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Abstract: Ubiquitous data monitoring and processing with minimal latency is
one of the crucial challenges in real-time and scalable applications. Internet
of Things (IoT), fog computing, edge computing, cloud computing, and
the edge of things are the spine of all real-time and scalable applications.
Conspicuously, this study proposed a novel framework for a real-time and
scalable application that changes dynamically with time. In this study, IoT
deployment is recommended for data acquisition. The Pre-Processing of data
with local edge and fog nodes is implemented in this study. The threshold-
oriented data classification method is deployed to improve the intrusion
detection mechanism’s performance. The employment of machine learning-
empowered intelligent algorithms in a distributed manner is implemented
to enhance the overall response rate of the layered framework. The place-
ment of respondent nodes near the framework’s IoT layer minimizes the
network’s latency. For economic evaluation of the proposed framework with
minimal efforts, EdgeCloudSim and FogNetSim++ simulation environments
are deployed in this study. The experimental results confirm the robustness of
the proposed system by its improvised threshold-oriented data classification
and intrusion detection approach, improved response rate, and prediction
mechanism. Moreover, the proposed layered framework provides a robust
solution for real-time and scalable applications that changes dynamically
with time.

Keywords: Internet of Things (IoT); Edge of Things (EoT); fog computing;
cloud computing; scalable; decentralized

1 Introduction

The internet is quickly developing toward the “Internet of Things” (IoT), which has the potential
to network billions or possibly trillions of objects. By 2025, more than 50 billion Electronics gadgets
and smart devices will be connected to the internet [1]. Most of these devices will be situated near the
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internet’s edge. They may offer new applications to change various areas of conventional industrial
production and daily life. As IoT devices have low computational power and low storage capacity,
Cloud services are deployed for complex computation and storage of data. On the other hand, the
latency in cloud services is very high, making it less suitable for real-time applications requiring rapid
response, like automated automobiles and healthcare sectors [2]. To overcome the consequences of
both technologies, Edge Computing (EC) is deployed in various mission-critical applications. EC has
created a position in the technical world due to its remarkable performance of providing real-time data
processing, cheap operational cost, high scalability, reduced latency, and enhanced quality of service
(QoS) [3]. Due to its extraordinary processing power, EC will change several industries, including e-
commerce, social networks, agriculture, healthcare, education, and transportation [4]. The centralized
approach of processing and storing data is no longer adequate for handling the billions of devices
functioning in different geographical locations with dynamic movability.

Real-time and dynamic challenges are best addressed by decentralized, scalable applications
currently in demand. EC is a comparably better solution for handling decentralized and scalable
applications than the cloud because of its centralized nature [5]. The various challenges IoT and Cloud
technology face in addressing issues, including poor network latency, poor performance, and poor
stability in the dynamic environment in decentralized and scalable applications, this study proposes an
EC-inspired framework that can handle numerous matters comparably better than these technologies
separately. The following are the main motivations behind this study:

• Check the various architectures used for implementing edge computing and its integration with
other cutting-edge technologies.

• Design a suitable algorithm to decrease the latency present in IoT and cloud computing in
decentralized and scalable applications.

The main contributions of this study are centered on the following three points:

• We designed an Edge of Things (EoT)-inspired robust architecture for ubiquitous data moni-
toring and improvised inter-device communication with minimal response time.

• The work integrates a threshold-oriented robust intrusion detection system in decentralized
and scalable applications by incorporating intelligent local nodes at each level of the network
hierarchy.

• The study improves the reliability and performance of decentralized and scalable applications
by implementing a threshold-oriented, load-balanced, multilayered EoT framework.

• The experimentation also exported various unseen utilization of EoT in decentralized and
scalable applications.

The organization of this paper is presented in Fig. 1. Section 2 presents the various architectures
used to implement EoT. Further, Section 3 presents the concerns and refinements in scalable and
distributed Applications. Subsequently, Section 4 presents the EoT-inspired proposed framework for
real-time and scalable applications. Furthermore, Section 5 introduces the material and methods for
implementation. Section 6 explores the results obtained and finally, Section 7 concludes the study.
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Figure 1: Research progression and milestones

2 EoT Architecture

A taxonomy of EoT Architecture based on the various technological issues raised due to
the integration of these two robust technologies covers Data Placement based architectures, Big
Data Analysis based architectures, Security based architectures, Machine Learning implementation-
basedsed architectures, and Orchestration based architectures. This section illustrates the various EoT
Architectures deployed based on the issues mentioned earlier. Table 1: “EoT (Edge of Things) com-
puting architectures taxonomy” shows multiple architectural aspects of most of the EoT architectures
used in various EoT-based applications. Firstly, in decentralized and scalable applications, the IoT
devices rate massive amounts of data in these applications. Placing data on different IoT devices and
their respective edge nodes with minimal latency is challenging. To overcome the issues of high latency,
IFogStor architecture is deployed. Single integer programs, Divide-and-conquer heuristic approach,
Geographical mapping matrices, and the Multi replica Data-Placement are the main strategies used
by these architectures respectively to reduce latency in the IoT communication network.

