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ABSTRACT Wafer mappings (WM) help diagnose low-yield issues in semiconductor production by offering
vital information about process anomalies. As integrated circuits continue to grow in complexity, doing
efficient yield analyses is becoming more essential but also more difficult. Semiconductor manufacturers
require constant attention to reliability and efficiency. Using the capabilities of convolutional neural
network (CNN) models improved by hierarchical attention module (HAM), wafer hotspot detection is
achieved throughout the fabrication process. In an effort to achieve accurate hotspot detection, this study
examines a variety of model combinations, including CNN, CNN+long short-term memory (LSTM)
LSTM, CNN+Autoencoder, CNN+artificial neural network (ANN), LSTM+HAM, Autoencoder+HAM,
ANN+HAM, and CNN+HAM. Data augmentation strategies are utilized to enhance the model’s resilience
by optimizing its performance on a variety of datasets. Experimental results indicate a superior performance
of 94.58% accuracy using the CNN+HAM model. K-fold cross-validation results using 3, 5, 7, and 10 folds
indicate mean accuracy of 94.66%, 94.67%, 94.66%, and 94.66%, for the proposed approach, respectively.
The proposed model performs better than recent existing works on wafer hotspot detection. Performance
comparison with existing models further validates its robustness and performance.

INDEX TERMS Wafer hotspot detection, hierarchical attention module, autoencoder, data augmentation,
hybrid attention module, deep learning, image classification, convolutional neural networks.

I. INTRODUCTION

The silicon wafers are crucial parts of the manufacturing
process and are used in the creation of semiconductor
devices. Lithography is used to produce the complex patterns
needed for semiconductor operations. The chip’s ability to
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work highly depends on these patterns [1]. On the other
hand, a variety of manufacturing-related variables, including
process parameters and ambient conditions, may cause
surface defects on the wafer. Defects on the wafer surface
are a serious problem, as they can drastically reduce the
yield of wafer fabrication. Accurately identifying and fixing
these flaws is very important for a number of reasons. In the
first place, it expedites the early detection of flaws in the
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production process, enabling prompt remedial action thereby
improving the quality of wafers. Second, it makes it easier to
change manufacturing settings to increase the effectiveness
of production [2]. Thirdly, it is essential to reduce scrap rates,
which minimizes wasteful material use and manufacturing
expenses.

In the semiconductor industry, wafers and silicon are
closely related components, yet they have diverse functions
and unique qualities. A wafer is a thin, disc-shaped substrate
that is mainly composed of silicon, however, it can also be
formed of other materials. It serves as the manufacturing
canvas for semiconductor devices [3]. Wafers are carefully
cut, polished, and ready to be used in the fabrication
of microchips and integrated circuits. Conversely, silicon
describes the particular substance that is employed in the
production of semiconductors. It is a crystalline material
with superior electrical characteristics, which makes it the
best option for electronic component creation. In essence,
wafers serve as the structural foundation for silicon-based
semiconductor devices. They are designed for certain uses
and are available in a range of sizes [4]. Contrarily, silicon
is a raw material that must go through a number of steps
in order to be transformed into a useful semiconductor
component. To provide the required electrical qualities, the
silicon is grown cut, and doped by these procedures. Wafers
are essentially a type of refined silicon utilized in the
production of integrated circuits. The semiconductor industry
relies heavily on silicon and wafers, with silicon providing
the building blocks and wafers acting as the canvas for the
sophisticated electronic gadgets that run our contemporary
society [5].

Wafers are thin substrates that are flat and shaped like
discs and are usually constructed of silicon or another
semiconductor material. As the raw material used to create
integrated circuits, microchips, and other semiconductor
devices, they are essential to the field of electronics. These
wafers are the building blocks of contemporary electronic
components because they are finely constructed, polished to
almost flawlessness, and available in sizes ranging from a few
inches to greater diameters [6]. Wafers are manufactured by
growing, slicing, and polishing semiconductor material to the
appropriate thickness and surface quality. These wafers serve
as a canvas on which elaborate designs are made using etching
and photolithography techniques. Electronic circuits are built
on these patterns, which consist of transistors, capacitors, and
interconnects. Microelectronics also relies heavily on wafers;
the tiniest and most sophisticated chips are made on wafers
as tiny as 300 mm in diameter. Because of their extraordinary
electrical qualities and capacity to house intricate integrated
circuits, wafers are essential to the semiconductor industry as
they allow for the miniaturization of electronic devices [7].
These wafer-based chips are the foundation of many different
technologies, including computers, cell phones, medical
equipment, and automobile systems. Their significance is
only going to increase with the ongoing need for electronics
that are increasingly compact, potent, and energy-efficient.
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In wafers lay the groundwork for the technical breakthroughs
that have shaped our contemporary world, making them the
unsung heroes of the digital age [8].

