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Diabetes is a persistent health condition led by insufficient use or inappropriate use of insulin in the 
body. If left undetected, it can lead to further complications involving organ damage such as heart, 
lungs, and eyes. Timely detection of diabetes helps obtain the right medication, diet, and exercise plan 
to lead a healthy life. ML approach has been utilized to obtain rapid and reliable diabetes detection, 
however, existing approaches suffer from the use of limited datasets, lack of generalizability, and 
lower accuracy. This study proposes a novel feature extraction approach to overcome these limitations 
by using an ensemble of convolutional neural network (CNN) and long short-term memory (LSTM) 
models. Multiple datasets are combined to make a larger dataset for experiments and multiple 
features are utilized for investigating the efficacy of the proposed approach. Features from the extra 
tree classifier, CNN, and LSTM are also considered for comparison. Experimental results reveal the 
superb performance of CNN-LSTM-based features with random forest model obtaining a 0.99 accuracy 
score. This performance is further validated by comparison with existing approaches and k-fold cross-
validation which shows the proposed approach provides robust results.
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Diabetes is a persistent medical condition attributed to insufficient production of insulin by the pancreas or 
impaired/improper utilization of the insulin by body cells1. Insulin plays a crucial role in regulating blood 
glucose levels2. When diabetes is not managed properly, it often results in hyperglycemia, also known as elevated 
blood glucose or high blood sugar levels3. Prolonged high sugar levels can lead to significant damage to various 
biological systems, including nerves and blood vessels. Diabetes can be caused by either inadequate insulin 
production or the body’s ineffective utilization of insulin, which is necessary for using glucose as fuel4. The most 
common kind is type 2 diabetes, which is commonly found in adults. Symptoms include frequent urination, 
increased thirst, and hunger. If not treated, diabetes can lead to a variety of complications in the human body5 
like cardiovascular disease (CVD), foot ulcers, nerve damage, etc. Diabetes-led complications may pose a real 
threat to human life and lead to even death.

In 2014, a study revealed that 8.5% of adults aged 18 and above were diagnosed with diabetes, with nearly 
half of diabetic fatalities occurring before the age of 70. Diabetes was accountable for 460,000 deaths related 
to renal disease and contributed to 20% of CVD mortality due to elevated blood glucose levels6. By the year 
2020, the global diabetic population reached approximately 2.85 billion individuals, representing 6.4% of the 
world’s populace. Without significant advancements in preventive measures and therapeutic interventions, 
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experts project this figure to escalate to 430 million. This concerning trend is attributed to factors such as the 
adoption of Western dietary habits and urban lifestyles in emerging economies, alongside inadequate public 
awareness regarding diabetes7,8. In India, the prevalence of diabetes has surged, with the current number of 
affected individuals increasing from 70 million in 2019 to 101 million. This increase in diabetic patients poses 
a real threat to public health and governments need additional budget to handle it9. Besides type 1 and type 2, 
diabetes encompasses gestational, monogenic, and cystic fibrosis-related diabetes10. The accumulation of thick 
mucus can cause pancreatic complications thereby leading to cystic fibrosis diabetes which adversely affects 
insulin production11. Monogenic is another form that arises from a single gene mutation that disrupts insulin 
synthesis or action12.

Advanced computational techniques, including data mining, machine learning (ML), statistics, and database 
systems, are instrumental in identifying individuals at heightened risk of developing Diabetes Mellitus. These 
methodologies are tailored to achieve crucial objectives such as pattern detection and clustering. Particularly, 
data mining endeavors to uncover concealed insights from vast databases through automated procedures. The 
efficacy of analysis hinges upon the availability of high-quality raw data and processing approaches. Integration 
of data mining within healthcare elevates the quality of care, diminishes costs, and facilitates the prediction of 
diabetes-related issues13. A plethora of computer algorithms have been devised for classifying diabetes, leading 
to improved diagnostic accuracy, cost efficiency, and more efficacious treatment options14.

A large database is essential to automate the diagnosis and assess the severity of diabetes. This database 
encompasses data on the impact of diabetes on various organs within the human body. Early detection of 
diabetes enables timely treatment and the development of a suitable dietary plan to prevent later complications 
such as cardiovascular and kidney issues. Previous diabetes detection systems have utilized ML and DL 
techniques, but they often lack high detection accuracy and generalization. In addition, due to the versatility of 
the datasets, the adopted models should be generalizable offering similar detection accuracy on the unseen data. 
Existing approaches to diabetes detection lack robustness and generalizability thereby requiring further efforts 
to improve diabetes detection.

Automating the diagnosis of diabetes detection and assessing the severity of diabetes using ML and DL 
require large datasets. This automated system can enable early detection of diabetes with lower costs and higher 
accuracy. Early diagnosis facilitates timely treatment and the development of suitable dietary plans to prevent 
complications such as cardiovascular and kidney issues. Previous diabetes detection systems that utilized ML 
and DL techniques often lacked high detection accuracy and generalization. Motivated by these challenges, this 
study analyzes how significant results in diabetes prediction can be achieved by using feature engineering and an 
ensemble of different datasets with state-of-the-art (SOTA) ML algorithms. To overcome these limitations and 
find suitable models for accurate diabetes detection, this work adopts a DL approach. This study contributes as 
follows

•	 A novel DL approach is introduced to extract appropriate feature sets from the dataset. The feature extraction 
approach is based on an ensemble of convolutional neural networks and long short-term memory (LSTM). 
The models are joined in a stacked manner to obtain the final feature set.

•	 ML models like decision tree (DT), logistic regression (LR), support vector classifier (SVC), and random 
forest (RF) are used for experiments. In comparison to the proposed feature extraction approach, models 
are evaluated using features obtained from an extra tree classifier (ETC), long short-term memory (LSTM), 
convolutional neural network (CNN), and an ensemble of CNN and LSTM (CNN-LSTM).

