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Abstract

Objective: Epileptic seizures are neurological events that pose significant risks of physical injuries characterized by sudden,
abnormal bursts of electrical activity in the brain, often leading to loss of consciousness and uncontrolled movements. Early
seizure detection is essential for timely treatments and better patient outcomes. To address this critical issue, there is a need
for an advanced artificial intelligence approach for the early detection of epileptic seizure disorder.

Methods: This study primarily focuses on designing a novel ensemble approach to perform early detection of epileptic seiz-
ure disease with high performance. A novel ensemble approach consisting of a fast, independent component analysis ran-
dom forest (FIR) and prediction probability is proposed, which uses electroencephalography (EEG) data to investigate the
efficacy of the proposed approach for early detection of epileptic seizures. The FIR model extracts independent components
and class prediction probability features, creating a new feature set. The proposed model combined integrated component
analysis (ICA) with predicting probability to enhance seizure recognition accuracy scores. Extensive experimental evaluations
demonstrate that FIR assists machine learning models to obtain superior results compared to original features.

Results: The research gap is addressed using combined features to improve the performance of epileptic seizure detection
compared to a single feature set. In particular, the ensemble model FIR with support vector machine (FIR+ SVM) outper-
forms other methods, achieving an accuracy of 98.4% for epileptic seizure detection.

Conclusions: The proposed FIR has the potential for early diagnosis of epileptic seizures and can significantly help the med-
ical industry with enhanced detection and timely interventions.
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Introduction
Epileptic seizures are a neurological disorder characterized
by abnormal and excessive electrical activity in the brain.1

Seizures can manifest in various ways, including convul-
sions, loss of consciousness, and altered sensations,
depending on which area of the brain is affected.
Epileptic seizures can be a result of genetic factors, brain
injuries, infections, and tumors. These seizures can have
significant adverse effects on health and may lead to mortal-
ity.2 People with epilepsy face a higher risk of premature
death compared to the general population. This risk is
partly due to the potential for fatal accidents during
seizures, such as drowning, falls, or car accidents.
Additionally, epilepsy is associated with an increased risk
of developing comorbidities such as depression, anxiety,
and cognitive impairment, contributing to reduced quality
of life and increased mortality rates. In fact, epileptic sei-
zures are a significant cause of mortality in people with epi-
lepsy, accounting for ∼1 in 1000 deaths each year.3,4 To
address this issue, an efficient machine learning model is
needed for the early detection of epileptic seizures to
improve the management and overall quality of life for indi-
viduals with epilepsy.

Advancements in artificial intelligence (AI) have
recently transformed the field of medical diagnostics, pro-
viding exciting opportunities for improved identification
and treatment of neurological diseases. AI techniques,
such as deep learning, fuzzy logic systems, and ensemble
methods, have demonstrated impressive effectiveness in
detecting many illnesses, including schizophrenia, attention
deficit hyperactivity disorder (ADHD), autism spectrum
disorder (ASD), and epilepsy.

A review is performed using deep learning techniques
for neuroimaging diagnoses such as ASD.5 Schizophrenia
disorders are detected using EEG signals by implementing
hybrid deep learning techniques such as convolutional
neural networks (CNNs) and long short-term memory
(LSTM) (CNN–LSTM). This technique, combined with
the functional connectivity feature, shows the most promis-
ing results.6 Another advanced method is the adaptive
neuro-fuzzy inference system (ANFIS) classifier used for
the detection of epileptic seizures using EEG signals. This
is tested on different datasets and implemented multiple
feature extraction techniques.7 The computer-aided diagno-
sis system used to automatically detect epileptic seizures
using EEG signals is proposed by Shoeibi et al.8 The data
is preprocessed, and features are extracted after machine
learning and deep learning models are applied; the proposed
CNN and recurrent neural network (RNN) (CNN–RNN)
model shows the most promising results for the diagnosis
of epileptic seizures. A review of deep learning techniques
is performed for detecting and forecasting COVID-19
tweets.9 The real-time computer-aided diagnosis system
based on advanced deep learning techniques works well

for real-time detection. The fusion approach is used
for rapidly diagnosing the COVID-19 virus on X-ray
images.10 The CNN, support vector machine (SVM), and
Sobel filter are used for detection.

AI involves using machine learning algorithms that
enable computers to learn from data and make predictions
based on that data.11 One application of AI in healthcare
is the detection of epileptic seizures using electroencephal-
ography (EEG) signals. EEG signals are commonly used to
detect epileptic seizures, and machine learning algorithms
have shown promising results in identifying seizure onset
and classifying seizure types.12 EEG signals are recordings
of the brain’s electrical activity, providing valuable infor-
mation about the occurrence and duration of seizures. AI
algorithms can analyze EEG signals in real time to detect
the onset of a seizure and promptly alert healthcare provi-
ders, thereby improving patient safety and the quality of
care by enabling timely intervention during a seizure.