Further, based on Big Data Analysis, Hierarchical Distributed Fog Computing architecture is
deployed. Big Data Analysis is required in large-scale applications like smart cities and Industrial IoT.
Hierarchical Distributed Fog (HDF) Computing architecture is deployed to manage various Big Data
Analysis issues. Further, in this sequence, to handle various security issues in different networks, vari-
ous Edge computing architectures are deployed. Generally, Privacy Preservation Aggregating (P2A),
Lightweight Security Virtualization (LSV), Service Balance Dynamics Based on Cloud (SBDC), and
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Edge and Cloud Virtualization (ECV) are deployed to maintain security in network communication.
Specifically, in Software Defined Networks (SDN), Software-Defined Fog-Node-Based Distributed
Blockchain Cloud Architecture (SDNDB) [6]. Orchestration is a significant characteristic-based
taxonomy of edge computing architecture. Most of the architecture uses Software-Defined Networks,
whereas the other techniques are suitable for managing various network and resource allocation-
related issues. Finally, in this sequence, for Software Defined Network Based Fog Computing
Architecture, Vehicular Ad hoc Network (VANET) Architecture, Software Defined Fog-Computing
Network Architecture for IoT (SDFN), SDN-Based Cloudlet Architectures, i.e., Dynamic Distri-
bution of IoT Analysis (DDA) are deployed to handle various issues in software-defined networks
[7]. Consequently, the following section illustrates the decentralized and scalable approach for a
real-time and dynamic environment. Table 1 precisely illustrates the various aspects of various EoT
architectures including Blockchain-SDN for Vehicle (BSDNV), SIOTOME, Mobile Crowd Sensing
(MCS), Transferring Trained Models (TTM), Hierarchical Fog-Assisted Computing Architecture
(HiCH), Vehicles as Fog Computing Infrastructures (VISAGE) [8], Fog Software Defined Network
(FSDN), Multi-Agent-Based Flexible Edge Computing Architecture (MAFECA) [9], Mobile Fog
Service Allocation (MFSA), Hierarchical Architecture for Mobile (HAM), Scalable IoT Architecture
Based on Transparent Computing (SAT), Edge-Based Assisted Living Platform for Home Care
(E-ALPHA) [6].

Table 1: EoT (Edge of Things) computing architectures taxonomy
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Data placement √ √ √ √ X X X X X X X X X X X X X X X X X X X X
Big data analysis X X X X √ X X X X X X X X X X X X X X X X X X X
Security X X X X X √ √ √ √ √ √ √ √ X X X X X X X X X X X
SDN security X X X X X X X X X √ √ √ √ X X X X X X X X X X X
Machine learning X X X X X X X X X X X X X √ X X X X X X X X X X
Orchestration X X X X X X X X X X X X X X √ X X X X X X X X X
SDN orchestration X X X X X X X X X X X X X X X √ √ √ √ X X X X X
Cloudlet SDN X X X X X X X X X X X X X X X √ X X X X X X X X
Fog SDN X X X X X X X X X X X X X X X X √ √ √ X X X X X
Service and tasks allocation X X X X X X X X X X X X X X X X X X X √ √ √ √ √

3 Concerns and Refinements in Scalable and Distributed Applications

In the above section, distributed and scalable applications are described. This section explores
various concerns present in real-time scalable and distributed applications, along with the possible
refinements by technology integration and architectural improvement.

3.1 Technological and Security Concerns
Technological, security and architectural concerns are the most vibrant concerns observed in real-

time applications. This sub-section covers all these concerns sequentially.

3.1.1 Storage, Intelligence, and Latency Tradeoff

In any real-time and scalable applications, billions of internet-connected devices acquire data from
the environment. Most of these applications require real-time intelligence decision-making capabilities
at the device level or on devices near the user end, like Fog or Edge Computing devices. IoT devices,
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including sensors and actuators, have low computational and storage capacity but are good in latency.
Cloud devices have high computational and storage capacity but high latency, making them slower
for real-time applications. The latency of any network is measured in milliseconds (ms) and is also
known as RTT, i.e., Round Trip Time. The RTT of any network mainly depends on Processing Delay
(PD), Queuing Delay (QD), Transmission Delay (TD), and Progression Delay (PRD) [10]. Processing
Delay in a network depends on various device-level activities, including data acquisition, classification
filtering, error detection, next-hop analysis, encryption operations, etc. All processing delays generally
depend on user-level devices’ storage and computational capacities.