•	 Throughout the experiments, we utilized three distinct datasets to assess the effectiveness of the suggested fea-
ture extraction method. These include Aravindpcoders’ diabetes dataset, Mathchi’s diabetes dataset, and Is-
handutta’s early-stage diabetes risk prediction dataset. Additionally, we conducted a performance comparison 
with existing models.Section “Literature review” delves into the literature review, while section “Materials and 
methods” presents an outline of the proposed strategy and pertinent details. Subsequently, section “Results 
and discussion” delineates the results, and section “Conclusions and future work” furnishes the conclusion.

Literature review
In the literature conducted by15, a DL architecture was developed to differentiate between diabetic and normal 
heart rate variability (HRV) signals. The study provides an extensive overview of diabetes, HRV, and related 
research in the domain of automated non-invasive diabetes detection. Employing a combination of LSTM, 
CNN, and their integrated architectures, the objective is to extract intricate temporal and dynamic features 
from the input Heart Rate Variability (HRV) data. The proposed CNN-LSTM with SVM classification system 
demonstrates a remarkable accuracy of 95.7% in diagnosing diabetes using electrocardiography (ECG) signals. 
In another study16, meticulous scrutiny was directed toward the utilization of ML and deep learning (DL) 
methodologies for predicting diabetes. The author utilized conventional ML techniques, notably SVM and RF, 
against DL approaches utilizing a CNN model. The evaluation was grounded on the publicly accessible Pima 
Indians Diabetes database, comprising 768 samples. The experimental findings revealed that RF surpassed DL 
and ML models with an accuracy of 83.67%, compared to 76.81% and 65.38% accuracy of CNN and SVM, 
respectively.

Similarly17, the researchers embarked upon a comprehensive exploration of diverse machine-learning 
methodologies aimed at the diagnosis of diabetes. Their primary objective was to leverage sophisticated ML 
algorithms to proficiently diagnose patients afflicted with diabetes, utilizing an extensive array of medical 
prognostic data. The study harnessed a dataset replete with intricate medical predictor variables, including 
gravidity, Body Mass Index (BMI), insulin concentrations, and chronological age, among other factors. A 
repertoire of six classifiers, namely LR, DT, SVM, extreme gradient boosting (XGBoost), RF, and Adaboost, 
were meticulously implemented. Their performances were rigorously scrutinized employing a multitude of 
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evaluation metrics such as accuracy, F1-score, recall, precision, and area under the curve (AUC). The empirical 
findings unveiled that Adaboost emerged as the preeminent classifier, boasting the highest accuracy rate of 83% 
amongst its counterparts. The study conducted by18 significantly contributes to the realm of health informatics 
by demonstrating the efficacy of ML algorithms in accurately diagnosing diabetes. The authors adeptly optimize 
the performance of classification models through the implementation of feature selection techniques, notably 
principle components analysis (PCA). They underscore the pivotal importance of feature selection in the 
development of interpretable models and the augmentation of data mining efficacy. The comparative analysis 
encompasses a diverse array of ML models, including Bayes Net, DT, Gradient Boosting Machine (GBM), J48, 
KNN, JRIP, LDA, and LR, alongside DL models such as ANN, CNN, MLP, and Deep Neural Network (DNN), 
among others. Remarkably DNN achieves an exceptional accuracy rate of 98.1%, underscoring its efficacy in 
diabetes diagnosis.

The study19 aimed to develop an automated method for diagnosing brain tumors from MRI scans using a 
deep-learning CNN model. Tests were performed on the Br35H dataset, which contains a large number of MRI 
images. Enhanced CNN models were created by implementing different activation functions, hyperparameters, 
and data augmentation techniques such as rotation, flipping, and rescaling. The Adam optimizer was used to 
improve learning speed, and the dropout technique was applied to prevent overfitting. The proposed model 
(CNN) outperformed existing models, achieving high scores: 99.18% recall, 99.45% precision, 99.31% F1 score, 
and 99.28% accuracy.

The authors20 delve into the prospective applications of intelligent systems in advancing medical technologies 
for the detection of diabetes mellitus. The discourse elucidates the employment of oversampling methodologies 
alongside data dimensionality reduction via feature selection strategies to augment the precision and 
dependability of diabetes identification processes. Furthermore, it underscores the significance of formulating 
models capable of scrutinizing attributes gleaned from datasets, advocating for the fusion of ML and DL 
algorithms as a promising avenue. Leveraging an ANN, the researchers attained a commendable accuracy rate of 
99.13%. The study21 presents a research endeavor concerning the utilization of ML algorithms to prognosticate 
the probability of diabetes onset. The inquiry heralds ML as a potent instrument for scrutinizing data replete with 
latent patterns and concentrates on three distinct algorithms: SVM, NB, and RF. Empirical findings delineate that 
the RF algorithm attains a predictive accuracy rate of 88.14% in discerning diabetes occurrences. Additionally, 
the author furnishes a succinct overview encompassing various diabetes classifications, comprising Type 1, Type 
2, and Type 3 (gestational diabetes). Furthermore, statistical insights regarding the global prevalence of diabetes 
are presented, underscoring the imperative for precise prognostication and diagnosis methodologies.

The study22 demonstrates a notable strength in their pragmatic approach towards forecasting diabetes 
onset. Through the utilization of ML methodologies, the authors proffer a promising avenue to aid healthcare 
practitioners in early diagnostic endeavors. The lucid exposition of dataset attributes along with their 
corresponding statistical metrics lends credence to the research endeavor. Delving into the application of ML 
techniques, particularly the KNN algorithm, for diabetes prognosis, the authors expound upon the rationale 
behind its selection, underscoring its congruity with the dataset characteristics and its efficacy in furnishing 
precise prognostications. The reported accuracy rate stands at a commendable 89.5%. The study by23 delves into 
the utilization of ML algorithms for prognosticating diabetes occurrences, drawing upon datasets sourced from 
Bangladesh, India, and Germany. It tackles the challenges intrinsic to precise diabetes prediction, including the 
scarcity of labeled data and the presence of outliers within the datasets. Various ML models are scrutinized, 
encompassing boosting techniques such as AdaBoost, CB, Gradient Boosting, and XGBoost, alongside 
foundational models like RF and DT. Empirical observations reveal that the Bangladesh dataset demonstrates 
enhanced performance with boosting algorithms, notably with CB achieving a noteworthy accuracy score of 
0.99 in forecasting the prevalence of diabetes.

