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Accurately predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is vital for 
improving battery performance and safety in applications such as consumer electronics and electric 
vehicles. While the prediction of RUL for these batteries is a well-established field, the current research 
refines RUL prediction methodologies by leveraging deep learning techniques, advancing prediction 
accuracy. This study proposes AccuCell Prodigy, a deep learning model that integrates auto-encoders 
and long short-term memory (LSTM) layers to enhance RUL prediction accuracy and efficiency. The 
model’s name reflects its precision (“AccuCell”) and predictive strength (“Prodigy”). The proposed 
methodology involves preparing a dataset of battery operational features, split using an 80–20 ratio 
for training and testing. Leveraging 22 variations of current (critical parameter) across three Li-ion 
cells, AccuCell Prodigy significantly reduces prediction errors, achieving a mean square error of 
0.1305%, mean absolute error of 2.484%, and root mean square error of 3.613%, with a high R-squared 
value of 0.9849. These results highlight its robustness and potential for advancing battery health 
management.
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Lithium-ion (Li-ion) batteries have revolutionized the landscape of energy storage and continue to be the primary 
choice for an array of applications, from powering smartphones and laptops to propelling electric vehicles and 
providing energy storage solutions in renewable energy systems. Their widespread adoption is due to their 
remarkable attributes, including high energy density, excellent high-temperature performance, favorable power-
to-weight ratios, energy efficiency, and minimal self-discharge characteristics. Additionally, the recyclability of 
Li-ion battery components underscores their environmental sustainability. The burgeoning adoption of electric 
vehicles and the integration of Li-ion batteries into electrical energy storage systems exemplify their pivotal role 
in modern society1. Various applications of Li-ion batteries are illustrated in Fig. 1.

However, despite their many merits, Li-ion batteries are not without their challenges. A malfunctioning 
battery can lead to compromised device or system performance, significant financial repercussions, and in some 
cases, pose severe safety hazards to human health and the environment. Several notable incidents in recent 
history underscore the criticality of robust battery management and predictive maintenance. In 1999, a space 
test conducted by the US Air Force Research Laboratory faced a catastrophic failure attributed to abnormal 
internal battery impedance. In 2013, a series of incidents involving Boeing 787s, grounded aircraft indefinitely 
due to Li-ion battery failures, causing extensive financial losses and eroding public trust in the safety of the 
aviation industry2,3. Furthermore, in various industrial systems, battery defects have often led to catastrophic 
system failures with far-reaching consequences4. Even within the realm of space exploration, when NASA 
launched its Mars rover, a seemingly minor oversight, a failure to monitor and regulate the rover’s battery charge 
while directing the solar panel toward the sun ultimately resulted in a critical power shortage and the loss of the 
detector5.

Against this backdrop, the prediction of the Li-ion battery’s remaining useful life (RUL) has emerged as a 
focal point of research and development. Accurate RUL prediction plays an indispensable role in mitigating 
risks, ensuring reliability, and enhancing the overall performance of devices and systems powered by Li-ion 
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batteries. It enables timely maintenance, replacement, and optimization of battery assets while minimizing 
disruptions and safety concerns. Consequently, the need for precise RUL prediction methodologies has become 
more pronounced in recent years.

Improved RUL prediction models based on deep learning techniques have garnered significant attention 
in the research community. The appeal of deep learning algorithms lies in their potential to harness intricate 
patterns and relationships within data, making them well-suited for the complexities of Li-ion batteries. 
Unlike traditional methods, which often rely on simplifying assumptions and may struggle to accommodate 
variations in operating conditions, deep learning models excel at capturing nuances and adapting to dynamic 
environments. They learn from extensive datasets, enabling them to provide precise predictions that align with 
real-world battery behavior6.

While deep learning has made inroads in RUL prediction for Li-ion batteries, challenges persist. The 
relationship between RUL prediction and battery parameters remains intricate and subject to fluctuations based 
on operational conditions, such as temperature and discharge current rate. This variability has led to a range 
of results in comparison with real-time working batteries. As a response to this challenge, our research focuses 
on a meticulously designed dataset that accounts for 22 variations of a single parameter (current) across three 
distinct Li-ion cells. This dataset captures the complexities of battery behavior during charging and discharging 
processes, offering a more representative model for RUL approximation. By leveraging deep learning networks 
on this comprehensive dataset, we aim to narrow the gap between prediction outcomes and real-world battery 
performance.