Similar to the prognosis of other diseases like cardiovas-
cular disease, kidney disease, and lung disease, a large
approach automatically classifies abnormal and normal
EEG signals. The ANN outperformed the other algorithms
with 97% accuracy. Similarly, Shen et al.18 proposed an
ensemble method for detecting epilepsy seizures through
EEG brain signals. Two different publicly available datasets
UB and CHB–MIT were used for training and evaluating
the applied models. The study evaluated the results using
machine learning and ensemble learning algorithms, dem-
onstrating that a 97% accuracy score was achieved using
ensemble learning techniques. However, there is still a
need for improvement to ensure accurate diagnosis of epi-
lepsy seizures.

The authors collected a dataset in Varone et al.13 from
different medical centers in Italy during 2016 and 2019
for epileptic seizure classification. The authors applied
various machine learning algorithms including SVM,
linear discriminant analysis (LDA), and multilayer percep-
tron (MLP) both as stand-alone models and ensemble
models. The proposed optimized MLP achieved a 91%
accuracy for seizure detection. Despite the optimization of
models, the obtained accuracy is low, and further enhance-
ments are needed.

The study19 focuses on predicting epileptic seizures
using advanced deep learning models. The researchers uti-
lized the American Epilepsy Society Seizure Prediction
Challenge dataset to develop and evaluate the models.
The authors proposed five deep learning models 1-CNN,
2-CNN, 3-CNN, 4-CNN, and 5-CNN, along with a transfer
learning ResNet50 model. Among these models, the
5-CNN model achieved the highest accuracy score of
95%. However, there is still room for further performance
improvement, especially from the perspective of epilepsy
diagnosis. Similarly, Halawa et al.20 focuses on epileptic
seizure prediction using deep learning models. Results are
based on the analysis of the pre-ictal and inter-ictal signal
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dataset known as CHB–MIT. Important features are
extracted from the signals and fed into the proposed 1D
CNN model for classification, which demonstrates an
accuracy of 97%. Nevertheless, there is a need for further
improvement.

The epilepsy classification using parameters from wear-
able sensors is investigated in Kadu et al.21 The authors
utilized the wearable sensors’ health record dataset to
develop machine learning and deep learning techniques.
Experimental results show that the proposed EMLR–FLIS
model achieved an accuracy of 97% outperforming existing
approaches. The study14 focuses on the prediction of epi-
leptic seizures using deep learning methods. The authors
utilized the publicly available CHB–MIT dataset and
employed several advanced deep learning techniques for
experimentation. The proposed hybrid deep learning
model, DenseNet–LSTM, performed well, achieving an
accuracy of 93%. However, it is worth noting that the
model’s performance was lower compared to the baseline
accuracy.

The prediction of epileptic seizures can be made using
scalp signals, as demonstrated in Dissanayake et al.15 The
benchmark CHB–MIT–EEG dataset is employed to evalu-
ate and predict body of work can be found on epileptic sei-
zures.13-16 For example, the study17 utilized EEG signals to
detect epileptic seizures. Experiments were conducted
using publicly available EEG data from Bonn University.
Genetic algorithms were combined with four different
machine learning algorithms k-nearest neighbor (KNN),
SVM, ANN, and naive Bayes (NB). The performance of
applied models is evaluated. An advanced deep learning
Siamese model is trained to learn strategies for pattern veri-
fication from various brain signals. The authors report that
the proposed model achieves a notable 91% accuracy score;
however, its performance is relatively poor compared to
other approaches. Similarly, Dissanayake et al.22 proposed
the geometric deep learning (GDL) technique, which
improves the prediction of epileptic seizures to a 95%
accuracy.

The UCI Epileptic Seizure dataset is utilized in Rahman
et al.23 for epileptic seizure detection. Various machine
learning techniques including RF, SVM, and MLP are
employed. Hyperparameter tuning is performed using
random search cross-validation. Different performance
evaluation metrics are utilized, such as accuracy, precision,
recall, F1 score, receiver operating curve (ROC), and speci-
ficity. The results indicate that SVM exhibits good perform-
ance with a 97% accuracy. Along the same directions,
Varnosfaderani et al.16 focuses on epileptic seizure predic-
tion using the Melbourne dataset and various deep learning
models. The authors employed a two-layer LSTM with the
swish activation function for classification. The proposed
model achieved the highest accuracy score of 86% and a
sensitivity score of 85% in this study. However, the
performance scores obtained were relatively low in

comparison to other methods. The study24 focuses on epi-
leptic seizure detection using the publicly available CHB–
MIT dataset. The researchers employ deep learning techni-
ques, specifically 1D CNN and CNN with LSTM, to
conduct experiments. The proposed models, 1D CNN and
CNN–LSTM, demonstrate promising results with an accur-
acy of 94%.

Research gap

The following points comprehensively outline the research
gaps identified in the studies reviewed in the literature:

• Primarily, binary class classification of epileptic seizure
detection was solved.

• Classical feature engineering techniques were used for
EEG signal data feature extraction.

• The performance scores reported in previous studies
were low.

• Previous studies used classical algorithms; there is a
need for ensemble learning models for the classification
of epileptic seizures.

Table 1 shows a comparative overview of the discussed
research works on epileptic seizure detection. Despite the
use of different machine learning and deep learning
models,25–28 it can be observed that further improvements
should be made to improve seizure detection accuracy. In
particular, the feature engineering aspect of machine learn-
ing models is not investigated very well. So, this study
focuses on designing a novel feature engineering approach
to enhance the accuracy of machine learning models.