Similarly,24 contribute significant insights into the utilization of ML algorithms for diabetes prognosis. 
Commencing with a discourse on the two primary types of diabetes and their etiological factors, the study 
delineates the deleterious impacts of diabetes on diverse bodily organs, underscoring the imperative nature of 
early prediction and intervention. The authors proceed to implement and juxtapose two widely employed ML 
models, namely RF and LR, for diabetes prognostication. They elucidate the experimental outcomes, revealing 
an impressive accuracy rate of 99% attained by the RF algorithm. This underscores the inherent potential of 
ML algorithms in precisely forecasting diabetes occurrences and facilitating timely intervention. measures. 
In a similar vein the author25 underscores the criticality of early detection in diabetes, recognizing its often 
asymptomatic nature, which predisposes it to underdiagnosis. Leveraging a dataset inclusive of both newly 
diagnosed diabetic individuals and those deemed at risk, the study employs five distinct ML methodologies to 
forecast the propensity for diabetes development. Among these methodologies, the RF approach emerges as the 
most efficacious, yielding an overall accuracy rate of approximately 99%. Furthermore, an interpretable machine-
learning technique is deployed to elucidate the correlation between the response variable and the predictors.

The study26 introduces a transfer learning-based method for detecting Monkeypox in images, with 
InceptionV3 achieving up to 98% accuracy, demonstrating its potential as a standard in medical imaging. 
The transfer learning method not only saves resources but also allows for easy updates as new data becomes 
available. Similarly, the authors27 fine-tuned the hyperparameters of VGG-19, Inception-v3, and XceptionNet 
architectures on the CK+, JAFFE, and FER2013 datasets, to enhance the performance of image sentiment 
analysis systems. Transfer learning proved especially effective with smaller datasets, suggesting the potential for 
future advancements in handling larger datasets and automating hyperparameter tuning in sentiment analysis. 
The study encapsulates the findings and constraints of preceding research endeavors in Table 1.
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Limitations and gaps in the existing research
The recent studies on diabetes prediction using ML and DL have limitations such as small datasets, lack of 
interpretability in DL models, and practical challenges in clinical implementation. Additional issues include 
dataset biases, limited model selection, and reliance on specific metrics. These studies also face challenges like 
narrow scope in model execution time discussion, limited model types, and potential for overfitting. Furthermore, 
there are limitations in population representation, labeled data availability, and model interpretability. Our 
study emphasizes the importance of creating larger datasets, enhancing model interpretability, and conducting 
broader model evaluations.

Challenges in diabetes detection
A rich variety of technologies are used for diabetes detection ranging from blood tests, and continuous glucose 
monitoring (CGM), to smart insulin pens. The challenges of diabetes detection across various modalities 
include issues such as limited accuracy and reliability in traditional clinical tests, and expertise in imaging 
methods. There are also concerns over sensor accuracy and user adoption in wearable technologies like CGM. 
Additionally, data-driven approaches, while promising, face obstacles like limited datasets, poor generalizability, 
and the difficulty of effective feature extraction and multimodal data integration. The current study focuses on 
these challenges by employing a novel ensemble of CNN and LSTM models, leveraging a comprehensive dataset, 
and integrating multiple feature extraction techniques to enhance accuracy and generalizability, demonstrating 
superior performance validated through cross-validation and comparison with existing methods.

Materials and methods
This study performs experiments for diabetes prediction, where data is extracted, optimal features are selected, 
and an ML approach is employed for diabetes detection. The architecture of the proposed approach is illustrated 
in Fig. 1.

Initially, we downloaded three publicly available datasets and merged them to form a combined dataset. Upon 
this combined dataset, we applied state-of-the-art ML algorithms. The classification task involved two classes: 
1 for Diabetic and 0 for Non-Diabetic. Among the ML algorithms utilized are DT, RF, LR, and SVC. Notably, 

Fig. 1.  The workflow of the proposed approach indicates the process of feature engineering, preprocessing, 
and adoption of transfer learning for diabetes detection.

 

Ref. Year Classifier Accuracy Limitation

15 2018 CNN-LSTM with SVM 95.7% Small dataset, lack of external validation, limited interpretability of DL algorithms, and practical challenges in 
clinical implementation.

16 2019 SVM,RF,CNN 83.67% by RF Small dataset

17 2021 SVM, Xgboost, RF, LR, 
ADA, DT 83% by ADA Dataset biases, limited feature selection, constrained model selection, evaluation metric reliance.

18 2023 GBM, J48, KNN, JRIP, LDA, 
LM, LR, GBM, MDR, RF 98.1% by DNN Small dataset limitations, no validation

20 2023 ANN 99.13% Small dataset
21 2022 SVM, NB, RF 88.14% by RF Limited evaluation of other illnesses, no discussion on model execution time.
22 2023 KNN 89.5% Limited scope of models, lack of information on dataset and generalizability, limited evaluation of other illnesses

23 2023 XGBoost, CatBoost 99% by 
CatBoost

Limited population representation, limited labeled data availability, potential for improvement with larger 
datasets, scope for integrating additional features, exploration of hybrid models

24 2022 RF, LR 99% by RF Potential overfitting, lack of comprehensive model comparison, reliance on accuracy as the sole evaluation 
metric, limited scope to diabetes prediction, and lack of interpretability.