In wafer fabrication [1], hotspots refer to purposely
generated localized defects or anomalies on a semiconductor
wafer [2]. These hotspots are strategically created to serve
various purposes, such as testing equipment sensitivity,
evaluating process variations, or validating defect detection
algorithms. The procedure for constructing hotspots begins
with meticulous planning, where specific areas or patterns on
the wafer are identified for hotspot generation [3]. A mask
is then designed to outline this pattern, which guides the
photolithography process to expose a photoresist layer on
the wafer surface. Subsequently, etching techniques are
employed to selectively remove material from the exposed
areas, forming the desired hotspot pattern [6]. Despite the
controlled nature of this process, hotspots are considered
defective because they can compromise the integrity and
functionality of semiconductor devices. Hotspots may lead
to electrical shorts, reduced device performance, or com-
plete device failure [4]. These defects can arise due
to various factors, including process variations, material
impurities, or incomplete etching. Consequently, wafers
with hotspots are typically rejected during quality control
inspections to ensure that only defect-free semiconductor
devices are delivered to customers. Furthermore, hotspots
can increase manufacturing costs and decrease overall yield,
emphasizing the importance of minimizing their occurrence
through rigorous process optimization and quality assurance
measures [7].

Inadequate to satisfy the demands of contemporary
industrialized goods, early identification of wafer hotspots
is frequently carried out manually by skilled inspectors.
This approach has drawbacks, including low efficiency, poor
accuracy, high expense, and strong subjectivity. In the realm
of wafer inspection, machine vision-based hotspot detection
techniques have currently supplanted manual inspection [9].
Deep learning vision-based fault detection techniques fre-
quently rely on laborious, human feature extraction. The
shortcomings of feature representation and extraction, data
preprocessing, and model learning procedures have been
overcome by the development of computer vision-based
detection techniques, particularly the introduction of neural
networks like convolutional neural networks. With their quick
development and widespread use in the field of hotspot
detection in semiconductor wafers, neural networks have
gained popularity due to their high efficiency, accuracy, low
cost, and great objectivity [10]. In this regard, the following
contributions are made

o This study proposes a novel approach for wafer hotspot

detection that utilizes a hierarchical attention module
(HAM) combined with a customized convolutional neu-
ral network (CNN). The HAM is introduced to enhance
detection accuracy. In addition, data augmentation is
also used to improve the resilience and robustness of the
proposed approach.
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o Deep learning models are also used in this study such as
convolutional neural networks (CNN), artificial neural
networks (ANN), and long short-term memory (LSTM).
In addition, the combination of deep learning models
are also utilized like CNN+LSTM, CNN+Autoencoder,
CNN+ANN, LSTM+HAM, and Autoencoder+HAM.
The approach enhances the training dataset’s richness
and generalization across real-world wafer images.

« The dataset consists of nine classes of wafer Map images
to capture spatial and temporal dependencies. Exper-
iments involve extensive investigation of stand-alone
and combined models, k-fold cross-validation, and
performance comparison with previous studies. The
proposed CNN+HAM model outperforms other deep
learning models adopted in experiments to enhance
semiconductor manufacturing quality control processes
with enhanced robustness and accuracy.

This study is separated into several subsequent sections: A
survey of the literature on recent research and technological
advancements is included in Section II. Section III entails
providing an overview of the study strategy, including the data
gathering strategies, data analysis approaches, and proposed
approach for hotspot detection. Results and a discussion of
the suggested approach are presented in Section IV. The
conclusion in Section V talks about the conclusion and future
research directions.