Study contributions

It can be observed from the discussed literature that, pre-
dominantly, the existing approaches are marked by low per-
formance for epileptic seizure detection. This study aims to
develop an accurate and efficient approach that can identify
seizure activity with high sensitivity and specificity.

For this purpose, this study designs a novel feature
fusion approach to enhance the performance of machine
learning models for diagnosing epilepsy. Several advanced
machine learning and deep learning approaches are imple-
mented, and performance is optimized using hyperpara-
meter tuning. The primary contributions of the proposed
research for detecting epileptic seizures are as follows:

• A novel ensemble approach, FIR, is proposed, which
extracts independent components and class prediction
probability features, creating a new feature set.

• Advanced machine learning and deep learning
approaches are implemented to investigate the perform-
ance of the proposed approach. Logistic regression (LR),
SVM, Gaussian NB (GNB), random forest (RF), gated
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recurrent unit (GRU), and LSTM models are utilized for
experiments.

• Performance is validated using k-fold cross-validation.
Additionally, we have performed computation complex-
ity analysis to assess the efficiency of the applied models
with FIR. Study results show that using the proposed
approach, the applied method outperformed state-of-
the-art approaches.

The remaining research is categorized into the following
sections. The proposed method for the diagnosis of epilep-
tic seizures is presented in Material and methods section.
The results of the applied methods are comparatively eval-
uated in Results section, and discussion is given in the
Discussion section. Conclusion and future directions are
presented in the Conclusions section.

Material and methods
The materials and methods for diagnosing epileptic seizures
are analyzed in this section. The dataset used and the
applied models are also described.

The stepwise workflow of the adopted methodology is
illustrated in Figure 1. A novel ensemble approach is pro-
posed, which extracts independent components and class
prediction probability features, creating a new feature
set. We utilized the EEG brain activity signals dataset
for experiments. Experiments are performed using an
80–20 train-test split. We employed several advanced
machine learning and deep learning models. Models are
evaluated using several performance evaluation metrics.

EEG brain activity signals data

In this study, we utilized a publicly available benchmark
EEG brain activity signals dataset for experiments.29 The
original dataset was collected at the University Hospital

Bonn, Germany, and reported in Andrzejak et al.30 The
dataset comprises 11,500 observations, with each observa-
tion consisting of 178 data features representing 1 second of
EEG recording. Data collection was performed in a real-
time environment by placing subjects under observation
in the hospital and recording their EEG signals. The
dataset contains five types of brain activity, including
eyes closed, epileptic seizure, eyes open, tumor brain
area, and healthy brain area. The dataset is balanced with
each class having a sample size of 2300. All target
classes have an equal number of data samples, indicating
a balanced distribution of records.

Proposed feature fusion approach

This study proposes a novel feature fusion approach called
FIR. The working architecture of the proposed approach is
shown in Figure 2.

Independent components using FastICA. First, the EEG
signal data is input to the FastICA model,31 which
extracts independent component features. FastICA is a
computational technique used in signal processing to
separate a multivariate signal into additive, independent
components. It is commonly used for extracting inde-
pendent components from mixed signals. The primary
goal of FastICA is to find a linear transformation of
input data, such that the resulting components are as stat-
istically independent as possible. Then, class prediction
probability features are extracted using the RF model.
Finally, the features extracted from both approaches are
fused together to create a new feature set. Study results
show that, by using the proposed approach, the applied
method outperformed state-of-the-art approaches.
Algorithm 1 shows the step-by-step flow of the proposed
feature fusion approach.

Figure 1. The workflow of the adopted methodology.
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Advantage of using ICA features. The inclusion of ICA fea-
tures in this study confers a critical advantage in the prepro-
cessing and analysis of EEG data. ICA allows for the
decomposition of multichannel EEG signals into statistically
independent components, each representing a distinct under-
lying source or process. This separation is crucial in isolating
relevant seizure-related activity from noise and artifacts,
which are prevalent in EEG recordings. By employing
ICA, we are able to extract meaningful features that are dir-
ectly related to the epileptic seizure phenomenon, thereby
enhancing the signal-to-noise ratio and improving the
overall performance of our detection algorithm.

Class prediction features. Furthermore, the integration of
class prediction features complements the ICA-based pre-
processing approach. These features are derived from a
comprehensive analysis of both time-domain and
frequency-domain characteristics of the EEG signal. They
encapsulate essential information regarding the dynamic
changes and patterns exhibited by the brain during different
stages of an epileptic seizure. By incorporating class predic-
tion features, our algorithm gains the capacity to discern
subtle variations in the EEG signal that may be indicative
of pre-ictal, ictal, and post-ictal states, thus enabling more
accurate and reliable seizure detection.