25 2023 RF 99% Limited dataset diversity, potential overfitting, limited model comparison

Table 1.  Overview of recent studies on diabetes prediction. Adopted approaches in the studies along with their 
results are stated in addition to the limitations.
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tree-based algorithms demonstrated superior performance. In the medical domain, even slight improvements 
in accuracy can yield significant outcomes28. Hence, to enhance accuracy, we employed feature engineering. 
This involved the selection of the most critical features to train models, aiming to optimize accuracy. For feature 
selection, we utilized the ETC with hyperparameter settings: n_estimators = 300 and max_depth = 20. Through 
this process, we identified the top 12 features that had the most impact on the model’s performance. Subsequently, 
we re-applied ML models using these refined features, resulting in noticeable improvements in accuracy across 
all classifiers. We partitioned the dataset into training and testing sets using an 80:20 ratio, allocating 80% of the 
data for training purposes and reserving the remaining 20% for testing.

Datasets
Three types of datasets are employed in this research. All datasets are publicly accessible through Kaggle.

•	 Aravindpcoder’s Diabetes Dataset.
•	 Mathchi’s Diabetes Data Set.
•	 Ishandutta’s Early Stage Diabetes Risk Prediction Dataset.

Aravindpcoder’s diabetes dataset
This dataset contains medical data related to diabetes, including glucose levels, blood pressure, and other health 
metrics. This dataset has 2 classes (diabetic, and non-diabetic) and includes 9 attributes29. Columns like ‘AGE’, 
‘Urea’, ‘HbA1c’, ‘Chol’, ‘TG’, ‘HDL’, ‘LDL’, ‘VLDL’, ‘BMI’, and ‘CLASS’ has been utilized from this dataset.

Mathchi’s diabetes dataset
Mathchi’s Diabetes dataset is a collection of medical data focusing on features such as glucose, blood pressure, 
and skin thickness, among others. Like the previous dataset, this one also has 2 classes (diabetic, and non-
diabetic) and consists of 9 attributes30. Attributes like ‘Pregnancies’, ‘Glucose’, ‘BloodPressure’, ‘SkinThickness’, 
‘Insulin’, ‘BMI’, ‘DiabetesPedigreeFunction’, ‘Age’, and ‘Outcome’ has been utilized from this dataset.

Ishandutta’s early stage diabetes risk prediction dataset
Ishandutta’s Early Stage Diabetes Risk Prediction dataset is designed to predict the risk of developing early-
stage diabetes. It includes 3 classes (positive, negative, and uncertain) and contains 17 attributes31. We selected 
identical attributes and extracted records from this dataset that contain only two classes, ensuring symmetry to 
combine all datasets. Columns ‘visual blurring’, ‘Itching’, ‘Irritability’, ‘delayed healing’, ‘partial paresis’, ‘muscle 
stiffness’, ‘Alopecia’, ‘Obesity’, and ‘class’ were used from this dataset.

Table 2 provides a concise summary of the dataset. We merged these datasets by selecting 200 features from 
each. The resulting dataset has a shape of 400 rows and 28 columns, indicating 400 rows with 28 identical 
columns, encompassing 27 features and one class with two values, diabetic or non-diabetic.

Table  3 shows sample values of the dataset. Increased levels of Urea in the blood may indicate kidney 
dysfunction, a common complication of diabetes. Higher HbA1c levels, reflecting poorer blood sugar control 
over the past few months, are a hallmark of diabetes. In terms of cholesterol levels, high total cholesterol 
coupled with low levels of HDL (known as ‘good’ cholesterol) is associated with insulin resistance and metabolic 
syndrome, precursors to type 2 diabetes. Elevated levels of LDL (commonly referred to as ‘bad’ cholesterol) have 
been correlated with a heightened risk of cardiovascular disease, a condition frequently observed in individuals 
with diabetes. Additionally, high VLDL levels can indicate insulin resistance, contributing to the development of 
diabetes. These markers collectively suggest an increased risk or presence of diabetes, potentially due to insulin 
resistance, poor blood sugar control, and associated metabolic changes. However, a comprehensive evaluation 

Urea HbA1c Chol HDL LDL VLDL target

59 5.2 10.9 2.1 1.1 2.5 1

55 6.1 8.5 2.1 0.9 3.8 1

57 4.6 6.8 6.0 2.5 3.5 1

45 3.248749 5.073910 1.021650 1.147828 2.618088 0

39 3.2 5.0 1.3 1.0 3.0 0

31 3.6 3.7 2.1 1.0 2.4 0

Table 3.  Some of the medical metrics and their corresponding diabetes status for non-diabetic individuals.

 

Dataset Description Classes Attributes
29 Medical data related to diabetes, including glucose levels and more. 2 classes (diabetic, non-diabetic) 9
30 Medical data with features such as glucose, blood pressure, and more. 2 classes (diabetic, non-diabetic) 9
31 Dataset for predicting early-stage diabetes risk. 3 classes (positive, negative, uncertain) 17

Table 2.  Summary of the datasets used for experiments. It includes a description of the datasets, number of 
classes, and attributes in each dataset.
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considering these markers alongside other clinical information is essential. In the ‘Target’ column, ‘1’ signifies a 
positive diagnosis of diabetes, while ‘0’ indicates a non-diabetic status.

Challenges with dataset
The primary challenge with the dataset is its limited size and the insufficiency of diverse attributes. These limitations 
restrict the model’s ability to capture complex patterns and may impact its generalization capabilities. To address 
this, expanding the dataset by increasing the number of samples and incorporating more comprehensive and 
diverse attributes would significantly enhance the model’s performance. A more robust dataset would allow the 
model to learn from a broader range of features, ultimately improving its accuracy and ability to generalize to 
unseen data.