TD = Number of transmited bits−NB
Transmission Rate−TR

(1)

PRD = Distance between tranmiter and receiver nodes−Dis
Sped of the packet−Spd

(2)

The overall network latency depends upon all the above mentioned factors formulated under
Eq. (3).

Nlatency = PD + QD + TD + PRD (3)

Nlatency ∝ Dis (4)

The discussion, as mentioned earlier, concluded in Eq. (4) that the network latency is directly
proportional to the distance. Therefore, we can improve the response time by minimizing the distance
between two nodes. So the tradeoff between distance and latency has been observed during this study.
Further, the intelligent nodes require storage space because lots of data is necessary to make an
intelligent decision. In most of the architectures, all the decision-making capabilities are reserved with
cloud nodes as they have huge storage space and can make a decision intelligently. But due to the
considerable distance between user respondent nodes and cloud nodes, the response rate became poor
in the case of real-time applications. Furthermore, a reasonable response rate is required for handling
real-time challenges like intelligent traffic control in smart city networks. Therefore, by reducing the
distance between respondent nodes and intelligent decision-making nodes; and making the system
decentralized, remarkable improvement in response rate can be possible.

IDReal−Time ∝ DisR−node to I−node (5)

Where IDReal−Time = Real − Time Intelligenet Decision

DisR−node to I−node = Distance between Respondent Node and Intelligent Node

IDReal−Time ∝ Storage and computation capacity of Intelligent Node (6)

3.1.2 Security Concerns

Any real-time and scalable applications require identifying vulnerable areas in a network and real-
time intelligent corrective action. Some intelligent mechanisms near the respondent nodes are needed
to identify vulnerable areas. In a centralized approach, the respondent nodes, i.e., IoT devices, have
less computation and storage capacities, and identifying vulnerable areas is the cloud-level concern.
Further, the cloud nodes also decide the required corrective or preventive action. However, this
approach is suitable for small and non-scalable, centralized applications. But, in the case of real-
time and scalable applications, a robust intrusion detection mechanism is required as multiple security
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breaches can be possible over real-time. Therefore they should be safeguarded as part of a system
with different levels of IoT safety. Inconvenience is caused by connectivity issues, device issues, or an
increase in service assaults. There have been numerous incidents where threats to public safety have
resulted in injuries. Another issue is rogue and counterfeit IoT devices. The ability to prevent a system
from being accessed from every device is a serious security challenge. Using the IoT in one’s house
presents a hurdle because it might grow bulky if more home devices are installed. Users frequently
install rogue and inferior IoT without authorization on secured networks. These devices merge into
the network or replace the existing network units to get private information and data, breaching the
network’s security perimeter [11]. The IoT device known as a programmable controller was the target
of the attackers. All it took for an attacker to compromise the system and expose the internal network
was for one worker to insert a micro flash drive into the controller.

3.2 Required Refinements for a Robust Real-Time and Scalable Framework
The nature of real-time and scalable applications is different from static applications. Therefore,

the framework for such applications also required refinements for better and more accurate results.
This sub-section covers the essential advancements needed for real-time and scalable applications. As
in scalable application, the number of sensing devices dynamically vary with time. The respondent
nodes must be intelligent enough to make the decisions in a real-time scenario. The decentralized
approach is required to overcome various Big-Data and other issues in the centralized system [12].
The intrusion detection mechanism must be employed near the respondent nodes in a decentralized
manner. The corrective action for any detected irregularity in a real-time framework must be as
quick as possible to minimize the consequences in the framework [13]. Multilayered architecture is
required for the refinement of data and improved decision-making powers of the overall framework.
The subsequent sections of this study illustrate the proposed framework for real-time and scalable
applications incorporating all these refinements.

4 EoT-Inspired Proposed Framework for Real-Time and Scalable Applications

The real-time and scalable applications have some significant characteristics, including better
real-time data acquisition mechanisms, refined data classification mechanisms, quick response for
every query which means minimal latency, intelligent respondent nodes, intelligent intrusion detection
mechanism, and immediate corrective action for minimal damage. The subsequent subsections of this
section propose a multilayered framework for real-time and scalable applications, which constitutes
of the following layers: Layer I-IoT, Layer II-Intelligent edge nodes, Layer III-Intelligent fog nodes,
Layer IV-Cloud nodes. The proposed framework is conceptualized in Fig. 2. It represents two
virtually connected geographical areas, that are different geographical areas because of their different
geographical presence but the same is virtually connected with each other due to the same network
structure and acceptance of dynamically moving objects in both areas.