In summary, the combined utilization of ICA features
and class prediction features synergistically enhances the

efficacy of our approach for epileptic seizure detection.
ICA aids in the robust separation of relevant signal
sources, while class prediction features capture critical
temporal and spectral information crucial for accurate
classification. This integration contributes to a more com-
prehensive and discriminating analysis of EEG data, ultim-
ately leading to improved diagnostic outcomes for
individuals with epilepsy. Despite these advantages, ICA
can be a computationally intensive process, especially in
the context of EEG signal analysis. However, the primary
objective of this study is to explore the feasibility and effi-
cacy of an alternative approach, specifically one that oper-
ates without preprocessing of EEG signal data. The
proposed methodology leverages a novel framework that
bypasses the traditional preprocessing steps typically asso-
ciated with ICA. By doing so, we aim to streamline the ana-
lytical process and reduce the reliance on subjective
researcher judgment. This alternative approach has been
designed to offer a more direct and efficient means of
extracting meaningful components from EEG data.

Applied machine learning and deep learning models

Machine learning and deep learning techniques have shown
great promise in the domain of epileptic seizure diagnosis
using EEG brain activity signals. These advanced
methods32–34 allow for the automated analysis and classifi-
cation of EEG data, aiding in the early detection and accur-
ate diagnosis of epileptic seizures. By extracting relevant
features from EEG signals and employing sophisticated
algorithms, these techniques can provide valuable insights
to healthcare professionals, leading to improved patient
care and better management of epilepsy.

Logistic regression. LR is a widely used and effective
method for epileptic seizure diagnosis using EEG brain
activity signals.35 LR uses a sigmoid activation function

Figure 2. Novel proposed feature engineering approach analysis.

Algorithm 1 FIR Algorithm

Input: EEG sensor data.

Output: New Hybrid features set.

initiate;
1. Ffica ←− FastICAIndependent Component features (Ed)

// here Ed belong to the EEG sensor data and Ffica are
extracted features.

2. Prf ← − RFprobability features(Ed) // here Ed belong to the EEG
sensor data and Prf are predicted features.

3. Hfeatures← − {Ffica+ Prf } // Hfeatures E New hybrid features set
used for the diagnosis of epileptic seizures.

end;
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to calculate the probability of a seizure occurring. Each
input characteristic is assigned a weight coefficient that is
learned throughout the training process. LR utilizes a
threshold to determine binary classification judgments
based on the estimated probabilities, allowing for the
prompt identification of seizures. It offers a simple yet
powerful approach to classify EEG data into seizure and
non-seizure states, enabling accurate and timely detection
of epileptic episodes. By leveraging the features extracted
from EEG signals, LR can provide valuable insights for
clinicians in making informed decisions about patient treat-
ment and care. The interpretability, speed, and robustness of
LR make it a helpful tool for assisting in the management of
epilepsy.

Support vector machine. SVM has emerged as a powerful
model for epileptic seizure diagnosis using EEG data.36

This converts the properties of EEG signals into high-
dimensional space. A hyperplane is created to maximize
the distance between different classes indicating the differ-
ence between seizures and non-seizure classes. SVM deter-
mines the best hyperplane during training which are the best
points closely located to the decision boundary. This pos-
ition of the hyperplane is very important for effectively gen-
eralizing the new unseen data. SVM distinguishes between
seizure and non-seizure EEG patterns successfully by util-
izing the acquired hyperplane, enabling precise and early
identification of epileptic seizures. Accurate classification
results can be achieved by leveraging the SVM’s ability
to find an optimal hyperplane that separates the classes.
Moreover, the SVM model is well-suited for high-
dimensional data like EEG signals, making them a promis-
ing tool for enhancing epilepsy diagnosis and providing
valuable insights for effective medical interventions.

Gaussian Naive Bayes. GNB model is employed to detect
epileptic seizures by modeling the probability distribution
using EEG brain activity signals for detecting both
seizure and non-seizure occurrences.37 The GNB algorithm
effectively follows Gaussian distribution within each class
by assuming that each feature is independent. GNB esti-
mated the mean and variance of each feature for both
classes during the training. GNB efficiently estimates the
probability distribution by assuming feature independence
within classes by employing the Bayes theorem and choos-
ing the class with the highest posterior probability to clas-
sify new instances. Employing GNB can efficiently
handle the high-dimensional data and assume independence
across features the model can effectively differentiate
between seizure and non-seizure data.

Random Forest. RF is a powerful model for detecting epi-
leptic seizures by creating an ensemble of decision trees,
where each tree is trained by creating a random subset of
features from EEG signals.38 The bootstrap samples of

training data are used to create multiple trees and a subset
of features on each node is randomly selected. Each deci-
sion tree is independently classified by considering the
majority class of instances on each leaf node. To classify
new instances, RF works based on the probabilities of all
the decision trees. By combining the predictive abilities
of multiple decision trees, RF provides robustness and
accuracy in classifying seizure patterns. Its ability to
handle high-dimensional EEG data and automatically
select relevant features makes it well-suited for this applica-
tion. Moreover, RF’s capacity to handle imbalanced data-
sets enhances its performance in detecting rare seizure
events. As a result, the RF model holds great promise as
an effective tool for improving the accuracy and efficiency
of epilepsy diagnosis, contributing to better patient care and
treatment outcomes.