ML models
In this study, we employed several models to propose a diabetes prediction system. We utilize DT, RF, LR, and 
SVC for classification tasks, and ETC, CNN, and LSTM for feature extraction. These models are configured with 
their optimal hyperparameters, as detailed in Table 4. Each algorithm is explored to address specific challenges 
in classification tasks, from decision tree depth to neural network architecture design.

Decision trees
The DT classifier is a well-known non-linear supervised classification method recognized for its tree-like 
structure32. In this approach, the branch nodes within the tree represent distinct scenarios, while the leaf nodes 
correspond to classified records. DT is characterized by its simplicity in comprehension and visualization, 
rendering it suitable for a diverse array of applications. However, it is important to note that DT is sensitive 
to variations in data, as even minor changes in the dataset can result in different tree structures. In the case of 
the presented approach we used this algorithm configured with a single hypermeter which is max_depth of 
6, indicating that each tree created by the algorithm will have a maximum depth of 6. To obtain the optimal 
performance, during the tuning process, the algorithm explores a range of depths from 5 to 200 to find the 
optimal tree depth. The max_depth parameter controls how deep the tree can grow, affecting the complexity of 
the model. A higher max_depth allows the algorithm to capture more intricate patterns in the data, but it also 
increases the risk of overfitting if not properly tuned. The set max_depth parameter is suitable for the dataset 
used in this study.

Random forest
RF is a supervised learning algorithm utilized for both classification and regression tasks. Among the various 
algorithms available, RF stands out as one of the simplest and most user-friendly options. An RF model consists 
of an ensemble of decision trees, where the term “forest” refers to this collection of trees. This algorithm has 
demonstrated impressive performance, with the quality of predictions improving as the number of trees in the 
forest increases. The RF process involves constructing decision trees based on randomly selected subsets of 
the diabetes data, making predictions with each tree into diabetes and non-diabetes, and then aggregating the 
results to determine the final prediction of whether the sample belongs to the diabetic or non-diabetic person. 
This aggregation method often involves a voting approach, where the most commonly predicted outcome is 
selected as the final prediction33. RF employs the bagging algorithm, which involves training multiple decision 
trees using different bootstrap samples from the training dataset. This process ensures that each tree is trained 
on a diverse subset of the data, enhancing the model’s robustness and generalization. The bagging algorithm is 
mathematically represented as shown in Eqs. (1) and (2).

	 W =mode J1(Y ), J2(Y ), . . . , Jt(Y ) � (1)

Algorithm Hyperparameters Tuning range

DT max_depth = 6 max_depth = {5 to 200}

RF n_estimators = 300, random_state = 42, max_depth = 1 n_estimators = {100, 200, 300, 400, 
500}, max_depth = {5, 10, 20, 30}

LR random_state = 1000, solver = ‘liblinear’, C = 2.0 No tuning needed for these parameters

SVC kernel = ‘rbf ’, C = 3.0, random_state = 500 No tuning needed for these parameters

ETC n_estimators = 300, max_depth = 20, criterion = ‘entropy’ n_estimators = {100, 200, 300, 400, 
500}, max_depth = {5, 10, 20, 30}

LSTM LSTM (filters = 128), optimizer = ‘adam’, loss = ‘binary_crossentropy’, Dropout = {0.3, 0.4, 0.5}, activation = ‘sigmoid’, 
epochs = 100

CNN Conv1D (filters = 64, 128), kernel = 3× 3, maxpooling1D = 2× 2, optimizer = ‘adam’, loss = ‘binary_crossentropy’, 
Dropout = 0.5, activation = ‘sigmoid’, epochs = 100

LSTM+CNN Conv1D(filters = 64, 128, 128), kernel = 3× 3, maxpooling1D = 2× 2, optimizer = ‘adam’, loss = ‘binary_
crossentropy’, Dropout = 0.5, activation = ‘sigmoid’, epochs = 100

Table 4.  Settings for hyperparameters in ML and DL models using which the models showed the best 
performance.
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W =mode

l∑
k=1

Jt(Y ) � (2)

where W is employed as the final prediction, relying on the maximum decision from an ensemble of DT denoted 
as J1(Y ), J2(Y ), and so forth, all of which contribute to the prediction process.

In this experiment, RF is set with n_estimators at 300, indicating it will create 300 trees in the forest. During 
tuning, the algorithm explores the number of trees from 100 to 500 to find the optimal balance between model 
performance and computational efficiency. The random_state parameter is set to 42 for reproducibility, ensuring 
that the same results are obtained each time the algorithm is run with the same inputs. Additionally, max_depth 
is set to 1 for each tree in the forest, controlling the maximum depth of individual trees to prevent overfitting.

Logistic regression
LR is employed to estimate the probability of an event occurring based on a specified set of independent variables. 
The outcome variable ranges between 1 and 0, representing probabilities. LR utilizes a logistic function, which is 
characterized by an S-shaped curve and maximizes the likelihood of the predicted outcomes34. The mathematical 
expression of the logistic function is provided in Eq. (3).

	
X =

w

1 +K−e(r−r0)
� (3)

where K integrates Euler’s constant, r0signifies the central value of the sigmoid, w denotes the peak of the curve, 
and e delineates the curvature’s steepness.

For current experiments, the random_state is set to 1000, ensuring the reproducibility of results for diabetes 
detection. The ‘solver’ parameter is set to ‘liblinear’, which is suitable for small datasets, as is the case with the 
current study which has a binary classification problem. For the multi_class parameter, the ‘ovr’ (One-vs-Rest) 
strategy is employed, allowing the algorithm to handle multiclass classification tasks. The C parameter is set to 
2.0, representing the regularization strength in the model. Higher C values indicate less regularization, allowing 
the model to fit the training data more closely.