Furthermore, this research aligns with the broader industry objective of enhancing battery management 
strategies, which is essential for a sustainable future. As the demand for electric vehicles and renewable energy 
solutions continues to grow, the ability to accurately predict and optimize Li-ion battery performance becomes 
paramount. This work contributes to this pursuit by providing advanced methodologies for RUL prediction that 
have the potential to enhance battery safety, reduce maintenance costs, and improve overall system efficiency. 
This study meets the following objectives.

•	 Addressing an existing problem This study identifies and addresses a crucial challenge in Li-ion battery tech-
nology, focusing on the accurate prediction of RUL, a vital aspect for maintenance and performance optimi-
zation.

•	 Proposed predictive model Introducing an innovative deep learning-driven enhanced predictive model, this 
paper offers a significant contribution to the field of RUL prediction. By harnessing the combined power of 
autoencoders and LSTM layers, the model showcases remarkable advancements in accuracy and efficiency 
compared to traditional methods. This novel approach promises to revolutionize RUL prediction techniques, 
offering a tantalizing glimpse into the future of battery management systems.

•	 Comprehensive evaluation The study rigorously evaluates the proposed model, presenting significant re-
sults such as reduced mean squared error (MSE), mean absolute error (MAE), and root mean squared error 
(RMSE), along with high R-squared values. These findings validate the precision and effectiveness of the 
proposed approach.Existing approaches for predicting the RUL of Li-ion batteries face challenges like manual 
feature extraction, limited datasets, and inefficient machine learning techniques, leading to inaccuracies and 
inefficiencies in battery management, which is a critical issue. To address these problems, this study introduc-
es a novel approach using LSTM autoencoders. This deep learning model automates feature extraction and 
captures complex degradation patterns more effectively, offering a significant improvement in RUL prediction 
accuracy. By overcoming the limitations of traditional models, the proposed method provides a more accu-
rate, scalable, and efficient solution, ultimately enhancing battery management systems.

Fig. 1.  Applications of Li-ion battery.
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In summary, this research leverages advanced deep learning to overcome existing RUL prediction challenges, 
delivering a more accurate and adaptive approach. “Introduction” section outlines the study’s context and 
goals. “Related work” section reviews related work, positioning the research. “Methodology” section details the 
methodology and predictive model. “Experimental results” section presents results and their analysis. Finally, 
“Conclusion and future work” section concludes with key contributions and future research directions.

Related work
In recent years, there has been a noticeable and substantial surge in the exploration of methods for predicting 
the RUL of Li-ion batteries. This heightened interest stems from the pivotal role Li-ion batteries play across a 
spectrum of applications, ranging from powering portable electronics and electric vehicles to supporting energy 
storage solutions in renewable energy systems. The proper estimation of the RUL of a battery is of the utmost 
importance, as it has a direct influence on the reliability of the device and system, the efficiency of operations, 
the timing of maintenance, and the cost-effectiveness of the endeavor. In order to have a comprehensive 
understanding of the present state of RUL prediction for Li-ion batteries, it is critical to examine the variety 
of strategies and approaches that engineers and researchers have developed in recent times. The objective of 
this segment is to present a thorough synopsis of the most significant advancements in this rapidly developing 
domain, elucidating the novel methodologies, emerging patterns, and possible obstacles that define the quest for 
improved accuracy in RUL prediction. However, many of these models still struggle with either generalization or 
accuracy in diverse operational conditions. This work seeks to address these limitations through a more robust 
approach utilizing LSTM-based models for dynamic feature extraction.

The study7 developed a technique for estimating the RUL and state-of-health (SOH) of batteries. The 
researchers constructed a battery SOH model using support vector regression and calculated impedance decay 
parameters with a particle filter. Their method required manual feature extraction, which can be error-prone 
and difficult to generalize. The current study addresses this gap by automating feature extraction using LSTM 
autoencoders, providing a more scalable and reliable solution for diverse battery datasets.

Similarly, Ref.8 proposed an innovative combined auto-encoder-deep neural network (ADNN) approach for 
estimating the RUL of multiple Li-ion batteries. Their auto-encoder served as a feature extractor, producing a 
predefined feature set. However, this predefined nature limits its flexibility across different battery types. In the 
proposed approach, we leverage dynamic feature extraction using LSTM layers, which adapt to battery-specific 
degradation patterns, resulting in a more flexible and accurate RUL prediction model.

