of a novel hybrid model based on 

Wavelets and CNN Block. 
• Development of a hybrid version of the 

EfficientNet model based on a fusion of Wavelets 
and CNN blocks. 
The next section goes over the background of the 

Wavelet transform and convolutions. Following that 
the related work is discussed. The methodology is 
then presented, along with the public skin disease 
datasets description, the preprocessing stage, and the 
conception of the Efficientnet combined with the 
Wavelet decomposition process. Then the 
experimental results are presented and analyzed, 
along with discussion of the limitations of the 
proposed methodology and potential directions for 
future research, and lastly the conclusion. 

Background 
This section looks at the essentials of modern 

deep learning research, providing a comprehensive 

overview of EfficientNet, and wavelet decomposition. 
EfficientNet, a state-of-the-art convolutional neural 
network, optimizes both network depth and width for 
consistently superior performance. Wavelet 
decomposition is emerging as a powerful tool for 
multi-resolution analysis, enabling more efficient 
representation and processing of signals and images. 
Building on these fundamental techniques, the 
combination of a CNN network integrating wavelet 
transforms with CNNs enhances feature extraction 
and representation capabilities. 

EfficientNet 
The EfficientNet architecture has been a 

game-changer in the world of deep learning, 
especially for tasks like identifying objects in images. 
It was developed by Tan and Le back in 2019 [27]. One 
of its main versions, EfficientNetB0, has gained a lot 
of attention for its ability to perform well and use 
resources efficiently when classifying images. It is 
renowned for its compound scaling method, which 
basically tweaks the model’s size and complexity to 
find the perfect balance. This means it can deliver 
top-notch accuracy without consuming too much 
computing power, making it suitable for AI models 
integrated with devices. In this study, the 
initialization of the EfficientNet model was done with 
noisy student weights. This helps improve the 
model’s performance and adaptability to the target 
task. 

Wavelet decomposition 
Wavelet decomposition is a technique used to 

analyze and represent the spatial frequency content of 
an image at different scales and orientations. In Figure 
1, resulting from wavelet decomposition, each level 
corresponds to a different scale of features within the 
original image. The LL (low-low) coefficients capture 
the coarse details or low-frequency information, 
resembling a downsampled version of the original 
image. Meanwhile, the LH (low-high), HL (high-low), 
and HH (high-high) coefficients encode finer details, 
horizontal edges, vertical edges, and diagonal 
features, respectively. As one progresses through the 
decomposition levels, the images reveal increasingly 
detailed and localized information: 
• Level 1 Decomposition: provides a coarse 

approximation and detailed coefficients that 
capture high-frequency components along both 
axes and diagonals. This level is closest to the 
original image size, retaining most of the spatial 
information but with the initial layer of 
abstraction. 

• Level 2 Decomposition: goes deeper, offering a 
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finer analysis. It starts to distill the image into 
more abstract representations, emphasizing 
features that might be less obvious in the raw 
pixels. This level balances spatial resolution and 
feature abstraction, making it suitable for tasks 
where both global and local features are 
important. 

• Level 3 and Level 4 Decomposition: offer 
increasingly abstract representations of the 
image data. These levels focus more on the 
high-level features that might be relevant for 
understanding complex patterns or for tasks 
where the exact spatial location of features is less 
critical than the features’ presence. 
Wavelets can be used to examine the textural 

and structural properties of dermatological images in 
the field of skin disease diagnostics. Wavelet analysis, 
for example, can capture skin texture, patterns, 
contours, and unique properties associated with 
specific skin disorders. The derived wavelet 
coefficients can be utilized to represent features of 
skin disease images as descriptors [25]. These 
descriptors can be used to build classification models 
or to pinpoint specific areas of interest in a picture. 
The use of wavelets can help reduce data 
dimensionality, which is useful for processing and 
analyzing big dermatological picture databases. 

Wavelet decomposition algorithm 
Wavelet decomposition is used to enhance the 

feature extraction process from image batches, 
enabling improved classification effectiveness. The 
process of wavelet decomposition of image data into 
multiple sets of coefficients that represent different 
frequency components is detailed as follows: 