Support vector classifier
SVC is a flexible ML technique utilized for both regression and classification tasks35. The primary aim of this 
model is to establish a hyperplane within an N-dimensional space. In this experiment, the SVM algorithm is 
configured with a radial basis function (RBF) kernel, specified by the ‘kernel‘ parameter. The C parameter is set 
to 3.0, controlling the trade-off between achieving a low error on the training data and maximizing the decision 
boundary’s margin between the samples of diabetic and non-diabetic class samples. A higher C value allows the 
algorithm to fit the training data more closely, potentially leading to overfitting. The random_state parameter is 
set to 500 for result reproducibility.

Extra trees classifier
ETC aids in feature extraction by providing feature importance rankings, handling noisy and collinear features 
effectively, capturing non-linear relationships, leveraging its ensemble approach, and allowing for robust 
evaluation through cross-validation techniques. These properties make ETC a valuable tool for identifying the 
most informative features in the diabetes dataset36. In this configuration, n_estimators is set to 300, indicating 
the number of trees in the forest. During tuning, the algorithm explores the number of trees from 100 to 500 and 
produces the best results with 300 estimators. The max_depth parameter is set to 20, controlling the maximum 
depth of individual trees to balance model complexity and overfitting. The criterion parameter is set to entropy 
which measures the information gained to make decisions.

Long short-term memory
LSTM is a type of recurrent neural network (RNN) commonly used for sequence modeling tasks like text and 
time series analysis37. In this LSTM configuration, the model architecture includes an LSTM layer with 128 
filters. The optimizer is set to ‘adam’, a popular optimization algorithm for DL. For training, the model uses 
binary_crossentropy as the loss function, suitable for binary classification tasks. Dropout regularization is 
applied with rates of 0.3, 0.4, and 0.5 to prevent overfitting. The activation function sigmoid is used for the LSTM 
layer, typical for binary classification. The model is trained for 100 epochs.

Convolutional neural network
CNNs are well-suited for image and sequence processing tasks38. This CNN configuration includes Conv1D 
layers with 64 and 128 filters, applying 3× 3 kernels. Maxpooling1D with a 2× 2 window is used to reduce 
spatial dimensions. The optimizer is set to ‘adam’, a commonly used optimization algorithm. The loss function 
binary_crossentropy is employed for binary classification tasks. Dropout with a rate of 0.5 is applied for 
regularization, reducing overfitting. The activation function sigmoid is used for the final layer. The model is 
trained for 100 epochs.
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Ensemble LSTM+CNN model
This architecture combines LSTM and CNN layers for improved performance in sequence analysis tasks39. The 
configuration includes Conv1D layers with 64, 128, and 128 filters, applying 3× 3 kernels. Maxpooling1D with a 
2× 2 window is utilized for dimension reduction. The optimizer is set to ‘adam’, a popular choice for DL models. 
The loss function binary_crossentropy is used for binary classification. Dropout regularization with a rate of 0.5 
is applied to prevent overfitting. The activation function sigmoid is used for the final layer. The model is trained 
for 100 epochs.

Hyperparameter tuning
We fine-tuned the models’ hyperparameter settings using the grid search method. The models were tuned over 
specific ranges. After tuning the models within these ranges, we identified the best settings. For example, for the 
decision tree, the optimal max_depth was 6, which was fine-tuned between a range of 5 to 200. Table 4 provides 
all the hyperparameters used for all models used in this study.

Feature extraction
Figure  2 shows the architecture of the proposed feature extraction approach that utilizes CNN and LSTM 
to make an ensemble. The models are stacked to obtain the most impactful features. Initially, we introduced 
DL models such as LSTM and CNN separately. The objective was to leverage these models to automatically 
extract relevant features for more efficient training. While the accuracy improved for some ML models with the 
introduction of these DL models, it was not a universal enhancement across all models. In the final stage, we 
adopted a fusion approach, combining the strengths of both LSTM and CNN. This fusion technique allowed us 
to select the most suitable features from both models, leading to a remarkable increase in accuracy. Specifically, 
the results showed a significant jump to 99% accuracy, marking a substantial improvement from previous stages 
of the methodology.

Feature embedding
We sourced three datasets from a public repository and meticulously extracted unique features from each. 
The PIMA Indians Diabetes Dataset30 served as our base dataset. To increase dimensionality, we incorporated 
additional attributes from the Diabetes Dataset31 and the Early Stage Diabetes Risk Prediction Dataset29. While 
PIMA originally provided 9 attributes, we identified 15 unique attributes from the other two datasets that were 
not present in PIMA. We integrated these features for both diabetic and non-diabetic categories, resulting in a 
total of 24 attributes plus one target variable as diabetic and non-diabetic, as shown in Fig. 3.

The key takeaway from this process is the pivotal role of feature engineering in enhancing model accuracy. By 
carefully selecting and refining features, we were able to significantly boost the performance of both traditional 
ML and DL models. Additionally, the fusion of LSTM and CNN proved to be a potent strategy, resulting in a 
highly accurate classification model for diabetic and non-diabetic cases.

Results and discussion
The experiments utilized Python 3.10.4 and Jupyter Notebook, employing libraries including Seaborn, Scikit-
learn, Pandas, and NumPy. The experiments were conducted on an HP machine running Windows, equipped 
with 64 GB RAM and a 2 TB SSD.

Various evaluation metrics were utilized to assess the performance of ML classifiers, including precision, 
accuracy, recall, and F1 score40.

Fig. 2.  Proposed feature extraction approach where CNN and LSTM models are combined.
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Accuracy =

TrPo + TrNe

TrPo + TrNe + FaPo + FaNe
� (4)

	
P =

TrPo

TrPo + FaPo
� (5)

	
R =

TrPo

TrPo + FaNe
� (6)

	
F1-score =2 ∗ P ∗R

P +R
� (7)

where,

•	 TrPo: is true positive in which the sample belongs to Dibatic and the model also predicts it as Dibatic.
•	 FaPo: is a false positive in which the sample belongs to NON-Dibatic but the model predicts it as Dibatic.
•	 TrNe: is true negative in which the sample belongs to Dibatic and the model also predicts it as NON-Dibatic.
•	 FaNe: is a false negative in which the sample belongs to Dibatic but the model predicts it as NON-Dibatic.