Gated Recurrent Unit. GRU model can provide robust and
highly accurate results for epileptic seizure detection.39

GRU is a type of RNN that can effectively capture temporal
dependencies in sequential data like EEG signals. GRU
consists of gates that control the flow of information
inside a network such as an update gate and reset gate.
During the training of the GRU model, it acquires the
ability to modify and reset its internal states according to
the input sequence. By incorporating gating mechanisms,
GRU can selectively retain or forget relevant information,
enabling to modeling of long-term dependencies in the
EEG signals while avoiding the vanishing gradient
problem. This can be learned to reflect the temporal dynam-
ics of seizure patterns by processing sequential data
through its recurrent connections and gradient processes.

Table 2. Best-fit hyperparameters for all models.

Method Hyperparameter value

LR random_state= 0, max_iter= 100, solver=’lbfgs, C=
1.0, ‘multi_class=’auto’

SVM random_state= 0, max_iter= 100, kernel=’linear’,
n_features_in= int

GNB var_smoothing= 1e-9

RF n_estimators= 100, random_state= 0, max_depth=
100, weights=’uniform’, n_neighbors= 2,
leaf_size=’30’, algorithm=’auto’, p= 2,
n_features_in_=’int’

GRU optimizer= ‘adam’, activation=’softmax’, loss=
‘categorical_crossentropy’

LSTM optimizer= ‘adam’, activation=’softmax’, loss=
‘categorical_crossentropy’
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This enables accurate identification of seizures within the
EEG signals sequence.

Long short-term memory. The LSTM model has emerged as
a promising approach for efficiently diagnosing epileptic
seizures.40 Its ability to capture long-range dependencies
and process sequential data makes it well-suited for

analyzing EEG signals, which are time series. LSTM uses
a gating mechanism the input gate governs the flow of
new information into memory cells the forget gate controls
which information needs to be discarded from the memory
cell and the output gate which information flows outward
from the memory cell. By effectively learning temporal pat-
terns and discriminative features from EEG data, the LSTM

Table 3. Performance analysis of machine learning methods with original features.

Method Accuracy Target class Precision Recall F1 score

LR 0.22 Epileptic seizure (1) 0.25 0.39 0.30

Eyes closed (2) 0.22 0.15 0.18

Eyes open (3) 0.17 0.10 0.12

Healthy brain area (4) 0.22 0.33 0.26

Tumor brain area (5) 0.23 0.14 0.17

Average 0.22 0.22 0.21

SVM 0.19 Epileptic seizure (1) 0.07 0.03 0.04

Eyes closed (2) 0.22 0.22 0.22

Eyes open (3) 0.17 0.23 0.20

Healthy brain area (4) 0.22 0.24 0.23

Tumor brain area (5) 0.22 0.26 0.24

Average 0.18 0.20 0.19

GNB 0.44 Epileptic seizure (1) 0.94 0.82 0.88

Eyes closed (2) 0.21 0.14 0.17

Eyes open (3) 0.28 0.20 0.23

Healthy brain area (4) 0.42 0.29 0.34

Tumor brain area (5) 0.37 0.74 0.50

Average 0.44 0.44 0.42

RF 0.69 Epileptic seizure (1) 0.93 0.96 0.94

Eyes closed (2) 0.61 0.55 0.58

Eyes open (3) 0.54 0.54 0.54

Healthy brain area (4) 0.75 0.77 0.76

Tumor brain area (5) 0.62 0.63 0.63

Average 0.69 0.69 0.69
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model shows potential in accurately detecting and classify-
ing epileptic seizures, leading to improved diagnosis and
better patient care.

Hyperparameter optimization

Hyperparameter optimization is an essential component of
machine learning and deep learning.23 The selection of
appropriate hyperparameters can be a challenging process
that involves a train-and-evaluate approach. A well-tuned
set of hyperparameters can significantly impact a model’s
accuracy, convergence speed, and generalization capabil-
ities. The best-fit hyperparameters are determined for the
applied techniques using the GridSearchCV method and
are given in Table 2. GridSearchCV methodically examines
a predetermined grid of hyperparameters, assessing each
combination by cross-validation. This procedure involves
splitting the training data into smaller groups and repeatedly
training the model in one group while using the remaining
data for validation. The performance of the model is evalu-
ated for each combination of hyperparameters using a pre-
defined measure. GridSearchCV systematically explores
the whole range of hyperparameters to find the best config-
uration that maximizes the model’s performance on new
data. This approach guarantees that our models are effect-
ively tuned to obtain the most beneficial results.

Results
This section presents experiments involving machine learn-
ing and deep learning techniques. The performance of each
applied model is evaluated using the epileptic seizure recog-
nition dataset, which consists of EEG brain signals related to
epileptic seizures. Experiments are performed using machine
learning and deep learning methods with both original fea-
tures and the proposed feature engineering approach.

Experimental setup

Machine learning and deep learning models are developed
using Python 3.0 programming language. All experiments
are conducted using an open-source environment, Google
Colab, with a GPU backend, 13 GB of RAM, and 90 GB
of disk space. The performance metrics accuracy, precision,
recall, and F1 score are utilized for evaluating the perform-
ance of epileptic seizure recognition from EEG brain
signals.