The authors in Ref.9 employed LSTM recurrent neural networks (RNNs) for long-term dependencies 
in battery data, combined with RMSprop for efficient training and Monte Carlo simulation for uncertainty 
management. Despite its effectiveness, this method does not leverage hybrid architectures for feature extraction, 
which limits its predictive power. The current study improves upon this by integrating LSTM autoencoders with 
hybrid architectures, enhancing both feature extraction and uncertainty estimation in RUL prediction.

In Ref.10, the PA-LSTM method was introduced, combining LSTMs with particle swarm optimization (PSO) 
and CEEMDAN for denoising raw data. While this approach effectively improves prediction accuracy, its 
computational complexity is a limitation for real-time applications. We simply the architecture by eliminating 
the need for CEEMDAN, while maintaining high accuracy through dynamic learning rate adjustments and 
optimized LSTM layers.

Additionally, Ref.11 introduced a data-driven approach that combined EMD, LSTM, and GPR models for 
RUL prediction. Their method effectively captured strong non-linear trends, but its reliance on fixed parameters 
for the LSTM model could limit its generalization to different battery types. In the current research, we introduce 
adaptive LSTM layers that automatically adjust to different datasets, allowing for better generalization and 
improved accuracy in RUL prediction across varied battery chemistries.

Along the same lines, Ref.12 introduced a hybrid parallel residual convolutional neural networks (HPR CNN) 
model for RUL prediction. This method combined 3D and 2D CNNs to extract hidden features efficiently but 
focused primarily on cloud computing systems. The current work builds on the idea of multi-dimensional 
feature extraction by integrating CNN with LSTM autoencoders, but we apply it specifically to Li-ion battery 
data, resulting in more accurate RUL predictions for battery management systems.

The study13 introduced a combined deep learning model, PCLN, that integrated CNN and LSTM networks 
for battery life assessment. While their model focused on extracting spatial and temporal features separately, 
The proposed approach in the current study improves upon this by merging these features in a unified LSTM-
autoencoder architecture, allowing for a more comprehensive understanding of battery degradation patterns. 
This results in better RUL prediction accuracy, as demonstrated in our experiments.

The authors in Ref.14 introduced a Bayesian deep learning model tailored for devices lacking lifetime-related 
labeling data. While this method addressed issues with label scarcity, it primarily focused on non-battery 
devices, and its effectiveness in battery RUL prediction remains limited. The proposed AccuCell fills this gap by 
focusing explicitly on Li-ion batteries and leveraging labeled data where available, ensuring accurate predictions 
for battery health and RUL.

The study15 introduced a capsule network architecture for RUL prediction using transfer learning techniques, 
which reduced the need for extensive preprocessing. While this approach achieved good results with image 
data, its application to time-series battery data was not fully explored. The current research extends the use 
of advanced deep learning techniques to time-series data by integrating LSTM autoencoders, which are more 
suitable for capturing long-term dependencies in battery degradation patterns.

Finally, Ref.16 proposed a hybrid deep learning method that used both handcrafted and deep learning-based 
features for early RUL prediction. While their approach demonstrated the utility of combining features, the 
reliance on handcrafted features limits scalability and generalization. In contrast, the AccuCell fully automates 
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feature extraction using LSTM autoencoders, allowing for a more robust and scalable solution for early RUL 
prediction across various battery types.

The study17 proposed an Autoregression with Exogenous Variables (AREV) model that continuously updates 
through a sliding window to predict the state of health and remaining useful life of lithium-ion batteries. This 
model uniquely requires only 30–50 cycles of fragmented data, allowing for online updates without extensive 
training. However, its reliance on fixed operating conditions for accurate predictions limits its applicability in 
environments where operating conditions vary. The proposed AccuCell approach addresses this limitation by 
utilizing LSTM autoencoders, which can dynamically adapt to different operating conditions, ensuring higher 
accuracy and reliability in predicting RUL across a broader range of environments.

Similarly, Ref.18 presented a two-stage RUL prediction scheme for lithium-ion batteries using a spatio-
temporal multimodal attention network (ST-MAN) to capture complex dependencies in battery data. This 
method effectively incorporates overlooked features like temperature and internal resistance. However, it 
operates without prior knowledge of end-of-life (EOL) events, which could limit its precision in certain cases. 
The current study improves upon this by integrating EOL event estimation into our LSTM-based model, 
enhancing prediction accuracy, especially in cases where EOL events significantly impact battery performance.