Performance comparison of ML models with original features
Table 5 presents the results of ML models utilizing the original feature set. Both LR and RF perform admirably 
with an accuracy score of 0.96. RF, being a tree-based algorithm, excels due to its capacity to manage features 
without one-hot encoding, its ensemble approach to capturing intricate interactions, and its resistance to 
overfitting. LR shines in binary classification tasks, offering interpretable probabilities and aligning with linear 
assumptions for certain categorical data. DT also achieves good performance with an accuracy of 0.95, slightly 
lower than RF and LR, attributable to its inclination to overfit without the benefits of ensemble learning and 

Model Accuracy Class Precision Recall F1 score

DT 0.95

0 0.94 0.94 0.94

1 0.95 0.95 0.95

Micro. avg 0.95 0.95 0.95

RF 0.96

0 0.97 0.94 0.96

1 0.96 0.98 0.97

Micro. avg 0.96 0.96 0.96

LR 0.96

0 0.97 0.94 0.96

1 0.96 0.98 0.97

Micro. avg 0.96 0.96 0.96

SVC 0.91

0 0.87 0.94 0.91

1 0.95 0.89 0.92

Micro. avg 0.91 0.92 0.91

Table 5.  Experimental results using ML models when using the original features from the dataset.

 

Fig. 3.  Process followed in this study for embedding features from three datasets.
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regularization. Conversely, the SVC lags with an accuracy of 0.91, attributed to its lower noise tolerance and 
inefficiency in handling large datasets.

Performance comparison of ML models with ETC feature selection
Table 6 displays the results of ML models using the best-selected features. A set of 12 top features was extracted, 
resulting in an accuracy of 0.97, showcasing strong performance from DT, RF, and LR. Feature extraction is 
pivotal for enhancing the value of results, involving the selection and transformation of the most pertinent 
information from raw data. This process reduces dimensionality, highlights crucial patterns, and improves model 
efficiency and interpretability. ETC, a variant of RF, played a key role in this feature extraction, as it identifies 
and ranks important features. By focusing on the most informative features, ETC enhances model performance, 
reduces noise, improves accuracy, and accelerates computation, resulting in more effective decision-making 
and insights from the data. SVM’s suboptimal performance on features extracted from ETC could be due to the 
complexity and non-linearity of the features, lack of flexibility in adapting to ETC’s patterns, sensitivity to noise, 
and differences in algorithms.

Performance comparison of ML models with LSTM feature selection
Table 7 illustrates the performance of ML models on features extracted from LSTM. The use of LSTM for feature 
extraction can lead to decreased model performance compared to ETC, attributed to the mismatch between 
LSTM’s sequential data design and the tabular data typical in traditional ML tasks. LSTM, tailored for sequences 
like time series or text, may create complex representations unsuitable for traditional ML models, resulting in 
diminished performance.

On the other hand, ETC excels in tabular feature extraction, offering clear feature importance rankings that 
enhance model interpretability and prevent overfitting. DT achieved the highest accuracy of 0.96, followed by 
a slight decrease for RF to 0.95. LR and SVC showed drops in performance as well, with an accuracy of 0.94. 
Figure 4 illustrates the explanation of training and testing validation loss.

Model Accuracy Class Precision Recall F1 score

DT 0.96

0 0.95 0.97 0.96

1 0.98 0.95 0.97

Micro. avg 0.96 0.96 0.96

RF 0.95

0 0.94 0.94 0.94

1 0.95 0.95 0.95

Micro. avg 0.95 0.95 0.95

LR 0.94

0 0.92 0.94 0.93

1 0.95 0.93 0.94

Micro. avg 0.94 0.94 0.94

SVC 0.94

0 0.94 0.92 0.93

1 0.93 0.95 0.94

Micro. avg 0.94 0.94 0.94

Table 7.  Experimental results using ML models when features selected using LSTM model are used.

 

Model Accuracy Class Precision Recall F1 score

DT 0.97

0 1.00 0.94 0.97

1 0.96 1.00 0.98

Micro. avg 0.98 0.97 0.97

RF 0.97

0 1.00 0.94 0.97

1 0.96 1.00 0.98

Micro. avg 0.98 0.97 0.97

LR 0.97

0 0.97 0.97 0.97

1 0.98 0.98 0.98

Micro. avg 0.97 0.97 0.97

SVC 0.90

0 0.87 0.92 0.89

1 0.93 0.89 0.91

Micro. avg 0.90 0.90 0.90

Table 6.  Experimental results using ML models when trained and tested using ETC feature selection approach.
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Performance comparison of ML models with CNN feature selection
Table 8 provides a comparative overview of ML models using CNN features. Utilizing CNN for feature extraction 
improved RF and SVC performance compared to LSTM due to CNN’s ability to extract hierarchical, non-linear 
features, which align better with tabular data characteristics, thus enhancing model accuracy and generalization. 
Both RF and SVC achieved a performance of 0.97. Conversely, DT and LR performed less with 0.95 and 0.96, 
respectively.

DT model shows poor performance when used with features extracted using the CNN model. DT’s lower 
performance on CNN features is attributed to their complex and hierarchical nature, which may not align well 
with DT’s simple splitting rules. However, DT excels with LSTM features, benefitting from its sequential data 
handling capabilities. Figure 5 illustrates the explanation of training and testing validation loss.

Performance evaluation of ML models with CNN-LSTM feature selection
Table  9 presents ML models utilizing CNN-LSTM-based features. The notable increase in accuracy can be 
attributed to the synergistic strengths of CNNs and LSTMs.