Evaluation metrics

This study employs several well-known performance evalu-
ation metrics to analyze the performance of machine learn-
ing and deep learning models. In particular, accuracy,
precision, recall, F1 score, and false alarm rate (FAR) are

used with the following equations:

Accuracy = TP+ TN

TP+ TN + FP+ FN
(1)

Precision = TP

TP+ FP
(2)

Recall = TP

TP+ FP
(3)

F1 score = 2 ×
Precision × Recall

Precision+ Recall
(4)

FAR = FP

TP+ FP
(5)

where, TP, FP, TN, and FN represent true positive, false
positive, true negative, and false negative, respectively.

Machine learning models and original features

Table 3 describes the machine learning algorithm’s com-
parative results using the original features. Results regard-
ing the accuracy, precision, recall, and F1 score are
displayed for machine learning models such as LR, SVM,
GNB, and RF. The results of five different classes and
their average are calculated as a classification report. The
analysis demonstrates that SVM achieves poor performance

Table 4. Performance analysis of deep learning methods with
original features.

Method Accuracy
Target
class Precision Recall

F1
score

GRU 0.67 0 0.97 0.91 0.94

1 0.51 0.47 0.49

2 0.46 0.56 0.50

3 0.87 0.64 0.73

4 0.66 0.81 0.73

Average 0.70 0.68 0.68

LSTM 0.65 0 0.96 0.94 0.95

1 0.49 0.26 0.34

2 0.48 0.61 0.54

3 0.79 0.64 0.71

4 0.60 0.84 0.70

Average 0.66 0.66 0.65
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with only a 0.19 accuracy score, followed by LR and GNB.
In this analysis, the RF model archives the best performance
with a 0.69 accuracy score. Precision, recall, and F1 scores
are also the same. It can be inferred from the results that
EEG data is more linearly separable, which results in the
low performance of linear models.

Deep learning model using original features

Table 4 demonstrates the experimental results of deep learn-
ing models GRU and LSTM when used with the original
features. The accuracy scores and class-wise performance
metrics are also determined. Results show that LSTM

Table 5. Performance analysis of machine learning methods with the proposed feature engineering approach.

Method Accuracy Target class Precision Recall F1 score FAR

LR 0.982 0 1.00 1.00 1.00 0.0000

1 0.97 0.97 0.97 0.3268

2 0.96 0.98 0.97 0.3268

3 1.00 0.99 0.99 0.0000

4 0.98 0.99 0.98 0.0163

Average 0.98 0.98 0.98 0.0175

SVM 0.984 0 1.00 1.00 1.00 0.0000

1 0.98 0.97 0.97 0.0241

2 0.96 0.98 0.97 0.0389

3 1.00 0.99 1.00 0.0000

4 0.99 0.99 0.99 0.0142

Average 0.98 0.98 0.98 0.0154

GNB 0.971 0 1.00 1.00 1.00 0.000

1 1.00 0.91 0.95 0.0047

2 0.90 1.00 0.95 0.0951

3 1.00 0.97 0.99 0.000

4 0.96 0.99 0.97 0.0360

Average 0.97 0.97 0.97 0.0271

RF 0.982 0 1.00 1.00 1.00 0.0000

1 0.96 0.97 0.96 0.0430

2 0.96 0.96 0.96 0.0372

3 1.00 1.00 1.00 0.0000

4 0.99 0.99 0.99 0.0102

Average 0.98 0.98 0.98 0.0181

Bold values in Table 5 are average values as main results.
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shows poor performance with 65% accuracy, compared to
GRU. The performance of GRU is slightly better, with an
accuracy score of 67%. The results show that the perform-
ance of deep learning models LSTM and GRU is inferior to
machine learning model RF which shows better perform-
ance with a 0.69 accuracy score. There is a need for an
advanced feature engineering approach to enhance per-
formance scores for diagnosing epileptic seizures.

Machine learning models with proposed feature
engineering approach

To investigate the impact of the newly proposed feature engin-
eering approach, experiments are conducted for both machine
learning and deep learning models. The performance of
machine learning models with newly generated features is
given in Table 5. The results show that the GNB model

obtains an accuracy score of 0.97 which is a substantial
improvement compared to using the original features.
However, LR, SVM, GNB, and RF exhibit better performance
using new features compared to the results calculated with the
original features. The results demonstrate that LR, SVM, and
RF algorithms perform well with a 0.98 accuracy score and
exhibit good precision, recall, and F1 scores for each class.
It is also observed that the performance of models for target
classes 2, 3, and 5 is better than that of classes 1 and 4. The
average performance of all classes is also better. We can say
that the proposed feature engineering approach significantly
improves the performance of all machine learning methods.

The performance of machine learning algorithms using the
proposed feature approach concerning correct and wrong pre-
dictions is illustrated in Figure 3. The analysis shows that LR,
SVM, and RF techniques achieved the minimum error rates.
Wrong predictions for LR, SVM, GNB, and RF are 50, 35,

Figure 3. Confusion matrix for machine learning models using the proposed feature engineering approach.
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65, and 41, respectively out of a total of 2310 predictions.
GNB shows the highest number of wrong predictions and
especially shows poor performance for target class 2.