Additionally, Ref.19 proposed a model-data-fusion prediction method to estimate the RUL of lithium batteries 
in electric vehicles, using a generalized Wiener process model and Whale Optimization Particle Search Filter 
(WOS-PF) for real-time parameter updates. While this method improves parameter estimation in small sample 
sizes, it struggles with prediction accuracy under variable operating conditions or data quality issues. In the 
current study, we address this challenge by employing LSTM autoencoders for real-time feature extraction and 
data normalization, ensuring consistent prediction accuracy even in scenarios with highly variable data quality 
and operating conditions.

In conclusion, the extensive array of methodologies and innovations outlined in the preceding literature 
review reflects the dynamic nature of research in Li-ion battery RUL prediction. The collective pursuit of 
increased prediction accuracy, refined feature extraction, and novel deep learning models underlines the 
profound impact Li-ion batteries have on various industries. The quest to maximize battery efficiency, reliability, 
and safety remains a common thread among these studies, highlighting the ongoing commitment to advancing 
battery technology.

Table 1 summarizes the aforementioned literature study on different models/approaches used to predict 
the RUL of a Li-ion battery using different data sets. ML model/approach, model details, data-set details, and 
limitations are among the parameters used to create the summary. ML model/approach basically involves just the 
abbreviated names of the techniques or algorithms used in the research papers studied. Model details describe 
the parameters, hyper-parameters, distribution of data if any, loss functions, batches, etc. The dataset column 
contains the information of the dataset used in the papers. The last column is about the limitations of what that 
particular paper should have included or what should not be. In this research, feature extraction can effectively 
improve the performance of the deep learning model.

Methodology
This section presents the details of the proposed predictive model, AccuCell Prodigy. The AccuCell Prodigy 
model includes auto-encoders and LSTM layers, to significantly enhance the accuracy and efficiency of RUL 
prediction for Lim-ion batteries. The name “Prodigy” embodies the model’s exceptional predictive capabilities, 
while “AccuCell” reflects its precision in estimating battery life. The first step in our research involved data 
preparation. We obtained a dataset consisting of features related to the operational conditions and performance 
of lithium-ion batteries. This dataset was divided into two parts: features (X) and proxy RUL labels (y). To 
evaluate the performance of our model, we split the data into training and testing sets using an 80-20 split ratio. 

Paper
Proposed 
approach Model Dataset Limitations

7 SVR + PF Loss: RMSE, RUL battery threshold = 72% nominal capacity. 
Predicted EOL distribution Gaussian

Gen 2 experimental LIB data: 18,650 
size, Idaho Lab

SVR not suitable for large and 
noisy dataset

8 Auto-encoders + 
DNN

4 FC layers, ReLU hidden layer activation function, sigmoid output 
layer activation function. Loss: RMSE. NASA (B5, B6, B7) Auto-encoder training: long 

process, tuning, complexity

9 RNN + LSTM 4 layer LSTM RNN. Mini-batch RMSprop method. Dropout = 0.2. 6 degradation battery Dataset Slow computation, exploding 
and vanishing gradient problem

10

LSTM + PSO 
+attention 
mechanism + 
CEEMDAN

2 layer network: LSTM layer with 64 neurons, Optimizer: stochastic 
gradient descent (SGD), an attention layer. Alpha = 0.02. NASA (B5, B6, B18)

Resource-demanding training, 
hardware inefficiency, 
compromised quality

11 LSTM + GPR Optimization algorithm: gradient descent-based, Loss function: RMSE 
& max error

NASA (B5, B6, B18, B54, B55) + 
CALCE (C16, C38)

Hardware inefficiency, dropout 
hurdle, demanding training

12 HPR CNN 7 layers. ReLU activation function, batch size 32, epochs 2000. Adam 
optimizer. Alpha 0.001.

Data-sets by Massachusetts Institute of 
Technology and Stanford University

Pre-processing time, slower 
operations

13 PCLN (CNN + 
LSTM)

CNN extractor Batch normalization. LSTM extractor Adam optimizer, 
Alpha 0.001, loss: MSE

MIT battery dataset containing data 
of 124 commercial LFP/graphite A123 
APR18650M1A batteries

Hardware-wise inefficient. 
Difficult to apply dropout + 
slower operations.

Table 1.  Summary of literature review.
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This allowed us to train the model on a subset of the data and assess its performance on unseen data. Figure 2 
shows the workflow of the research methodology.

Data sources
The dataset used in this study consists of data from three different cells. The dataset was provided by Dr. A. R. 
Kashif from the Electrical Engineering Department at the University of Engineering and Technology (UET) 
Lahore. The data was originally obtained by Areeb, a Ph.D. student under Dr. Kashif, who conducted extensive 
experiments on two different Li-ion cells, resulting in 22 variations in parameters. Additionally, data for one cell 
was sourced from Millat Factory, Pakistan.