CNNs excel at capturing spatial patterns, while LSTMs specialize in learning sequential patterns. The 
combination allows CNNs to extract hierarchical spatial features, subsequently processed by LSTMs to capture 
temporal dependencies. This integration of spatial and sequential information enables a deeper understanding 
of complex patterns, resulting in a substantial accuracy improvement. The models DT, RF, and LR achieved an 
accuracy of 0.99, while SVC yielded 0.96. Figure 6 illustrates the explanation of training and testing validation 
loss.

Figure 7 displays the confusion matrix of the top-performing model in each scenario. In the case of the original 
feature, RF exhibited the best performance with 77 correct predictions and 3 incorrect predictions. Similarly, 
with ML-based features, RF continued its strong performance with 78 correct and 2 incorrect predictions. When 
features were extracted from LSTM, DT showed significant improvement with 77 correct predictions and 3 
incorrect predictions. Extracting features from CNN, RF again performed well with 78 correct predictions and 2 

Model Accuracy Class Precision Recall F1 score

DT 0.95

0 0.94 0.94 0.94

1 0.95 0.95 0.95

Micro. avg 0.95 0.95 0.95

RF 0.97

0 0.97 0.97 0.97

1 0.98 0.98 0.98

Micro. avg 0.97 0.97 0.97

LR 0.96

0 0.97 0.94 0.96

1 0.96 0.98 0.97

Micro. avg 0.96 0.96 0.96

SVC 0.97

0 0.97 0.97 0.97

1 0.98 0.98 0.98

Micro. avg 0.97 0.97 0.97

Table 8.  Experimental results using ML models when CNN-extracted features are used for model training.

 

Fig. 4.  Training and validation accuracy, and loss per epoch, (a) Training and validation accuracy per epoch 
with LSTM, and (b) Training and validation loss per epoch with LSTM.
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Fig. 6.  Training and validation accuracy, and loss per epoch, (a) Training and validation accuracy per epoch 
with CNN-LSTM, and (b) Training and validation loss per epoch with CNN-LSTM models.

 

Model Accuracy Class Precision Recall F1 score

DT 0.99

0 1.00 0.97 0.99

1 0.98 1.00 0.99

Micro. avg 0.99 0.99 0.99

RF 0.99

0 1.00 0.97 0.99

1 0.98 1.00 0.99

Micro. avg 0.99 0.99 0.99

LR 0.99

0 1.00 0.97 0.99

1 0.98 1.00 0.99

Micro. avg 0.99 0.99 0.99

SVC 0.96

0 1.00 0.92 0.96

1 0.94 1.00 0.97

Micro. avg 0.97 0.96 0.96

Table 9.  Experimental results using ML models when features from the proposed CNN-LSTM model are used.

 

Fig. 5.  Training and validation accuracy, and loss per epoch, (a) Training and validation accuracy per epoch 
using CNN, (b) Training and validation loss per epoch using the CNN model.

 

Scientific Reports |        (2024) 14:23274 12| https://doi.org/10.1038/s41598-024-74357-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


incorrect predictions. Finally, using CNN-LSTM-based features, the model achieved 79 correct predictions with 
only 1 incorrect prediction.

Validation of the proposed approach
Table 10 summarizes k-fold cross-validation results for ML models using different feature sets: Original, ETC, 
LSTM, CNN, and CNN-LSTM. In the CNN-LSTM feature set, all models achieve 99% accuracy, with low 
standard deviations indicating consistent performance. The CNN feature set also shows strong results, with RF 
and LR reaching 97% accuracy. Models in the Original and ETC sets perform competitively, with accuracies 
ranging from 90-97%. SVC consistently exhibits lower accuracy and higher variability across feature sets. 
Overall, CNN-LSTM emerges as the most effective feature set for these models.

Performance comparison
Table 11 presents a comparison of accuracy levels from various studies in the literature on diabetes prediction. 
Each row represents a study, detailing the reference, year, features used, dataset type, classifier employed, and 
the reported accuracy. Notable findings include a 95.7% accuracy using LSTM-CNN in 2018, 98.1% with DNN 
in 2023, and 99.13% with ANN in 2023. The proposed model in 2024, utilizing CNN-LSTM features with an RF 
classifier, also achieves an accuracy of 99%, showcasing its performance alongside previous studies.

Conclusions and future work
Timely detection of diabetes can greatly help in determining the proper medication for the patients and avoid 
further complications related to the heart, lungs, eyes, etc. The use of ML and DL holds significant potential 
for accurate and rapid diabetes detection. In this direction, this study introduces a novel feature extraction 
approach to boost the performance of ML models by making an ensemble of LSTM and CNN models. The 
proposed model helps obtain highly contributing features from a combined dataset, comprising three different 
datasets. Consequently, model overfitting, low accuracy, and generalizability issues are resolved, in addition to 
obtaining higher accuracy. Experiments involve various scenarios where original features and features obtained 
from LSTM, CNN, and ETC are used for model training and testing. Experimental findings reveal the superb 
performance of the proposed CNN-LSTM feature engineering approach with a 0.99 accuracy score, thereby 
outperforming other approaches. Results from k-fold cross-validation, along with a comparison with existing 
methodologies, further illustrate the enhanced performance of the proposed method. In future work, we intend 
to experiment with transfer learning approaches for diabetes detection. In addition, diabetes detection in a real-
time environment is also under consideration. Future research could focus on enhancing the ensemble level of 
classifiers, which may lead to further accuracy improvements. Additionally, expanding the dataset is crucial; a 
larger dataset would enable more effective model training, potentially resulting in even higher accuracy. Building 

Fig. 7.  The confusion matrices for best-performing models, (a) RF using the original dataset, (b) RF using 
ETC-based features, (c) DT using LSTM-extracted features, (d) RF in the case of CNN features, and (e) RF 
using the features from CNN-LSTM model.
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on our work with feature ensembling, these approaches could significantly boost the model’s performance and 
reliability.

Data availability
The data can be requested from corresponding authors.
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