This study considers two case studies for a better understanding of the real-time, dynamic and
scalable scenario. Case Study-I implements the proposed framework in driverless cars, whereas Case
Study-II implements this framework in a smart city network. Both of these case studies depict real-time
and scalable environments. The mentioned case studies are the most familiar and vibrant applications
of real-time and scalable scenarios and understanding the existing technical consequences in these
scenarios is easier than in comparison with the other scenarios. The subsequent sub-sections will
illustrate all these layers and their respective implementation in these two case studies. Firstly, IoT
devices are deployed for data acquisition in real time. Various types of IoT devices, sensors, and
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actuators are deployed to sense data. In Case Study-I, the driverless cars deployed multiple sensors,
including vision, sound, distance, temperature, humidity, smoke, and more [14]. In Case Study-II,
humidity sensor, temperature sensor, light sensor, and many other sensors as per the facilities provided
by the smart city network [15]. All these sensors are connected through the internet and can acquire
real-time data and communicate with other devices. Moving next in this sequence on layer-II, all the
local IoT devices are connected to their respective Edge Nodes. IoT devices have less storage capacity
and less computation power. So IoT devices can’t make intelligent decisions in real-time. The idea of
the placement of Intelligent Edge Nodes near the Local IoT devices reduced the distance of respondent
nodes. Most of the data is handled and processed by these edge nodes. In Case Study-I, Image
denoising, Image segmentation, Image recognition, Image restoration, Image compression, etc., are
various intelligent decisions that the local Edge Nodes can make. Whereas in Case Study-II, Humidity
analysis, Electricity consumption, water consumption, etc., are implemented by the Intelligent Edge
Nodes.

Figure 2: EoT-inspired proposed framework for real-time and scalable application

Subsequently, on layer-III, Numerous Edge Nodes are connected with a single Fog Node. The
number of Fog Nodes in a network depends upon the application’s complexity and the network’s
geographical location. Further, the edge devices can dynamically change their respective Fog Node, as
per their location and availability of Fog Node. These Fog Nodes are deputed into a network to serve as
secondary cloud nodes. Like cloud nodes, these fog nodes have large memory space and computation
powers, but with cloud nodes, they have fewer memory and computation powers. In Case Study-I, if
the driverless car needs to know the traffic status in a particular place, the request is forwarded to
the fog node with the help of connected edge nodes. And the request is served by the respective Fog
Node instead of Edge Node. In Case Study-II, the smart homeowner needs to know the electric bill’s
status and predict the monthly electricity consumption based on previous data stored in fog nodes.
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Then these requests are also served by respective Fog Nodes instead of Edge Nodes. Further, in the
proposed framework, the fog nodes contain information about all the available cloud nodes and their
nature of duty. The fog nodes are also deployed to forward cloud-level requests to the respective cloud
node after analyzing the nature of the request. Finally, on layer-IV, each Fog Node is further connected
with all the available Cloud Nodes. The number of Cloud nodes in a network depends upon the number
of available Fog Nodes and the geographical location of the network. As the proposed system is a
distributed system, the functioning of all the cloud nodes is different, depending upon the nature of
the application. All the cloud nodes have massive data storage and computation powers. All the cloud
nodes are dedicated servers, a single type of request only. In Case Study-I, in the previous example, due
to heavy traffic in between, the car needs to know the alternate shortest path to reach its destination
on time. Such kind of requests, requires lots of computation power. Therefore, such requests have been
handled by cloud nodes. In Case Study-II, if the electricity department needs to calculate the monthly
electricity bills of all the users, then such requests need to be served by cloud nodes.

The central idea behind this framework is to segregate all types of requests based on their
complexity and allowed response type and handle requests accordingly. All the requests are divided
based on two factors i.e., Complexity and Required Response Rate. Various levels of requests are
mentioned in Table 2: “Request Level Table for real-time and scalable applications”. All Level-I requests
are either handled by Edge Node or Fog Nodes but can’t be managed by Cloud Node. Further, all
Level-II requests can be handled by all three nodes depending upon their complexity and response
rate. All Level-III requests are handled by either the Fog node or the cloud node.