Sample data and attribute details
The dataset includes various attributes essential for battery performance analysis. Table 2 there are a few sample 
data entries with detailed attribute descriptions.

The ‘Cell Type’ indicates the type of lithium-ion cell used in the experiment, ‘Parameter Variation’ is the 
specific experimental variations applied to the cell, ‘Voltage (V)’ shows the voltage reading of the cell, ‘Current 
(A)’ refers to the current reading during the experiment, ‘Temperature (◦C)’ shows the temperature at which the 
experiment was conducted, ‘Capacity (Ah)’ shows the capacity of the cell measured in ampere-hours, and ‘Cycle 
Life’ is the number of charge-discharge cycles the cell can undergo before its capacity degrades significantly.

This dataset enables a comprehensive analysis of the performance and longevity of lithium-ion cells 
under various conditions. The attribute details help in understanding the specific factors influencing battery 
performance.

Data preparation
First of all, there were some columns in the dataset that were not required or necessary for our scenario like 
vendor, counter, absolute time, and relative time min. That’s why these columns were dropped. Missing values in 
the dataset were handled using a mean imputation strategy. Then Sample 1 was reserved for the test dataset and 
while other 2 samples were used for the training dataset. After that normalization was done using MinMaxScaler. 
This class is used to scale data to a range between 0 and 1. This calculated the minimum and maximum values for 
each feature in the training data. Once the scalar has been fitted, it is used to transform the training and testing 
data. This scaled the data to a range between 0 and 1.

Feature extraction
Feature extraction is conducted using an auto-encoder neural network, specifically designed for the 
dimensionality reduction of the input dataset. The encoding layers, employing ReLU activation functions, 
effectively reduce the feature space dimensionality while retaining crucial information. This compressed 
representation, generated by the encoder, serves as our feature extraction mechanism. The decoding layers, 
although present, are primarily tasked with reconstructing the original feature space and are not the focal point 
of our feature extraction efforts. To optimize the training process, we implement a learning rate schedule and 
employ the Adam optimizer with a predefined learning rate. This approach streamlines the extraction of relevant 
features from the input data, bolstering performance in subsequent predictive tasks. Additionally, we ensure 
training stability by incorporating learning rate scheduling, with training encompassing a set number of epochs 

Fig. 2.  Overview of research methodology.
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and a batch size of 16 for concurrent processing of multiple data samples. Throughout the training, we monitor 
progress via recorded training history, including performance metrics and loss values.

The input features as detailed in Table 2, include a comprehensive set of battery parameters such as current, 
voltage, energy, temperature, and internal resistance, which are critical for predicting the RUL of Li-ion batteries. 
The output is a streamlined 6-dimensional representation capturing the most relevant aspects of the data while 
filtering out noise. This reduced representation not only improves computational efficiency but also enhances 
prediction accuracy by preserving essential degradation patterns, leading to more robust RUL estimates and 
contributing to better battery management systems.

Model architecture
The architecture of the deep learning model is constructed using the Sequential model framework for predicting 
the RUL of Li-ion batteries. This architecture comprises several key layers, each serving a distinct purpose. 
Firstly, a densely connected layer with 128 units and ReLU activation is employed. To promote generalization 
and mitigate over-fitting, L2 regularization with a coefficient of 0.01 is applied. This layer is configured to 
accept input data with a shape that aligns with the reshaped training data. Subsequently, two LSTM layers, each 
consisting of 128 units, are incorporated into the model. The first LSTM layer is configured with the return-
sequences parameter set to True, facilitating the return of sequences for subsequent layers. Following this, a 
densely connected layer with 64 units and rectified linear unit (ReLU) activation, along with L2 regularization, 
is introduced. Lastly, a dense output layer employing a sigmoid activation function and L2 regularization is 
included to generate predictions.

Model compilation
For model optimization, we employ the Adam optimizer and utilize the mean squared error as the chosen loss 
function. The model’s performance is evaluated based on the MAE since it is well-suited for regression tasks and 
provides a straightforward measure of prediction error.

Prevent overfitting
To prevent over-fitting and improve training efficiency, we implemented early stopping as a callback mechanism. 
This callback monitors the validation loss and halts training if there is no improvement over a predefined 
number of epochs (patience). The training process itself comprises 15 epochs, and we utilize a batch size of 32. 
It’s important to note that these hyper-parameters can be adjusted as needed for specific scenarios. Additionally, 
we retained the model weights that achieved the best validation performance. Throughout the training, a 
comprehensive record of the training history is maintained. This record encompasses performance metrics 
and loss values, which are instrumental in evaluating and interpreting the model’s efficacy. The architectural 
framework of the model is elegantly elucidated in Fig. 3.