 
Require: Image batch I 
Ensure: Decomposed coefficients at multiple levels 
function WaveletDecomposition (I) 
Initialize empty list coefficients ⊳ Level 1 
Decomposition 
I ← permute(I, [0, 3, 1, 2]) 
R, G, B ← I[:, 0], I[:, 1], I[:, 2] 
(R_L, R_H) ← WaveletTransformAxisY(R) 
(R_LL, R_LH) ← WaveletTransformAxisX(R_L) 
(R_HL, R_HH) ← WaveletTransformAxisX(R_H) 
(G_L, G_H) ← WaveletTransformAxisY(G) 
(G_LL, G_LH) ← WaveletTransformAxisX(G_L) 
(G_HL, G_HH) ← WaveletTransformAxisX(G_H) 
(B_L, B_H) ← WaveletTransformAxisY(B) 
(B_LL, B_LH) ← WaveletTransformAxisX(B_L) 
(B_HL, B_HH) ← WaveletTransformAxisX(B_H) 
wavelet_data ← [R_LL, R_LH, R_HL, R_HH, G_LL, 
G_LH, G_HL, G_HH, B_LL, B_LH, B_HL, B_HH] 
transform_batch ← stack(wavelet_data, axis = 1) ⊳ 
Multilevel Decomposition 
for k = 2 to … do 
(L^(k), H^(k)) ← WaveletTransformAxisY(L^(k-1)) 
(LL^(k), LH^(k)) ← WaveletTransformAxisX(L^(k)) 
(HL^(k), HH^(k)) ← WaveletTransformAxisX(H^(k)) 
Append (L^(k), H^(k), LL^(k), LH^(k), HL^(k), 
HH^(k)) to coefficients 
end for 
Permute decomposed components back to original 
dimensions 
decom_level_1 ← permute(transform_batch, [0, 2, 3, 
1]) 
decom_level_2 ← permute(transform_batch_l2, [0, 2, 
3, 1]) 
decom_level_3 ← permute(transform_batch_l3, [0, 2, 
3, 1]) 

 
Figure 1: Wavelet decomposition levels of a dermoscopic image. 
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decom_level_4 ← permute(transform_batch_l4, [0, 2, 
3, 1]) 
return decom_level_1, decom_level_2, 
decom_level_3, decom_level_4 
end function 
function WaveletTransformAxisY (I) 
I_odd ← I[:, 0::2] 
I_even ← I[:, 1::2] 
L_y ← (I_odd + I_even)/2 
H_y ← |I_odd − I_even| 
return L_y, H_y 
end function 
function WaveletTransformAxisX (I) 
I_tmp ← permute(I, [0, 2, 1])[:, :, ::-1] 
L_x, H_x ← WaveletTransformAxisY(I_tmp) 
L_x ← permute(L_x, [0, 2, 1])[:, ::-1, …] 
H_x ← permute(H_x, [0, 2, 1])[:, ::-1, …] 
return L_x, H_x 
end function 

Residual wavelet network 
The architecture begins with preprocessing the 

input dermoscopic images using wavelet 
transformations to capture frequency-specific 
features. The wavelet coefficients are then adjusted to 
enhance their representational capacity. The 
subsequent structure involves convolutional layers 
with Relu activation, max pooling, and residual 
blocks, which facilitate the extraction of hierarchical 
features from the images. The inclusion of residual 
blocks enables the network to learn and represent 
complex patterns effectively. Figure 2 depicts the 
overall architecture of the model. 

The architecture utilizes four levels of 
wavelet-decomposed inputs, each processed 
independently through corresponding residual 
blocks. Additionally, the features extracted from 

different levels of the wavelet decomposition are 
fused with the features from the residual blocks. This 
fusion process enhances the model’s ability to capture 
diverse and complementary information from the 
input images. The final output layer performs 
multi-class classification, categorizing the input 
images into different skin disease classes. This 
network is considered as a Naive implementation of a 
CNN network with wavelet. 

Related work 
Image classification using wavelet techniques 

involves utilizing wavelet transforms to extract 
features from images that can then be used for 
classification purposes. Wavelet transforms are 
mathematical functions that analyze signals or images 
by decomposing them into different frequency 
components. This approach can enhance the ability of 
a model to capture both local and global features of an 
image, making it well-suited for image classification 
tasks. Wavelets have also been explored in the context 
of skin disease diagnosis. Hybrid approaches have 
been proposed to improve skin disease diagnosis [28], 
[29], [30]. 

In [31], Indira et al. proposed a novel approach 
for enhancing skin cancer detection and analysis 
through a Texture Analysis-based Classification 
Module. The method employs key symptoms of skin 
cancer, including Asymmetry, Border Irregularity, 
Color variation, and Diameter, in the processing 
algorithm. By utilizing multi-level Wavelet 
Transformation on input images and selecting specific 
sub-bands for optimal defect detection, the proposed 
system aims to improve decision accuracy in skin 
cancer detection and analysis, offering a promising 
avenue for more effective diagnostic strategies. 
However, the method primarily focuses on 

 

 
Figure 2: Naive Wavelet convolutional neural network. 
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classification based on texture analysis and 
multi-level wavelet transformation, which may not 
fully leverage the potential of modern deep learning 
architectures for feature extraction and classification. 

Alenezi et al. in [28] proposed an innovative 
approach for accurate skin lesion classification using a 
wavelet transform-based deep residual neural 
network (WT-DRNNet) combined with the 
ReLU-based Extreme Learning Machine (ELM). The 
model integrates wavelet transformation, pooling, 
and normalization to enhance image details while 
removing unwanted artifacts from skin lesion images. 
Deep features are extracted using a residual neural 
network through transfer learning, and these features 
are then combined with global average pooling. The 
model is evaluated using the ISIC2017 and 
HAM10000 datasets, achieving impressive results: on 
the ISIC2017 dataset, metrics such as accuracy, 
specificity, precision, and F1-Score reached 96.91%, 
97.68%, 96.43%, and 95.79% respectively, and 95.73%, 
98.8%, 95.84%, and 93.44% respectively, on the 
HAM10000 dataset, outperforming existing methods. 
While achieving impressive accuracy, the integration 
of multiple steps (wavelet transform, feature 
extraction, neural network processing, and ELM) 
introduces complexities and increases execution time 
for testing. This higher computational demand may 
not be feasible in all deployment environments due to 
limited resources. 