Deep learning models with proposed feature
engineering approach

Similar to machine learning models, deep learning models
are also trained using the newly generated feature set, and
their results are analyzed regarding detection accuracy.

Figure 4(a) and (b) shows the training and validation
accuracy and loss for GRU and LSTM, respectively.
Performance is shown for 10 epochs of training, evaluating
the training loss, validation loss, train accuracy, and valid-
ation accuracy parameters. The analysis reveals that both
GRU and LSTM achieved low performance scores during
the first three epochs. However, through optimization, the
models attained enhanced performance. Specifically,
the training loss of GRU and LSTM algorithms was high
in the first two epochs but gradually decreased over

Figure 4. The timer series–based performance analysis of deep learning methods during training.
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subsequent epochs. Moreover, both training accuracy and
validation accuracy showed a positive trend over time.

The results of the deep learning techniques GRU and
LSTM with novel features are presented in Table 6. Results
demonstrate that the LSTM algorithm yields acceptable
results with the proposed features, achieving a 0.97 accuracy
score. On the other hand, the GRU performs exceptionally

well, reaching a 0.98 accuracy score. Additionally, precision,
recall, and F1 scores for all target classes exhibit promising
results for both LSTM and GRU. Overall, the application of
newly generated features has improved the performance of
deep learning models compared to the original features.

The performance of deep learning models using the
proposed features is illustrated in Figure 5. The analysis

Figure 5. Confusion matrix for deep learning models with new features.

Table 6. Performance analysis of deep learning methods with the proposed approach.

Method Accuracy Target class Precision Recall F1 FAR

GRU 0.9804 0 1.00 1.00 1.00 0.0000

1 0.97 0.96 0.97 0.0285

2 0.95 0.97 0.96 0.0521

3 1.00 0.99 0.99 0.0021

4 0.98 0.98 0.98 0.0163

Average 0.98 0.98 0.98 0.0198

LSTM 0.9739 0 1.00 1.00 1.00 0.000

1 0.96 0.97 0.96 0.0389

2 0.92 0.96 0.94 0.0840

3 1.00 0.97 0.99 0.0021

4 0.99 0.97 0.98 0.0062

Average 0.97 0.97 0.97 0.0262
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shows that GRU techniques achieved the minimum error
rates with 43 wrong predictions. However, the LSTM
approach resulted in a moderate error rate for target
class 2, and it has a total of 59 wrong predictions out
of 2310 predictions. This analysis validates the effective-
ness of applied deep learning for the diagnosis of epilep-
tic seizures.

Results with proposed features after data splitting

This section contains the validation of our proposed feature
engineering technique after data splitting in the method-
ology. First, we split our dataset into training and testing
portions. Then, our proposed feature engineering is
applied to each portion to extract features. The extracted
features serve as input for applied machine learning
models, and the results are demonstrated in Table 7. The
performance analysis shows that the GNB approach
achieved an average accuracy of 0.96. This analysis vali-
dates our proposed feature engineering mechanism and
demonstrates that our proposed SVM approach achieved
high accuracy scores of 0.99.

K-fold cross-validation

The performance of each applied method is validated
with a cross-validation and the results are reported
here. The performance validation results, with both ori-
ginal and new features, are analyzed in Table 8.
Machine learning techniques and deep learning techni-
ques are evaluated using 10-fold cross-validation. The
analysis demonstrates that the accuracy scores of all the
machine learning and deep learning techniques with the
original features are inferior. However, the highest per-
formance validation accuracy scores are achieved with
the newly generated features with minimal standard devi-
ation. The analysis score of k-fold cross-validation con-
firms the generalization performance of the machine
learning and deep learning techniques for the diagnosis
of epileptic seizures.

Computational complexity analysis

The comparative complexity analysis of applied models
both with the original feature and the proposed approach
is demonstrated in Table 9. The analysis shows that the
computation time of all the models is high when using
the original features. On the other hand, the computation
time of all algorithms with the proposed feature engineering
approach is lower. The results show that deep learning
models LSTM and GRU take a longer computation time,
while the time for machine learning models is shorter. In
conclusion, the computation time of all algorithms with
the proposed approach is reduced.

Comparison with state-of-the-art studies

Here, we compare the performance of the proposed
approach with existing state-of-the-art studies that utilize
the EEG signals dataset. The comparative analysis is pre-
sented in Table 10. The highest accuracy of 97% is reported

Table 7. Performance analysis with proposed features after data
splitting.