Table 2: Request Level Table for real-time and scalable applications. L-Low, M-Medium, H-High,√-can handle by the respective node, X-can’t handle by the individual node

Complexity Required response rate Level Edge node Fog node Cloud node

L L Level-I √ √ X
L M Level-I √ √ X
L H Level-I √ X X
M L Level-II X √ √
M M Level-II X √ X
M H Level-II √ √ X
H L Level-III X √ √
H M Level-III X √ √
H H Level-III X X √

5 Material and Methods

This section illustrates various materials and methods used to implement and experiment with
the proposed framework. For proper implementation of the suggested framework variety of devices
are required. Studying the proposed framework in a real-time scenario is very time-consuming,
cumbersome, and expensive. To simplify the implementation and experimentation of the proposed
framework, the EdgeCloudSim simulation environment is deployed to make the experimentation
part simple and inexpensive. The bandwidth, RAM, CPU, and storage resources in CloudSim are
constrained when building a Virtual Machine (VM). There is no restriction on how many tasks can



CSSE, 2023, vol.46, no.3 3873

run on VMs regarding functions. Said, task execution takes longer when there are more tasks to do. We
want the edge servers to handle incoming jobs in a short period. Hence this concept of execution time is
incompatible with the edge computing methodology. As a result, we built a new CPU utilization model
for the VMs that caps the number of concurrent processes that can be run on each VM. Although a
single task’s CPU usage is static and specified in the configuration file, a dynamic utilization model
can also be developed by modifying the relevant CPU utilization class.

Further, for the implementation of fog nodes, FogNetSim++ is deployed. A fog simulator
application called FogNetSim++ offers users thorough configuration options to model a sizable fog
network. It is built on top of OMNeT++, a discrete event simulation tool that is open source and
offers an extensive library for simulating network features. A traffic control system is tested to show
the FogNetSim++ simulator’s scalability and efficiency in terms of CPU and memory utilization.
Network factors such as execution delay, packet error rate, and latency are benchmarked by the
authors. FogNetSim++ does not, however, yet facilitate VM movement between fog nodes. Raspberry
Pi and OctaCore 64-bit ARM processors (1.4 GHz) were utilized for the simulation environment
to deploy the fog computing node. It made use of a 16 GB RAM VideoCore IV GPU. Like this,
Windows Server 2016 was installed on an Amazon EC2 machine for a cloud computing platform with
8GB RAM and 4GB SSD. The subsequent subsections of this section illustrate the experimentation
environment and various algorithms involved in implementing the proposed framework. The flow
of various methods processed during implementations is demonstrated in Fig. 3. In nutshell, in this
proposed experimentation scenario, various types of requests are classified based on their required
response rate and complexity. Further, the request handling methods are also placed over different
levels of the proposed framework. After identifying the request, it is transmitted with its respective
request handling level. Such a load-balanced framework helps us to improve the overall response rate
of the network. The subsequent sub-sections elaborate on various components and methodologies
deployed over the proposed experimental framework.

Data Acquisition, Intrusion Detection, Performance Upgradation, and Security Insurance Mech-
anism are mainly covered under this section. Including these main components, this section also
covers various improvised mechanisms used in the proposed frame for making the proposed sys-
tem robust for real-time scalable applications. For improvisation, this study presents the following
primary mechanism for the overall improvement in the performance of the proposed framework:
Data acquisition and classification mechanism, Intrusion detection mechanism, Security insurance
mechanism, and Performance upgradation mechanism. The subsequent subsections will explain each
of these mechanisms in detail. For better understanding, the previously mentioned case studies, i.e.,
Case Study-I (Driverless Cars) and Case Study-II (Smart City Network) have been reconsidered.

5.1 Data Acquisition and Classification Mechanism
IoT and Edge devices are deployed for data acquisition in both case studies. IoT devices

can efficiently acquire real-time data. The proposed system implemented data classification-based
associated methods. All the data obtained by various IoT devices are classified by their respective
edge device based on the implementation node of data. It can be possible that the segregated data
may be processed or used by multiple nodes and at different levels of processing. The respective edge
device is also responsible for checking the functioning of their connected IoT devices. This framework
recommends forming a data segregation table before implementing the data classification algorithm.
Algorithm 1 illustrates the proposed classification mechanism. Based on the required response rate
and complexity of the request all the requests are already segregated in levels and the entries of the
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same are already mentioned in the segregation table. Algorithm 1 uses this segregation table for the
classification of data.