Serte et al. in [29] presented two novel methods 
for the automatic classification of malignant 
melanoma and seborrhoeic keratosis skin lesions. The 
first method leverages wavelet coefficients obtained 
through wavelet transformation, combined with deep 
learning models for skin image representation. The 
second method employs sequential wavelet 
transformation to produce approximation coefficients, 
followed by deep learning model application. Using 
transfer learning-based ResNet-18 and ResNet-50 
models, both image and coefficient representations 
are analyzed, and model output probabilities are 
fused for lesion detection. Comparative results 
highlight the superiority of the proposed approach, 
with ResNet-18-based I-A1-H-V and ResNet-50-based 
I-A1-A2-A3 models achieving remarkable M-AUC 
value of 96% and M-ACC value of 85% on ISIC2017 
dataset, effectively surpassing other recent methods 
for melanoma detection. The approach involves two 
separate methods combining wavelet coefficients with 
deep learning models, but the integration is not as 
seamless. The sequential wavelet transformation and 
separate deep learning application might result in 
complexity and potential overfitting. 

In [30], Chatterjee et al. presented a systematic 
methodology for computer-aided identification of 

four classes of skin diseases. By employing empirical 
wavelet transform, dermoscopic images are 
decomposed into various frequency spectra to 
analyze complex textural properties of skin lesions. 
The empirical wavelet fractal descriptor (EWFD) is 
introduced for quantitative textural complexity 
analysis. Morphological, texture, and color features 
are extracted, and a recursive feature 
elimination-based technique is used for feature 
selection. Employing ensemble multiclass 
classification, the proposed approach achieves high 
sensitivities of 99.20%, 98.60%, 98.20%, and 98.80% for 
melanoma, nevus, BCC, and SK diseases, respectively. 
The study’s conclusion highlights the successful 
identification of similar skin abnormalities, with 
empirical wavelet transform and the introduced 
EWFD proving effective for quantifying textural 
complexity. The ensemble multiclass classification 
demonstrates the potential of this method for accurate 
and comprehensive skin disease identification. While 
effective, the approach may be computationally 
intensive due to the recursive feature elimination and 
ensemble techniques. 

Aboulmira et al. in [32] provides a significant 
advancement in the field of dermatological image 
classification by leveraging Fast Fourier Transform 
(FFT) convolution layers. This study focuses on 
integrating FFT-based convolution with a denoising 
block within a ResNet-18 architecture, aiming to 
enhance the efficiency and accuracy of skin disease 
classification. Utilizing the HAM10000 dataset, the 
research achieved an accuracy rate of 88%, 
highlighting the method’s superiority compared to 
traditional convolution techniques. The authors 
suggest that future research should explore the use of 
larger kernels and the potential of frequency domain 
learning to further improve classification outcomes. 
Unlike FFT-based methods, the use of wavelet 
decomposition in this study allows for a 
multi-resolution analysis of images, capturing both 
frequency and location information more effectively. 

Wavelet transformation enables multi-resolution 
analysis, which enhances the model’s ability to 
capture both fine and coarse features in skin images. 
This is particularly beneficial for dermatological 
applications, where lesions and skin abnormalities 
can vary significantly in size and texture. While 
previous studies have effectively utilized wavelets, 
the proposed hybrid architecture addresses existing 
research gaps by directly integrating wavelet 
transformations with the EfficientNet backbone in 
specific layers. This results in a unified, robust 
combined model. Second, the model isolates specific 
frequencies and leverages pretrained Efficientnet 
features for enhanced detection avoiding redundant 
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processing. This hybrid approach not only improves 
the model’s robustness and precision but also 
facilitates the extraction of more meaningful features, 
leading to better diagnostic capabilities. Furthermore, 
the combination of these techniques can potentially 
reduce the model’s susceptibility to overfitting, 
making it more reliable for clinical applications. As a 
result, this hybrid model represents a significant 
advancement in the automated diagnosis of skin 
diseases, promising enhanced diagnostic performance 
and greater generalizability across diverse datasets. 