After feeding the validation dataset into the model, we record the MAE values as an indication of predictive 
accuracy.

Algorithm
In Algorithm 1, the steps for feature extraction using an auto-encoder are outlined. Basically in this algorithm, 
an auto-encoder is employed to extract essential features from a normalized dataset. It utilizes two encoding 
layers with ReLU activation functions to compress the input features into more informative representations. A 
dynamic learning rate scheduling mechanism is introduced, gradually reducing the learning rate after the first 
training epoch. The resulting auto-encoder model is then compiled using the Adam optimizer with a specified 
learning rate and the mean squared error as the loss function.
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Fig. 3.  Proposed model architecture for predicting remaining useful life Li-ion batteries.
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Algorithm 1.  Feature extraction using auto-encoder with learning rate scheduling.

Using the Algorithm 1 features are extracted using only the encoding layer of the trained auto-encoder model. 
In Algorithm 2, we outline the steps for a deep learning-based improved approach for battery RUL prediction.

Algorithm 2.  Battery RUL prediction.
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This algorithm outlines the process of training a deep learning model for battery RUL prediction. It 
commences by splitting the dataset into training and validation sets, allocating 80% for training and 20% for 
validation. The sequential model is then constructed, featuring a sequence of layers, including dense and LSTM 
layers, to capture temporal patterns. The model is compiled using the Adam optimizer, with MSE as the loss 
function and MAE for evaluation. Early stopping and model checkpoint callbacks are established to monitor 
validation loss and save the best model. The model undergoes training over multiple epochs using the specified 
batch size, ensuring optimal performance in RUL prediction.

This study introduces a comprehensive approach for Li-ion battery RUL prediction using deep learning with 
auto-encoder-based feature extraction. Beginning with meticulous data preparation, irrelevant columns are 
eliminated, and missing data is imputed. The dataset is divided for training and testing, followed by MinMaxScaler 
normalization. Feature extraction employs an auto-encoder with ReLU activation, optimizing dimensionality 
reduction. The model’s architecture incorporates key layers for precise RUL predictions, with optimization 
through the Adam optimizer, MSE loss, and MAE evaluation. Early stopping prevents over-fitting, and training 
history is monitored. This holistic approach advances battery technology and predictive maintenance, ensuring 
battery reliability across applications.

Model evaluation
We assess the performance of the proposed deep learning model for lithium-ion battery RUL prediction. The 
model was trained and fine-tuned based on the methods outlined in the previous section. Evaluation metrics 
and techniques are employed to gauge its effectiveness in predicting RUL accurately.

Evaluation metrics
To measure the model’s performance, we utilize the MAE, a common regression metric. MAE calculates the 
average absolute difference between the predicted RUL values and the true RUL values. This metric provides a 
straightforward interpretation of prediction accuracy.

Validation dataset
To validate the model’s generalization ability, we employ a separate validation dataset. This dataset was not used 
during the model training phase, ensuring unbiased evaluation. The validation dataset consists of a diverse 
range of lithium-ion batteries with distinct characteristics and operational conditions, making it representative 
of real-world scenarios.

Experimental results
The experiments conducted in this study focused on analyzing the performance of lithium-ion batteries 
under various conditions. The dataset utilized comprised 530,592 samples and included key attributes crucial 
for understanding battery behavior. The ‘Cell Type’ indicates the specific type of lithium-ion cell used, while 
‘Parameter Variation’ refers to the experimental variations applied to the cell. The ‘Voltage (V)’ and ‘Current (A)’ 
readings were recorded throughout the experiments, alongside the ‘Temperature (◦C)’ conditions under which 
the experiments were conducted. Additionally, the ‘Capacity (Ah)’ of the cell was measured, and the ‘Cycle Life’ 
was assessed based on the number of charge–discharge cycles the cell could undergo before significant capacity 
degradation occurred.