Il. RELATED WORK

A fabrication technique that makes it possible to produce
ultralow-loss, high-confinement, anomalous-GVD Si3N4
PIC at high yield and repeatable wafer scale. When compared
to previously published Si3N4 manufacturing procedures,
this optimized process which uses standard CMOS foundry
techniques has several benefits [11]. One meter-long spiral
waveguide with 2.4 dB ml loss may be produced using
dies that are only 5 mm?2 in size because of the process’s
high yield and ability to work over broad regions [12].
The study reveals that the inherent absorption-limited Q
factor of Si3N4 microresonators can exceed 2 x 108,
highlighting the importance of cleaning in microelectronic
integrated circuit production. The whole cleaning procedure
took place in a spotless room. During cleaning, ultrasonic
agitation mainly eliminates particles [13]. The technique
for measuring and identifying fractures along wafer edges
using dark-field infrared scattering imaging is used, which
allows edge cracks to be detected at the micron scale.
The study evaluates new technology expenses and costs
for next-generation manufacturing facilities with annual
module power capabilities ranging from a few hundred
megawatts to one gigawatt [14]. Certain vocabulary is
related to layout hotspot identification. Designed layout
patterns are transferred onto silicon wafers using a highly
variable lithographic technique. This study introduces a
high-dimensional feature extraction approach using machine
learning and convolutional neural networks, and a biassed
learning technique to improve hotspot identification accuracy
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and reduce false alarm penalties [ 15]. The goals of the hotspot
identification process are to minimize runtime, prevent
inaccurate predictions for non-hotspot clips, and find as many
actual hotspots as feasible. The author’s proposed model
achieves an average accuracy of 94.5% with a false-alarm
count of 33155.4, which is higher than previous efforts [16].

For the purpose of semiconductor process monitoring,
multivariate sensor data were evaluated using CNN-based
fault classification and fault diagnosis. The convolutional
layer of the conventional CNN was changed in the suggested
FDCCNN model to take into account the structural properties
of the data, which improved classification performance and
training speed [17]. Sensor data with varying lengths is
produced by semiconductor fabrication procedures.CNNs
and a self-attention mechanism are used in the author’s
suggested model to encode variable-length signals into fixed-
size vectors [18]. Resolution enhancement methods like
SRAFs, co-optimization, and OPC improve layout pattern
printability. Lithography simulation time is long, so creating
high-accuracy hotspot identification algorithms is crucial to
reduce turnaround time [19].

Identifying hotspots for lithography at the IC design
stage is a crucial step in obtaining high yields at modern
technological nodes. to suggest a CNN architecture that
does not need pooling and works well with post-OPC
mask pictures [20]. In EDSE, layout patterns are generated
randomly yet realistically by utilizing just the fundamental
design guidelines provided by the PDK. There are currently
commercial CAD tools available that can do this work [21].
Based on 10%-50% of training data, the author’s experimen-
tal results show that these approaches can produce 2.9-4.5%
greater accuracy at the same false alarm levels as the state-
of-the-art work [22], [23], [24]. Wafer map failure pattern
recognition (WMFPR) has been the subject to research
analysis, however, the majority of researches employed
raw wafer maps as the input data for their classification
algorithms [25]. The success of the suggested WMFPR
and WMSR also depends on this decreased representation.
WMFPR’s accuracy for the test set (118 595 wafer mappings)
was 94.63% [26].

The influence of lithography hotspots on manufacturing
yield is significant. It is now a crucial issue to identify these
prohibited pattern topologies at the early physical design
or physical confirmation stages. Provide a very efficient
hotspot identification method based on the study’s PCA
SVM classifier. Using the Propsed technique, which correctly
identifies more than 80% of the hotspots on all testing layouts,
maximizes accuracy while minimizing false alarms [27].
High accuracy and data learning algorithms are made possible
by pattern matching techniques, which also offer great adapt-
ability to new lithographic regulations and procedures [28].
Three- and two-tier functioning 3-D circuits were exhibited,
along with the development of the 3-D technology and design
guidelines [29]. The method allows the creation of 3-D
circuits using various technologies and materials, as well
as the unlimited placement of dense-vertical connections
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FIGURE 1. Workflow of hotspot detection using proposed approach in wafer manufacturing process.

between levels. For image applications, where a device with
intricate pixel circuitry can achieve a 100% fill factor, the
technology’s benefits are clear [30]. The Defense Advanced
Research Projects Agency (DARPA)-sponsored multichip
programmer of today focuses on applying 3-D technology to
mixed-signal applications [31]. The circuit model, consisting
of lumped circuit RLCG parts, was used for eye-diagram and
TDR/TDT simulations, showing slower signal rise time but
maintaining signal integrity [32].