 

Table 1: Comparative analysis of methodologies in related 
studies 

Study Methodology Datasets Performance Metrics 
Indira et al. 
[31]  

Texture Analysis, 
Multi-level Wavelet 
Transformation 

Not 
Specified 

- 

Alenezi et 
al. [28] 

WT-DRNNet, ReLU-based 
ELM, Transfer Learning 

ISIC2017, 
HAM10000 

Accuracy: 96.91% 
(ISIC2017), 95.73% 
(HAM10000) 

Serte et al. 
[29] 

Wavelet Coefficients, Deep 
Learning, Transfer 
Learning (ResNet-18, 
ResNet-50) 

ISIC2017 M-AUC: 96%, M-ACC: 
85% 

Chatterjee et 
al. [30] 

Empirical Wavelet 
Transform, EWFD, 
Ensemble Multiclass 
Classification 

ISIC Sensitivity: 99.20% 
(Melanoma), 98.60% 
(Nevus), 98.20% (BCC), 
98.80% (SK) 

Aboulmira 
et al. [32] 

Fast Fourier Transform, 
FFT based Convolution 

HAM10000 Accuracy: 88% 

Proposed 
Model 

Hybrid CNN, Fusion with 
Wavelet Coefficients 

ISIC2017, 
HAM10000 

Accuracy: 92.2% 
(ISIC2017), 94.7% 
(HAM10000) 

 

Methodology 
This section outlines the methodology 

employed, detailing the workflow, dataset, data 
augmentation, preprocessing, and model training 
process. The workflow begins with the acquisition 
and preparation of the dataset, followed by extensive 
data augmentation to enhance the model’s 
generalization capabilities. The training process 
leverages EfficientNet architecture, integrating 
wavelet transforms to refine feature extraction and 
improve performance. 

Workflow 
The core of the proposed methodology is a 

hybrid CNN architecture that combines the high-level 
feature extraction capabilities of EfficientNet with the 
multi-resolution analysis strengths of wavelet 
transforms. The model architecture integrates 
wavelet-transformed inputs into an EfficientNet 
backbone at strategic insertion points, allowing for the 
capture of both spatial and frequency domain features 
pertinent to skin lesion classification. The wavelet 
transformation layer decomposes input images into 

frequency subbands using a discrete wavelet 
transform, effectively capturing intricate texture 
details. These wavelet-transformed features, weighted 
by learnable parameters, are then integrated with the 
corresponding EfficientNet feature maps through an 
Add layer, resulting in a unified feature 
representation. Towards the end of the model, global 
average pooling and dropout layers are utilized to 
perform dimensionality reduction and provide 
regularization, ensuring robust and efficient learning. 

The proposed architecture strategically 
integrates wavelet-transformed inputs into the 
EfficientNet backbone at carefully selected insertion 
points, specifically after the block1a_activation, 
block2b_add, and block4a_project_conv layers. Early 
insertion at block1a_activation enhances low-level 
feature extraction with additional frequency 
information, mid-layer insertion at block2a_project_ 
conv complements mid-level patterns, and late 
insertion at block4a_project_conv enriches high-level, 
abstract features. This strategic placement ensures 
that wavelet-transformed data contributes effectively 
to the model’s overall feature representation, 
optimizing the balance between spatial and 
frequency-domain information while maintaining 
computational efficiency and model accuracy. Figure 
3 depicts the overall process of classification of skin 
diseases. 

To enhance the training dynamics, a warmup 
phase is introduced at the beginning of the training 
process. During this phase, the learning rate is 
gradually increased, allowing the model to transition 
from its initial random initialization to more stable 
learning. Following the warmup, a cosine learning 
rate scheduler is employed. This scheduler adjusts the 
learning rate as training progresses, contributing to 
effective convergence and optimized model 
performance. Furthermore, learning rate adjustments 
are incorporated through callbacks. Callbacks are 
functions that influence the training process at various 
stages. By dynamically adjusting the learning rate 
during training, the network’s ability to adapt and 
learn from the data is finetuned. This aspect 
demonstrates a sophisticated understanding of neural 
network training strategies, aiming to strike a balance 
between exploration and exploitation in the learning 
process. 

Overall, this model offers interesting features for 
skin disease diagnosis. Combining EfficientNet 
features with Wavelet decomposition presents a 
promising solution to enhance classification tasks by 
leveraging the strengths of both the EfficientNet and 
wavelet network. 
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Figure 3: General workflow of the proposed hybrid model. 

 

Dataset 
In this study, two well-established datasets, 

HAM10000 and ISIC2017, were utilized, serving as 
critical benchmarks in the domain of skin disease 
classification. A detailed description of each dataset is 
provided below: 
• HAM10000 (Human Against Machine): is a 

diverse dataset which contains 10015 
dermoscopy images representing skin lesions 
across seven diagnostic categories: actinic 
keratosis (AKIEC), basal cell carcinoma (BCC), 
benign keratosis (BKL), dermatofibroma (DF), 
melanoma (Mel), melanocytic nevus (NV), and 
vascular lesions (VASC) [33]. The dataset is 
available at: https://www.kaggle.com/ 
datasets/artakusuma/basedir. 

• ISIC 2017: Part of the International Skin Imaging 
Collaboration (ISIC) challenge, consisting of 
2,000 images with annotations for melanoma 
diagnosis [34]. The dataset is accessible via: 
https://www.kaggle.com/datasets/johnchfr/is
ic-2017. 
In this experiment, the datasets were randomly 

divided into a training, validation, and test set a 
70:20:10. 

Data augmentation 
Data augmentation aims to increase the amount 

of data by performing transformations on the data 
already existing in the dataset [35]. Different 
transformations were used, such as random 
horizontal and vertical Flips, random Rotation, and 
color normalization. 