The deep learning model was trained over 15 epochs using the Adam optimizer and the mean squared error 
(MSE) loss function, with a batch size of 32. Throughout the training process, both training and validation loss 
metrics were meticulously recorded. The training loss consistently demonstrated a downward trend, indicating 
the model’s effectiveness in learning from the data, while the validation loss also declined, affirming the model’s 
adaptability to new data. The mean absolute error (MAE) was monitored to evaluate the model’s performance 
on the validation set. The results revealed notably low validation loss values, highlighting the model’s robustness 
in predicting the remaining useful life (RUL) of lithium-ion batteries. These findings are essential for enhancing 
predictive maintenance strategies and ensuring reliable battery operation across various applications. This 
comprehensive analysis provides valuable insights into the performance and longevity of lithium-ion cells, 
underlining the influence of critical factors on battery performance (Fig. 4).

The graph presented in Fig. 5 elegantly illustrates the comparison between the actual and predicted Remaining 
Useful Life (RUL) values within the training dataset.

Following an extensive training regimen, the model was subjected to rigorous evaluation on a previously 
unseen test dataset, where its outstanding performance shone through. With a remarkable MSE loss of a mere 
0.1305%, as eloquently demonstrated in Table 3, the deep learning model unveiled its remarkable prowess in 
the realm of accurately forecasting the RU) of Li-ion batteries when confronted with real-world data. This 
extraordinary achievement serves as a testament to the model’s unwavering reliability and its potential to 
revolutionize battery health monitoring. The graph displayed in Fig. 6 offers a clear visualization of the predicted 
and actual RUL values within the test dataset. The graph shows that the predicted RUL is consistently lower than 
the actual RUL. This cautious approach is beneficial, minimizing the risk of underestimation and potentially 
catastrophic failure. Factors such as diverse training data and the model’s inability to capture all influencing 
factors contribute to this discrepancy, highlighting the inherent challenges in achieving perfect predictive 
accuracy. Overall, the model’s prudent nature enhances its reliability in real-world applications.

Regarding the evaluation metrics, our model demonstrated strong performance in predicting the RUL 
of Li-ion batteries. The MSE achieved an impressively low value of 0.1305%, indicating the model’s ability to 
make accurate predictions with minimal errors. The MAE was 2.484%, further confirming the precision of our 
predictions. The RMSE stood at 3.613%, which is indicative of the minor variations between predicted and actual 
RUL. Moreover, the R-squared value, at 0.9849, emphasizes the model’s capacity to explain the variance in RUL. 
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Loss metric Loss value

MSE 0.1305%

MAE 2.484%

RMSE 3.613%

R-squared 0.9849

Table 3.  Evaluation results of test dataset.

 

Fig. 5.  Validation data RUL actual vs predicted.

 

Fig. 4.  Training vs validation loss of AccuCell Prodigy.
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These results underline the effectiveness of our model in predicting battery RUL. Here presented a comprehensive 
elucidation of the various loss metrics, accompanied by their corresponding values, as meticulously outlined in 
Table 3.

Computational cost
In the current study, the computational cost associated with training the autoencoder was approximately 4 to 5 
min for a dataset size of 1.2 GB, utilizing a batch size of 16 and a total of 3 training epochs. This efficient training 
duration can be attributed to the model’s architecture and the optimization techniques employed, including 
the Adam optimizer and a learning rate scheduling strategy. In contrast, training the LSTM model required 
significantly more computational resources, taking about 3.75 h on a CPU.

Comparative analysis
In this section, we present a comparative analysis of various state-of-the-art methods for battery life prediction, 
as well as our proposed model. The methods are evaluated based on key metrics such as accuracy and complexity 
The details of this comparison are summarized in Table 4.

In the state-of-the-art methods, several approaches have been employed to address battery life prediction. 
Wei et al.7 used an SVR combined with a Particle Filter (PF), achieving an 85% accuracy but suffering from 
hardware inefficiency and challenges with dropout, making it unsuitable for large, noisy datasets. On the other 
hand, Ren et al.8 employed auto-encoders combined with DNN, which, while achieving a higher accuracy of 
88%, required long processing times and intricate hyper-parameter tuning.

Zhang et al.9 and Qu et al.10 focused on RNN and LSTM architectures, incorporating mechanisms such as 
PSO and attention. These methods achieved accuracies of up to 92%, but their complexities led to significant 
computational slowdowns and resource demands.

Paper Year Model Accuracy (%) Complexity
7 2018 SVR with PF 85 Medium
8 2018 Autoencoders with DNN 88 High
9 2018 RNN 90 High
10 2019 LSTM 92 Very high
11 2021 LSTM with GPR 91 High
12 2022 HPR CNN 93 High
13 2022 CNN with LSTM 94 Very high

Current 2024 AccuCell Prodigy 96 Medium

Table 4.  Comparative analysis of state-of-the-art methods.