Four thousand polycrystalline silicon solar cells were ana-
lyzed in order to evaluate photovoltaic (PV) microcracks [33].
The cracks were inspected using electron microscopy, which
made it easier to find the cracks by capturing images
from the Back Scratched Electron Diffraction (BSED) and
Everhart-Thornley Detector (ETD) [34]. It was discovered
that the microcracks ranged in size from 50 mm to a
maximum of 4 mm [35]. A new method for extracting
features via layer patterns, which have far less discriminative
information than metal layer patterns, is provided by the deep
layout metric learning mechanism [36]. Additionally, a new
via-layer benchmark suite has been employed for thorough
verification in order to assess the actual performance of
hotspot detectors [37]. The authors analyzed hotspot stress on
two GG modules, revealing high temperatures leading to cell
failure, fractures, and broken fingers in the restressed module,
causing a significant 8.2% Pmax loss [38].

The behavior of substantial damage has been analyzed
under the surface on a 300 mm diameter, 6 um thick
monocrystalline silicon wafer caused by ultrafine dry polish-
ing. Dry polishing improves the strength and homogeneity
of the ultra-thin wafer by eliminating micro-cracks and high-
pressure phases. Polishing merely created tension in the
upper, thinner surface [39]. Dry polishing does, nonetheless,
also increase the risk of electrical dependability. In the
meanwhile, the results shed light on the dependability of
sophisticated electronic packaging [40]. Wing-out wafer-
level package technology holds potential in radar, communi-
cation test, and measurement applications due to its unique
blend of technological and business benefits. It can meet
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RF standards with FOWLP, offering cost and performance
options, and co-designing the chip and package [41].

A machine learning-based, non-invasive technique for
diagnosing faults in PV modules was put forth. Through
the automated identification and precise categorization of
non-uniformity in PV modules, the suggested technique
improves the intelligence of defect diagnosis. The author’s
suggested methods have a low computing cost and a
94.10% accuracy rate [42]. The Naive Bayes (nBayes)
classifier, a machine learning system, is trained to identify
the categorized hotspots. A 42.24-kWp PV system is used
for the experimental findings, which show that a mean
identification rate of about 94.1% is obtained for the set of
375 samples [43].

A. GAP ANALYSIS

Developments in photovoltaic and semiconductor technolo-
gies have enhanced system dependability and problem
identification. Edge fracture identification, signal-to-noise
ratios, and pattern printability for nanoscale circuits are being
improved by high SNR micro-crack detection, sophisticated
optical fault detection techniques, machine learning models
like CNNs, and resolution improvement technologies in
lithography. Deep learning techniques in photovoltaics have
demonstrated fault detection accuracy of around 94% to
94.5%; additional efficiency improvements are anticipated
with quantum computing. High-performance optical systems
are made possible by new manufacturing processes for Si3N4
photonic integrated circuits, while solar energy dependability
is increased by knowledge of microcracks in polycrystalline
silicon solar cells. In order to improve accuracy and
computational efficiency for hotspot identification in wafer
production, this research presents a hierarchical attention
module combined with a convolutional neural network
(CNN). This strategy outperforms conventional techniques
and current deep learning models by enabling the machine to
concentrate on important characteristics at various sizes. This
method exhibits practical applicability for real-time industrial
applications by minimizing false positives and negatives.
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The results demonstrate the promise of cutting-edge machine
learning approaches for enhancing production procedures
while also setting a new standard in the semiconductor man-
ufacturing industry. This research provides the groundwork
for further research and technical developments in the field.

lll. METHODOLOGY

This study proposes a novel approach for hotspot detection
in wafers comprising CNN and HAM. The workflow of the
proposed approach is presented in Figure 1. In the proposed
strategy, initially, it is necessary to ensure that the wafer map
pictures and defect image data from the analysis are included
in the imported datasets. Second, image augmentation is used
to improve model performance and enhance datasets. CNN,
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TABLE 1. Statistics of dataset.