Indeed, the distribution of color values varied 

according to lighting conditions, cameras, and other 
factors, as noted by Mbatha et al. [36] has a negative 
impact on the results and is therefore characterized as 
noise. For this reason, a color normalization phase 
was applied by averaging and normalizing three 
channels over the entire dataset. The ’Shades-of-Grey’ 
algorithm [37] was also applied, which normalizes the 
color in images to mitigate the variance introduced by 
different imaging conditions and devices [38]. 

Fine tuning 
The process of finetuning involves initially 

locking all layers of the EfficientNet model to keep 
their pre-trained weights unchanged during the early 
stages of training. As training progresses, layers are 
progressively unlocked, beginning with those nearest 
to the output, to fine-tune the model’s pre-existing 
features for a particular task. In this specific approach, 
the first step involved unlocking the top 10 layers for 
adjustment, followed by the top 20, and eventually all 
layers were made adjustable. 

This approach allows the model to first adjust 
the newly added layers to the task at hand without 
disturbing the pre-trained features. Gradually 
unfreezing more layers lets the model start 
fine-tuning the more abstract representations in the 
pre-trained model to better suit your specific dataset 
and task. 

Experimental Results and Discussion 
Set up for experiments 

For performance evaluation, the proposed 
architecture was tested on two common 
dermatological datasets: HAM10000 and ISIC2017. 
The method is implemented in Tensorflow, and the 
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experiments were done with GeForce RTX 2060 GPU - 
6GB GDDR5 memory and memory (RAM) of 16.0GB 
on a Windows 10 machine. The training of the model 
is meticulously designed to optimize performance. 
The categorical focal loss function is selected as the 
loss function to address class imbalance within the 
dataset. The Adam optimizer is utilized for its 
adaptive learning rate capabilities, facilitating 
efficient convergence. A dynamic learning rate 
scheduler is implemented to adjust the learning rate 
based on training progress, reducing the learning rate 
when the validation loss plateaus to refine the 
model’s accuracy and prevent overfitting. 

The model is trained with a batch size of 16, 
which balances computational efficiency and model 
performance, and training is conducted until 
convergence, monitored by early stopping criteria 
based on validation loss to prevent overtraining. The 
evaluation focused on accuracy, precision, recall, and 
F1-score as primary metrics to assess the model’s 
performance across three scenarios: using the 
EfficientNet backbone without wavelet 
decomposition (Baseline), Naive CNN wavelet 
decomposition, and the combined approach where 
wavelet features are integrated into the EfficientNet 
architecture gradually. The table 2 presents the results 
of an ablation study that evaluates the impact of 
different wavelet decompositions on the performance 
of the EfficientNet model. Metrics including accuracy, 
precision, recall, and F1-score are reported for various 
configurations, demonstrating the contribution of 
each wavelet decomposition level to the overall model 
performance. 

 

Table 2: Performance Comparison of EfficientNet with Different 
Wavelet Decompositions 

Inf. 
Time 

Model Accuracy Precision Recall F1-score 

60 
ms/st 

Naive Wavelet-CNN model 86% 85% 86% 84% 

77 
ms/st 

EfficientNet backbone 92.5% 93% 92% 91% 

82 
ms/st 

EfficientNet with first wavelet 
decomposition 

93.9% 94% 93% 93% 

82 
ms/st 

EfficientNet with second wavelet 
decomposition 

94.7% 95% 94% 94% 

82 
ms/st 

EfficientNet with third wavelet 
decomposition 

92.5% 93% 92% 91% 

82 
ms/st 

EfficientNet with fourth wavelet 
decomposition 

93.9% 94% 93% 93% 

96 
ms/st 

Fusion EfficientNet with all 
wavelet decomposition 

94.7% 95% 94% 94% 

 
It is evident that the proposed model achieves a 

greater accuracy compared to the baseline 
EfficientNet model. The Naive Wavelet-CNN model 
is the baseline model, and it achieves a reasonable 
accuracy. The precision, recall, and F1 scores are also 

fairly balanced. The time per step is relatively fast. 
This suggests that combining advanced wavelet 
techniques with CNN layers can significantly 
improve diagnostic accuracy in medical imaging. 

Using the EfficientNetB0 architecture along with 
noisy training has resulted in a substantial accuracy 
improvement. The precision, recall, and F1-score are 
all at a high level, showing the model’s effectiveness. 
The time per step is relatively moderate. The use of 
wavelet-transformed features through a few layers of 
EfficientNet has significantly improved accuracy and 
F1-score compared to the baseline model. The 
precision and recall are also high, indicating that the 
model performs well on both positive and negative 
samples. The time per step is slightly slower, likely 
due to the combination process, but still reasonable. 
This indicates that combining predictions from 
wavelet decomposition in general contributes 
positively to performance. However, it can be noticed 
that Efficientnet features integration with the first 
level of wavelet decomposition decreases the 
performance compared to using only the baseline 
EfficientNet, this can be due to the fact that 
Efficientnet’s early layers capture basic and general 
features like edges and textures. Integrating wavelet 
features here can have a risk of overwhelming the 
model with too much detail too early, especially if the 
wavelet features are complex. 