Method Accuracy Target class Precision Recall F1

LR 0.99 0 0.99 1.00 0.99

1 0.99 0.98 0.99

2 0.99 0.99 0.99

3 0.99 1.00 0.99

4 1.00 0.99 0.99

Avg. 0.99 0.99 0.99

SVM 0.99 0 1.00 1.00 1.00

1 0.98 1.00 0.99

2 0.99 0.99 0.99

3 1.00 1.00 1.00

4 1.00 0.99 0.99

Avg. 0.99 0.99 0.99

GNB 0.96 0 0.97 1.00 0.99

1 0.88 0.97 0.92

2 0.99 0.92 0.96

3 0.99 0.99 0.99

4 1.00 0.94 0.97

Avg. 0.97 0.96 0.96

RF 0.99 0 1.00 1.00 1.00

1 0.98 0.99 0.98

2 0.99 0.99 0.99

3 0.99 1.00 0.99

4 0.99 0.98 0.99

Avg. 0.99 0.99 0.99
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in existing state-of-the-art approaches. However, this study
shows improvement in the detection accuracy of epileptic
seizures with the proposed approach. Performance compari-
son results show that the proposed approach outperforms
the state-of-the-art method, achieving a high accuracy of
98.4%.

Discussion

Performance generalization analysis with external
dataset

To validate the performance generalization of our proposed
research approach, we have taken another EEG brain

signals dataset43 to evaluate the results. The performance
results reported in Table 11 show that the proposed approach
achieved a high accuracy of 0.97 and is generalized.

Clinical significance of current research

This research has important clinical implications in the field
of epilepsy management. The study highlights the potential
to transform epileptic seizure detection by introducing a
unique feature fusion approach and implementing advanced
machine learning and deep learning models. The use of
nonlinear features such as the fractal dimension can also
be important during features engineering.44 The proposed
method offers improved accuracy and efficiency, which
has the potential to enable doctors to diagnose epilepsy
promptly and accurately. In conclusion, this research
makes a valuable contribution toward enhancing patient
outcomes and improving the quality of life for individuals
affected by epileptic seizures.

Research limitations

This research has the following limitations:

• Machine learning models are trained using old datasets.
There is a need for new dataset collection.

• Classical textual feature representations were used for
feature engineering. An advanced transfer feature
approach can be applied.

Table 10. Comparisons analysis with state-of-the-art studies.

Ref. Approach Model Accuracy

23 ML SVM 97%

41 DL ANN 80%

42 DL SOM–RBF 97%

Proposed Ensemble FIR+ SVM 98.4%

Bold values in Table 10 are average values as main results.

Table 9. Computational complexity analysis of machine and deep
learning methods.

Method

Runtime computations (seconds)

Original features Proposed features

LR 3.1242 0.1873

SVM 3.0045 0.0427

GNB 0.0238 0.0079

RF 13.393 2.0702

GRU 26.483 22.333

LSTM 42.675 17.241

Table 8. Performance validation analysis of applied machine and
deep learning methods.

Method K-fold

With original
features With novel features

Accuracy
STD
(+/−) Accuracy

STD
(+/−)

LR 10 0.224 0.0148 0.986 0.0045

SVM 10 0.216 0.0080 0.987 0.0038

GNB 10 0.438 0.0137 0.973 0.0029

RF 10 0.706 0.0118 0.987 0.0031

GRU 10 0.699 0.0141 0.980 0.0047

LSTM 10 0.651 0.0277 0.974 0.0079

Table 11. Performance analysis of proposed approach for external
EEG signal dataset.

Target Class Precision Recall F1

Eye-open state (0) 0.96 0.98 0.97

Eye-closed state (1) 0.98 0.96 0.97

Average 0.97

Accuracy 0.97

Bold values in Table 11 are average values as main results.
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• Classical machine learning methods were applied, which
achieved moderate performance scores. Advanced deep
learning models can be applied to achieve high epileptic
seizure detection performance.

Conclusions
This study proposed a reliable technique for detecting epi-
leptic seizures using EEG signals. The primary goal is to
propose a novel approach for the early warning precautions
for individual risks and detection of epileptic seizure
disease with high-performance capabilities. The scenario
is incorporating our system into the wearable device
which is capable of monitoring EEG signals in real time.
When these devices identify patterns that suggest a
seizure is about to happen, they can send alerts to the
person experiencing the seizure, their caretakers, or health-
care experts. This allows for prompt treatments to reduce
the effects of the seizure. Instead of using the original fea-
tures, the proposed approach utilizes RF and independent
component analysis to obtain class probabilities from these
features. The output from RF and ICA is used to make a
new feature set that serves models’ training. Experiments
are performed using EEG brain activity data comprising
five classes. For performance comparison, experiments are
performed using both the original and newly generated
feature sets with machine learning and deep learning
models. Overall, machine learning models show better per-
formance than deep learning models. Experimental results
indicate a substantial improvement in the detection accuracy
of epileptic seizures when models are used with the pro-
posed feature engineering approach. Compared to a 69.1%
accuracy of RF with the original features, the SVM model
obtains the highest accuracy of 98.4% using the proposed
approach, besides a low computational complexity of the pro-
posed feature engineering. K-fold cross-validation further
corroborates this performance. Additionally, performance
comparison with existing studies shows superior performance
of the proposed approach. The approach is to improve the
quality of life for those with epilepsy by giving timely warn-
ings and enabling preventive measures. Further research col-
laboration with medical professionals is required to verify
and improve our method for practical implementation in clin-
ical environments.

In the future, we intend to expand the feature space by
collecting more data samples from hospitals. Furthermore,
we will apply transfer learning-based models to enhance
the performance of epileptic seizure detection.
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