Algorithm 1: Data Classification Algorithm
1 Div_id ← DeviceID, E_id ← EdgeID,

LF_id ← LocalFogNodeID,
Div_Data ← DeviceData,
M_Set ← MethodSet,
L_Status ← LevelStatus,
C_id ← CloudID,
M_id ← MethodID
Req_id ← RequestID

2 if Req_id = active then
3 Get Div_id
4 Get Div_Data(Div − id)

5 while M_Setdo
6 Check L_Status
7 while L_Status = available do
8 Check Div_id(L_Status)
9 if Div_id(L_Status) = LF_id
10 Communicate Div_DatatoLF_id
11 else
12 Check C_id(L_Status)
13 Communicate Div_DatatoC_id
14 end
15 end
16 end
17 end
18 end

5.2 Intrusion Detection Mechanism
Every data item has some threshold values; based on threshold values, vulnerable situations can

easily be detected [5,16]. The proposed framework suggested the threshold basis Intrusion Detection
System. The respective threshold values have already been saved in their corresponding Edge Device
for every chunk of acquired data from a real-time environment. Before implementation of algorithm-
1, the respective Edge Node check its threshold limits. If the value is between the threshold limits,
algorithm-I is called for necessary action. In Case Study-I, if the Engine Heat Level increases from
the specified limit, that indicates a vulnerable situation, and corrective action, i.e., stop the engine,
must be executed immediately. The vulnerable situation may occur at each level of the proposed
framework. Therefore, Intrusion detection needs to be done at each level. In Case Study-II, if the
electricity consumption of an entire month of a house is moving beyond the specified threshold limits,
it indicates some issue in one of many appliances in the home. This type of vulnerable situation can
be detected at fog level. Algorithm-II illustrates the threshold-based Intrusion Detection Mechanism.
The classified data is further analyzed for intrusion detection based on their allowed threshold values
already stored in their respective threshold database.
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Figure 3: Data flow diagram of the proposed framework

5.3 Security Insurance Mechanism
Security in any framework will only be ensured by predicting vulnerable situations in advance and

taking timely corrective action to minimize the damage made by any vulnerable situation. Integrating
Edge nodes in between the Fog and IoT devices serves many security issues. For any vulnerable
situation, there must be corrective action. All the corrective actions required are also stored along
with the threshold limits of data values. As algorithm II is implemented at each level of the proposed
framework, the security insurance algorithm will also be implemented similarly. All the issues detected
at level-I need to be corrected at a similar level, i.e., level-I. Likewise, all the issues detected by fog and
cloud nodes must be addressed only by the respective detected node. Based on the threshold, each
vulnerable situation has two corrective actions. The helpless situation may occur either due to exide
the value of a specific variable beyond the specified limit or a fall of value below the specified limit. For
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example, in Case Study-I, the engine temperature moves down below the specified limit, which may
cause trouble in starting the engine, so different corrective action must be taken. On the other hand,
the high temperature may damage some other internal parts of the engine, so one must immediately
stop the engine. Similarly, two different corrective actions must be performed in all vulnerable cases.
Algorithm III illustrates the Security mechanism proposed in this framework. All the corrective actions
associated with respective irregularity detected by Algorithm II are stored at various levels of the
proposed framework, Algorithm III initiates the corrective action on its corresponding respondent
node(s).

Algorithm 2: Threshold-based Intrusion Detection Algorithm
1 Div_id ← DeviceID

Div_Data ← DeviceData,
TD_Set ← ThresholdDataset,
V_Status ← VulnerableStatus,
V_Status ← inactive
Req_id ← RequestID

2 if Req_id = active then
3 Get Div_id
4 Get Div_Data(Div − id)

5 while TD_Set do
6 Check TD_Set (Div_Data)

7 if Div_Data is within specified TD_Set Values
8 Call Algorithm I for Div_id and Div_Data
9 else
10 V_Status (Div_id) ← active
11 Call Algorithm III for Div_id and Div_Data
15 end
16 end
17 end
18 end

Algorithm 3: Security Insurance Algorithm
1 Div_id ← DeviceID

Div_Data ← DeviceData,
V_Status ← VulnerableStatus,
V_Status ← active
CALog ← CorrectiveActionLog

2 if V_Status = active then
3 Get Div_id
4 Get Div_Data(Div − id)

5 while CALog do
6 Check CALog (Div_Data)

7 if CALog (Div_Data) > Max_Value
8 Check CALog − Div_id (s) & Check CALog − Corrective Action (s) for Max_Value

Run all the Corrective Action (s) on thier respecive Div_id (s)
9 else if CALog (Div_Data) < Min_Value

(Continued)
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Algorithm 3: Continued
10 Check CALog − Div_id (s) & Check CALog − Corrective Action (s) for Min_Value

Run all the Corrective Action (s) on thier respecive Div_id (s)
15 end
16 end
17 end
18 end

5.4 Performance Upgradation Mechanism
The performance of the proposed framework has been upgraded, employing various architectural

and logical changes in the framework. The following significant changes are mainly responsible for the
performance upgradation of the proposed framework:

1. Incorporating of Edge node between IoT and Fog layer: In most of the real-time and scalable
applications, the response rate of the respondent node must be good enough to tackle real-
time issues. Incorporating the edge node between IoT and Fog layer increasing the storage
and computation powers of respondent nodes. It allows running intelligent algorithms i.e.,
Artificial Intelligence (AI) or Machine Learning (ML) based algorithms, near the respondent
nodes [17]. The distance between these intelligent respondent nodes from IoT devices is larger
than the Edge Nodes. Keeping the respondent nodes near the IoT devices improves the
performance of the overall framework. Moreover, in other architectures that work on real-time
and scalable applications, the fog and cloud node need to serve most of the requests initiated
by IoT devices, affecting the framework’s overall performance. By including the Edge node
between IoT and Fog layer, most of the request that needs less computation power and with
low latency are served by the Edge nodes. It will also improve the performance of the overall
framework.

2. Load Balanced Intelligent Algorithms: The data and their associated methods are segregated as
L-I, L-II, and L-III. This segregation is based on the level of handling the request algorithm.
All L-I level methods are deployed over the respective Edge nodes. Similarly, the L-II and L-III
are deployed over the fog and cloud nodes, respectively. The requests that require more storage
and computational powers assigned to Edge nodes are transmitted to the L-II level, i.e., Fog
nodes. Similarly, the request is only sent to the upper-level hierarchy if the current level nodes
have neither any handling method available nor require computational powers [18]. This type
of segregation help to balance the workload at each level, and proper utilization of resources
can be achieved by making such arrangements. This improves the overall performance of the
framework.

3. Distributed Cloud Nodes: The proposed framework recommends using Cloud Nodes in a
distributed manner where each node dedicatedly performs a group of tasks. A few cloud nodes
can serve requests for a specific geographical area in a comprehensive network. Similarly, other
cloud nodes can serve all requests in another geographical location. Incorporating this type
of distributed organization in the network helps in balancing the cloud layer load and also
improves the overall network latency. As a result, the performance of the framework enhances
a lot.
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6 Result and Discussion

We are considering four cases to study the proposed system’s performance and its comparison
with other techniques. In Case-I, the combination of IoT and Cloud Computing is considered. The
data acquired from IoT devices are transmitted to the central cloud node to serve all requests. In
Case-II, IoT, Fog, and Cloud Computing are considered. The acquired data from IoT devices are
classified by the nearest Fog nodes and transmitted to the central Cloud Node to serve all requests.
In Case-III, the IoT, Edge, and Cloud Computing are considered. The data classification part is
executed by the Edge node instead of the Fog nodes in the previous case. All other architectural
configurations are the same as of Case-II. Finally, in Case-IV, i.e., the proposed model IoT, Edge,
Fog, and Cloud Computing have been considered along with various load balancing techniques as
discussed in previous sections of this study. Further, ten different ML-based algorithms have been
deployed for experimentation. 100 IoT devices have been simulated for data acquisition. A dataset of
10000 request entries has been considered for a single rotation of experimentation, i.e., 100 data chunks
from a single IoT device. In the subsequent sequential cycles, an additional 10000 entries have been
considered. As discussed earlier, five rotations of such data chunks have been examined for each case.
In all the Cases, including Case-I, II, and III, all these ten algorithms have been executed by Cloud
Node only except the data classification algorithm. In Case IV, all the algorithms have been handled as
specified in Table 3: “Experimentation Environment”. Further, the detailed elaborations are presented
in Fig. 4: “Experimentation Scenario.” Moreover, in Case-IV, three cloud nodes have been deployed
in a distributed manner. Ten different algorithms termed A1 to A10 are deployed for experimentation
where specifically for Case IV, A1 is a data classification method, A2 is an intrusion detection and alert
generation algorithm for Edge Devices, A3 to A4 and fog level intrusion detection, alert generation,
and associated cloud identification algorithms, and finally A5 and A6 are intrusion detection and alert
generation algorithms for cloud C1 and similarly A7 and A8 are associated with cloud C2 and A9 and
A10 are associated with cloud C3 for intrusion detection and alert generation. In the absence of a
particular layer, the corresponding algorithms are shifted to the next level layer available in different
cases.

Table 3: Experimentation environment. Tech.-Technology Deployed, Algo.-Algorithm, A1-
Classification Algorithm, A2-A10 Different ML based Algorithms, C1, C2, and C3-Cloud nodes

Layers Case-I Case-II Case-III Case-IV

Tech. Algo. Tech. Algo. Tech. Algo. Tech. Algo.