Integrating the second level of wavelet 
decomposition leads to the most significant 
performance improvement among the other levels of 
fusions. This can be due to the nature of the middle 
layers of EfficientNet which have begun to abstract 
away from the most basic features but are still flexible 
in terms of adapting to additional information. 
Integrating wavelet features at this stage can enrich 
the model’s feature set as they preserve more spatial 
information, which can complement EfficientNet’s 
capability to extract detailed features. Level 2 
decomposition provides a good balance between 
retaining important spatial information and 
abstracting away details to highlight features that 
may be more subtly indicative of specific skin 
conditions, making the model suitable for capturing 
the unique aspects of different skin diseases. 

For the third and fourth wavelet decomposition, 
it can be seen that there’s no great impact on 
performance, the reason can be that the deeper layers 
of EfficientNet are highly abstract and task-specific. 
Adding wavelet features at this stage could 
potentially dilute the specificity of the network’s 
learned representations if the added features are not 
sufficiently aligned with the task. Fusion of all the 
levels of wavelet decomposition introduces additional 
parameters and complexity into the model. While this 
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can be beneficial for integrating diverse information 
sources, it hinders the model’s ability to learn 
effectively. This can be due to redundancy without 
adding new information, potentially confusing the 
model or diluting important signals with repeated 
data, which leads to overfitting. 

 

Table 3: Per-Class Performance Metrics on HAM10000 Dataset 

F1-score 
Methods Naive Wavelet 

CNN 
Baseline 
EfficientnetB0 

Fusion with 2nd level wavelet 
decomposition 

AKIEC 0.50 0.64 0.78 
BCC 0.67 0.82 0.86 
BKL 0.68 0.77 0.81 
DF 0.60 0.63 0.91 
MEL 0.45 0.51 0.77 
NV 0.97 0.97 0.98 
VASC 0.85 0.81 0.92 

 
Class imbalance is a significant challenge in 

medical image datasets, such as HAM10000, where 
certain skin conditions are much more prevalent than 
others. This imbalance can lead to models that 
perform well on majority classes but poorly on 
minority classes, resulting in inflated accuracy and 
potential overfitting. 

To address this issue, categorical focal loss was 
employed, which specifically targets class imbalance 
by down-weighting the loss contribution of 
well-classified examples and focusing more on 
hard-to-classify cases, often belonging to minority 
classes. Additionally, data augmentation techniques, 
such as rotation, flipping, and color normalization, 
were applied to increase the representation of 
minority classes in the training data. Table 3 presents 
the per-class performance metrics on the HAM10000 
dataset for the three different methods: Naive 
Wavelet, Baseline EfficientNetB0, and Fusion with 
2nd Level Wavelet Decomposition, across the seven 
types of skin lesions: AKIEC, BCC, BKL, DF, MEL, 
NV, and VASC. Performance is measured using the 
F1-score, a harmonic mean of precision and recall, 
which provides a balance between the model’s 
accuracy and its ability to detect positive samples. 

The Baseline EfficientNetB0 generally improves 
upon the Naive Wavelet method, especially notable in 
AKIEC (0.64), BCC (0.82), and BKL (0.77), reflecting 
the strength of EfficientNetB0 in capturing more 
complex features compared to the Naive Wavelet 
method. Despite these improvements, it shows only 
marginal progress or even a slight decline in 
categories like VASC, indicating that the method 
might not uniformly enhance detection across all 
conditions. 

Naive Wavelet CNN shows varied performance 
across the categories, with its highest F1-score in NV 
(0.97) and VASC (0.85), indicating strong performance 
in these particular conditions. However, it struggles 
with MEL (0.45) and AKIEC (0.50), suggesting 
limitations in identifying these conditions accurately. 
The Fusion with 2nd Level Wavelet Decomposition 
approach demonstrates superior performance across 
all categories, with the most significant improvements 
observed in DF (0.91), MEL (0.77), and AKIEC (0.78). 

This suggests that integrating 2nd-level wavelet 
decomposition with EfficientNetB0 significantly 
enhances the model’s ability to detect a wide range of 
conditions, likely due to the method’s effectiveness in 
capturing both high-level and detailed features within 
the data. These improvements are further 
corroborated by the confusion matrix (Figure 5) and 
ROC curves (Figure 4), which demonstrate that the 
model has learned to distinguish between different 
classes effectively, without overfitting to the majority 
class, NV. 

Despite these mitigation strategies, some classes 
remain more challenging, as reflected in slightly 
lower F1-scores for classes like MEL and AKIEC. 
Future work could explore additional techniques, 
such as adaptive resampling or cost-sensitive 
learning, to further enhance performance on these 
minority classes. 