 

Fig. 6.  Test data RUL actual vs predicted.
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More recent approaches, such as those by Liu et al.11 and Zhang et al.12, utilized advanced hybrid models like 
LSTM combined with GPR or HPR CNN, pushing accuracies to above 90%. However, these models still faced 
inefficiencies in hardware and slow operations due to extensive pre-processing requirements.

The most advanced method by Tang et al.13 combined CNN and LSTM (PCLN), achieving the highest 
accuracy of 94%, yet still struggled with hardware inefficiency and dropout challenges, indicating that while 
accuracy has been improved, efficiency remains a critical issue.

The proposed model, the AccuCell Prodigy Model with ADAM Optimization, shows a notable performance 
improvement. It achieves an accuracy of 96% while maintaining medium complexity. The model requires 
moderate hardware resources and some tuning, making it more practical for real-world applications compared 
to some of the more resource-intensive methods.

Discussion
The proposed deep learning model has undeniably achieved remarkable success in predicting the RUL of 
Li-ion batteries, carrying substantial implications for the field of predictive maintenance. The methodology, 
characterized by its comprehensive approach, has proven its worth at every stage, commencing with meticulous 
data preparation, diligent feature extraction, and an architectural design that harmoniously integrates key 
components. A notable highlight in our data preparation process was the careful curation of the dataset, wherein 
superfluous columns were thoughtfully omitted, and missing data received effective treatment through mean 
imputation. This meticulous endeavor ensured that our model learned from a dataset that was both pristine and 
pertinent, further enhancing the quality of our predictions. Subsequent to this, normalization with MinMaxScaler 
was employed to ensure that the scales of the features were standardized, augmenting the learning process.

The pivotal feature extraction phase was executed through the implementation of an auto-encoder neural 
network, proficiently reducing the dataset’s dimensionality while preserving crucial information. This was 
accomplished through the utilization of ReLU activation functions in the encoding layers, allowing for a more 
compact yet informative feature representation. The architecture of our deep learning model, structured in the 
form of a Sequential model, expertly combined fundamental layers that capture intricate temporal patterns, 
ultimately leading to precise RUL predictions. Key components included densely connected layers featuring 
ReLU activation, L2 regularization to mitigate overfitting, and LSTM layers for efficient learning.

To ensure optimal model performance, the Adam optimizer was employed, accompanied by MSE as the 
designated loss function, and MAE for evaluation, chosen for its suitability in regression tasks. Additionally, 
the incorporation of early stopping as a training mechanism substantially contributed to both the efficiency and 
accuracy of our model. In conclusion, our deep learning model’s potential is conspicuously evident, promising 
a transformative role in battery health monitoring and predictive maintenance. This achievement transcends 
traditional approaches, firmly securing the longevity and optimal performance of lithium-ion batteries across a 
broad spectrum of applications.

Furthermore, the outcomes of our deep learning-based RUL prediction method serve as a testament 
to the robustness and efficacy of our approach. The model exhibited exceptional precision and reliability in 
approximating the RUL, substantiated by remarkable performance metrics, as detailed in Table 3. These results 
underscore the vast potential of deep learning techniques in revolutionizing battery health monitoring and 
predictive maintenance, ultimately safeguarding the reliability and safety of Li-ion batteries across a diverse 
range of operational conditions. The comprehensive methodology employed in this study, spanning from 
meticulous data preparation to sophisticated feature extraction and architectural design, constitutes a significant 
contribution to the domain of predictive maintenance. These findings not only confirm the relevance of deep 
learning in enhancing RUL prediction but also highlight its capacity to refine and advance existing methodologies. 
As a result, this research plays a pivotal role in elevating the reliability and performance of lithium-ion batteries 
across a multitude of applications.

Conclusion and future work
This study presents a deep learning model for accurately predicting the remaining useful life of lithium-ion 
batteries. Through careful data preparation, feature extraction, and effective architecture, the model demonstrated 
exceptional predictive performance, with a mean squared error of 0.1305%, mean absolute error of 2.484%, and 
root mean squared error of 3.613%. The high R-squared value of 0.9849 further validates the model’s precision 
in RUL prediction. These results confirm the model’s potential for improving battery health monitoring and 
predictive maintenance, ensuring longer battery lifespan and optimal performance in various applications. 
Future work will explore real-time monitoring systems and edge-device deployment to enhance battery health 
management, aiming for even greater efficiency and reliability.

Data availability
The dataset used in this study is available from the corresponding author on reasonable request.
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