IoT √ X √ √ √ X √ X
Edge X X X X √ A1 √ A1-A2
Fog X X √ A1 X X √ A3-A4
Cloud √ A1-A10 √ A2-A10 √ A2-A10 √ C1-A5,A6, C2-A7,A8,

C3-A9,A10

Further, all the cases are evaluated for Data Classification, Response Rate, Intrusion Detection,
and Prediction. The experimental results are drawn in Fig. 5. In classification analysis, all the cases
register slight variation. Case-I took the highest average classification time of 56.64 seconds, whereas
Case-IV took a minimum average classification time of 47.54 seconds. Case-IV records an average
improvement of 5.9% compared to all three other cases. Continuing next to the Response Rate, The
response Rate of all the first three cases is almost similar as cloud nodes have served all the requests only
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in all the cases except the slight variation of the classification algorithm. Case-IV registered an average
improvement of 18.56% compared to all the other three cases. Similarly, for intrusion detection, a
significant average improvement of 18.45% is recorded by Case-IV. Finally, for average prediction, an
improvement of 19.05% has been recorded by Case-IV.

Figure 4: Experimentation scenario

(a)

(b)

(c)

(d)

52
.6

55
.2

57
.7

58
.5

59
.2

51
.3

52
.6

53
.4

54
.1

54
.8

49
.7

50
.2

50
.5

50
.8

51
.2

46
.9

47
.2

47
.6

47
.9

48
.1

10000 20000 30000 40000 50000

T
IM

E
 IN

 S
E

C
O

N
D

S

REQUEST IN NO(S)

Case-I Case-II Case-III Case-IV

42
.4

45
.2

47
.6

48
.1

48
.9

42
.2

45
.1

47
.4

47
.9

48
.5

42
.3

45
.3

47
.3

47
.9

48
.4

26
.9

27
.3

27
.8

28
.2

28
.5

10000 20000 30000 40000 50000

T
IM

E
 IN

 S
E

C
O

N
D

S

REQUEST IN NO(S)

Case-I Case-II Case-III Case-IV

42
.4 47

.3

49
.7

50
.2

51
.1

42
.2 47

.4

49
.7

50
.2

50
.8

42
.3 47

.5

49
.5

50
.2

50
.6

26
.9

29
.6

30
.3

30
.5

30
.8

10000 20000 30000 40000 50000

T
IM

E
 IN

 S
E

C
O

N
D

S

REQUEST IN NO(S)

Case-I Case-II Case-III Case-IV

39
.7 44

.6

47
.1

47
.5

48
.4

39
.7 44

.9

47
.2

47
.7

48
.3

40
.2 45

.2

47
.2

47
.9

48
.3

23
.8

26
.6

27
.2

27
.4

27
.7

10000 20000 30000 40000 50000

T
IM

E
 IN

 S
E

C
O

N
D

S

REQUEST IN NO(S)

Case-I Case-II Case-III Case-IV

Figure 5: Performance evaluation. (a) Classification, (b) response rate, (c) intrusion detection, and
(d) prediction
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7 Conclusion

The involvement of state-of-the-art technologies, including IoT, Fog Computing, Edge Comput-
ing, and Cloud Computing, has been observed in all walks of life. In a decade, all these emerging
technologies were used in a centralized manner for non-scalable applications. Future technology
requires a real-time and scalable application. These applications require intelligent decision-making
systems with reasonable response rates. This study proposes an EoT-inspired framework for real-time
and scalable applications. The proposed framework integrates all the robust technologies, including
IoT, Edge, Fog, and Cloud Computing. IoT devices, sensors, and actuators are deployed for real-time
data acquisition in this framework. Subsequently, the local Edge nodes, Fog, and cloud nodes are
employed in a distributed manner to improve the response rate of the overall framework. Threshold-
based data classification and intrusion detection approaches are incorporated at various framework
levels to improve the response rate and minimize the respondent nodes’ distance from the IoT layer.
For load balancing, algorithm segregation approaches are implemented. The threshold-based data
classification and algorithm segregation for load balancing significantly improve the performance
of the proposed framework. The proposed framework is implemented over the EdgeCloudSim and
FogNetSim++ simulation environments. The comparison of performance evaluation of the proposed
framework is executed with other technological integration, including IoT and Cloud Computing; IoT,
Fog, and Cloud Computing; Edge and Cloud Computing. Performance evaluation has been imple-
mented based on data classification, response rate, intrusion detection, and prediction. Compared
to the other technology, the proposed framework’s performance is examined by average improve-
ment in respective parameters. The proposed framework recorded a 5.9% average improvement in
Classification, 18.56% in Response Rate, 18.45% for intrusion detection, and 19.05% for prediction.
Based on the performance results, it can be concluded that the proposed framework outreaches its
other companion technological architectures for real-time and scalable applications. It can be further
concluded that the decentralized approach is more suitable for real-time and scalable applications
instead of the centralized approach.
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