 

Table 4: Experimental results of Wave-EfficientNet in terms of 
accuracy, macro and micro roc 

Method Micro Roc score Macro Roc score Accuracy 
Proposed approach 0.996 0.988 0.947 

 
It is imperative to evaluate not just accuracy but 

also precision, recall, F1-score, and ROC score, 
particularly given the significant imbalance within the 
dataset. Table 4 showcases the performance of an 
EfficientNet model with second wavelet 
decomposition (Wave-Efficientnet), highlighting its 
effectiveness through three metrics: Micro ROC score 
(0.996), Macro ROC score (0.988), and Accuracy 
(0.947). These scores reflect the model’s ability to 
accurately classify instances, demonstrating its 
robustness across both individual predictions and 
various classes. The ROC curve further in Figure 4 
illustrates the model’s discriminative power, 
providing a comprehensive visualization of its 
performance across different thresholds. 

To provide a comprehensive view of the 
classification outcomes from the most effective model, 
in terms of correct and incorrect classifications, 
confusion matrices are included in Figure 5. 
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Figure 4: ROC Curve for Wave-EfficientNet Model. 

 

 
Figure 5: Matrix confusion of the best model performance. 

 
A series of ablation studies were conducted to 

evaluate the effectiveness of the proposed hybrid 
architecture. These studies focus on different fusion 
techniques and structural modifications within the 
model, aiming to understand the contributions of 
each component to the overall performance. 
Specifically, the investigations covered: 

1. The effect of direct addition versus 
concatenation of wavelet features to the EfficientNet 
backbone. 

2. The efficiency and performance implications 
of modifying the insertion point of wavelet features 
within the EfficientNet model. 

3. The impact of employing various fusion 
strategies, including simple summation, weighted 

summation, attention-based fusion, and 
concatenation followed by 1x1 convolution. 

The results of the ablation study are summarized 
in Table 5, where each configuration’s performance is 
evaluated in terms of accuracy, precision, recall, 
F1-score, and inference time. This comprehensive 
comparison identifies the most effective architectural 
modifications for optimizing the hybrid model’s 
performance. 

 

Table 5: Performance Comparison of Ablation Study 
Configurations 

Configuration Accuracy Precision Recall F1-score 
Early Wavelet Feature Insertion (Block 2A)     
Wavelet Features via Direct Addition (Add 
layer) 

94.3% 94% 94% 94% 

Wavelet Features via Concatenation 
Followed by 1x1 Convolution 

94.13% 94% 95% 95% 

Fusion via Weighted Summation 94.7% 95% 94% 94% 
Fusion via Attention Mechanism 93.60% 93% 94% 93% 
Late Wavelet Feature Fusion (with final 
EfficientNet layer) 

    

Wavelet Features via Direct Addition 93.92% 93% 94% 93% 
Wavelet Features via Concatenation 
Followed by 1x1 Convolution 

91.79% 92% 92% 92% 

 
The results in Table 5, indicate that early wavelet 

feature insertion generally yields superior 
performance across all evaluated metrics, with the 
configuration using direct addition via an Add layer 
with weighted summation achieving the highest 
overall performance. This method produced an 
accuracy of 94.7%, a precision of 95%, a recall of 94%, 
and an F1-score of 94%. The Add layer without 
weighted summation approach yielded similar 
results, suggesting that seven without explicit 
weighting, the early fusion of wavelet features with 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

517 

the use of the Add layer, contributes significantly to 
the overall classification accuracy and generalization 
capability of the model. 

In contrast, late wavelet feature fusion, 
particularly using concatenation followed by 1x1 
convolution, resulted in a notable decline in 
performance. The complexity introduced by this 
method appears to detract from the model’s ability to 
generalize, as evidenced by the lower accuracy 
(91.79%) and F1-score (92%). These findings suggest 
that early integration of wavelet features allows the 
network to more effectively leverage the 
complementary information provided by the wavelet 
decompositions, leading to improved classification 
performance. 

Overall, the ablation study underscores the 
importance of the fusion strategy and the point of 
integration within the network, with early insertion 
via simple addition or weighted summation proving 
to be the most effective in enhancing the model’s 

performance for skin disease classification. To further 
illustrate the effectiveness of the proposed hybrid 
model, Gradient-weighted Class Activation Mapping 
(Grad-CAM) was used to visualize the regions of the 
dermatological images that the model focuses on 
when making predictions. Figure 6 shows the 
Grad-CAM visualizations for a selection of 
dermatological images from the HAM1000 dataset. 
Each pair of images consists of the original input 
image (left), the raw Grad-CAM (middle), and the 
corresponding overlayed Grad-CAM heatmap (right), 
which highlights the areas that the model considers 
important for classification. 

Building on the promising results obtained with 
the HAM10000 datasets, the performance of the 
proposed hybrid architecture is evaluated on another 
dataset to validate its efficacy across diverse 
conditions. ISIC2017 dataset was selected, renowned 
for its comprehensive collection of skin lesion images, 
as a new testing ground. 

 

 
Figure 6: Grad-CAM Visualizations. 
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Table 6: Comparison of overall performance: accuracy, 
precision, recall and F-1 score for Isic2017 

Method Accuracy Precision Recall F1-score 
Proposed approach 92.2% 92% 91.8% 91.9% 

 
The experimental results, as documented in 

Table 6, reveal the model’s consistent performance. 
This step was crucial to demonstrate the model’s 
robustness and applicability beyond a single dataset. 
This cross-dataset validation underscores the model’s 
adaptability and scalability to different medical 
imaging challenges, marking a significant milestone 
in the pursuit of advanced diagnostic solutions. 

In recent research on skin lesion classification, 
several approaches have been proposed to improve 
the accuracy of classification models. Table 7 gives a 
comparison of various methods in terms of accuracy 
and F1-score. 

 

Table 7: Comparison of Skin Lesion Classification Methods in 
Terms of Accuracy and F1-Score 

Method Dataset Accuracy F1-score 
Proposed approach HAM10000 94.7% 95% 

ISIC2017 92.2% 91.9% 
    
WT-DRNNet [28] HAM10000 96.91% 95.79% 

ISIC2017 95.73% 93.44% 
Soft-Attention [39] HAM10000 93.4% 98.4% 
Custom CNN architecture 
[40] 

HAM1000 91.51% - 

ResNet-50-18 with 
I-A1-A2-A3 [29]  

ISIC2017 85% - 

 
In the comparative analysis of the performance 

of various deep learning models in the field of 
medical image classification, the proposed hybrid 
model outperformed many existing approaches. 
Specifically, it achieved higher accuracy than Sevli et 
al. [40] and Serti et al. [29], and although the 
Soft-Attention method [39] had a higher F1-score, the 
proposed model provided a better overall balance of 
accuracy and precision. 

While it is true that Alenezi’s method 
demonstrates higher accuracy metrics on the 
HAM10000 and ISIC2017 datasets, the presented 
approach offers a significant advantage in terms of 
computational efficiency. The proposed model 
achieves an execution time of 0.006-0.008 seconds, 
compared to Alenezi et al.’s 2.3756 seconds [28]. This 
improvement in computational efficiency can be 
crucial in clinical settings where real-time analysis is 
required. Additionally, the method’s hybrid 
architecture combining wavelet decomposition with 
EfficientNet models provides a robust framework that 
can be further optimized for higher accuracy while 
maintaining or improving computational efficiency. 

Limitations 
While the integration of wavelet transformation 

with EfficientNet architecture to create a hybrid 
model for skin disease classification offers promising 
results, some limitations should be acknowledged. 
Firstly, the computational complexity introduced by 
wavelet transformation may increase the overall 
processing time, potentially limiting real-time 
applications. In fact, the effectiveness of wavelet 
transformation can vary depending on the quality and 
resolution of the input images, potentially impacting 
the model’s robustness and generalizability across 
diverse datasets. The hybrid approach also requires 
careful tuning of hyperparameters and integration 
strategies, which can be challenging and 
time-consuming. As a result, this approach needs to 
be re-evaluated when changing the dataset to ensure 
its effectiveness and adaptability to new data 
conditions. Finally, while the model aims to 
generalize across various skin diseases, it may still 
struggle with rare conditions that are 
underrepresented in the training data (e.g., minor 
classes in the HAM1000 dataset like vasc, df, bcc, and 
akiec). 

Future work and recommendations 
The improved accuracy of the proposed hybrid 

model offers significant clinical benefits, especially in 
early skin cancer detection, but the added complexity 
of integrating wavelet transformation with deep 
learning must be carefully balanced against its 
marginal performance gains. Future research should 
focus on optimizing this tradeoff to reduce 
computational demands, making the model more 
practical for clinical use. Additionally, fusing the 
image-based model with tabular data, such as patient 
demographics or medical history, could enhance 
diagnostic accuracy and enable personalized 
treatment recommendations. Improving performance 
on minority classes remains crucial, with future work 
exploring adaptive resampling or cost-sensitive 
learning to better address class imbalance and ensure 
reliable detection of critical conditions like melanoma. 

Conclusion 
The advent of deep learning has revolutionized 

the field of dermatological medical image analysis, 
offering unprecedented opportunities for enhancing 
diagnostic accuracy and patient care. In this study, a 
hybrid model for the classification of skin diseases is 
developed by integrating wavelet transformation into 
the EfficientNet architecture. This innovative 
approach leverages the strengths of both wavelet 
transformation, which effectively captures multi-scale 
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features, and EfficientNet, known for its superior 
performance in image classification tasks. The hybrid 
model based on the fusion with 2nd-level wavelet 
decomposition improved accuracy and robustness in 
distinguishing between various skin diseases, 
outperforming the baseline EfficientNetB0 model, 
achieving an accuracy of 94.7% and an F1-score of 
94%. Further validation on the ISIC2017 dataset 
reinforced the model’s consistent performance, with 
an accuracy of 92.2% and an F1-score of 91.9%. These 
results underscore the robustness and scalability of 
the proposed hybrid model across different datasets. 

Despite the discussed limitations, the findings 
suggest that the integration of wavelet transformation 
with advanced neural network architectures holds 
significant promise for enhancing diagnostic accuracy 
in dermatology. Future work should focus on 
expanding the dataset diversity, optimizing 
computational efficiency, and improving model 
interpretability to facilitate broader clinical 
application and acceptance. 
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