Classes Training Image | Testing Image
Scratch 409 150
Center 409 165
Edge-ring | 409 165
Donut 409 139
Random 409 150
Edge-loc 409 165
None 409 140
Near-Full | 409 54
Loc 409 165
Total 3681 1293

ANN, LSTM, and Autoencoders are deep learning models
that have been developed. Task-dependent feature selectors
have not been explicitly created. Given the high feature
studies at each layer in deep learning models, following the
completion of the model compilation, the model is achieved
by the use of 3681 wafer map images, and 1293 are trained
through model testing. In this dataset, multi-classification has
been applied.

To enhance the model’s functionality even further, a HAM
is incorporated. This approach improves the accuracy and
efficacy of the defect identification process by allowing the
model to focus on certain regions or characteristics within
the wafer map images. Research is well-equipped to precisely
identify faults on semiconductor wafers with the combination
of models, making a valuable contribution to the progress of
quality control in semiconductor production. Model evolution
and outcomes are carried out once the model has been trained
using wafer map images. The results and testing of the
suggested evolution model are carried out. The model is
now prepared to extract the features from the wafer map.
The architecture of the proposed approach is illustrated in
Figure 2.

A. DATASET DESCRIPTION

The wafer map (WM) datasets used in this study are freely
accessible on Kaggle. There are nine classes in it. The
distribution of the dataset is balanced in terms of the number
of categories. ‘Center’, ’Donu’t, ’Edge-loc’, ‘Edge-ring’,

VOLUME 12, 2024



M. Shahroz et al.: Hierarchical Attention Module-Based Hotspot Detection in Wafer Fabrication

IEEE Access

‘Loc’, ‘Near-Full’, ‘None’, ‘Random’, and ‘Scratch’ are
the names of the classes. We utilized the research dataset,
which was closely examined, to identify hotspots. Process
problems and wafer map patterns from the CP yield wafer
acceptance test might occur in semiconductors. Particles
assist engineers in finding clues. However, there is a
problem with categorizing the wafer map patterns without
an operator’s help. This topic has been the subject of other
studies, and this study presents the outcomes of applying
deep learning. Examples of common patterns are shown in
Figure 3, and each one contains information about a distinct
process failure. The dataset’s statistic is displayed in Table 1.

B. IMAGE AUGMENTATION

The primary goal of image augmentation is to artificially
expand the size of the dataset using a variety of trans-
formations to the original images. By exposing the model
to several iterations of the source data during training,
image augmentation aids the neural network learn invariant
features and reduces overfitting. For instance, rotating an
image can help the model recognize objects from different
orientations, and flipping horizontally can simulate variations
in the scene. Through these diverse augmentations, the
model becomes more resilient to variations in real-world
data, leading to improved performance when faced with
unseen or distorted images during inference. Ultimately,
the incorporation of image augmentation techniques in
hotspot detection significantly contributes to the optimization
of semiconductor manufacturing processes, resulting in
improved product quality and higher yields.

C. DEEP LEARNING MODELS

Deep learning has a transformative influence on the area of
wafer hotspot detection within semiconductor manufactur-
ing. Utilizing advanced techniques, including CNN, ANN,
LSTM, and autoencoder, has revolutionized the ability to
precisely identify hotspots on semiconductor wafers. Deep
learning models excel in their capacity to scrutinize intricate
patterns and defects within wafer images, making them a
highly effective asset in the realm of quality control. The
capability to acquire knowledge and adapt from extensive
datasets significantly enhances the precision and efficiency
of hotspot detection, thereby leading to substantial enhance-
ments in manufacturing processes and the overall quality of
products. This technology has evolved into an indispensable
asset for semiconductor fabrication, as it ensures the early
detection of potential issues, resulting in increased yields and
the production of defect-free products.

A CNN is a class of deep neural networks specifi-
cally designed for image recognition and processing tasks.
Its architecture is inspired by the human visual system,
employing layers of learnable filters or kernels to extract
hierarchical features from input images. Filters go across the
input images in the convolutional layers, convolving them
to identify patterns like edges and textures. Pooling layers
down sample feature maps and helps to reduce complexity.
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To create predictions, the fully linked layers merge the
acquired characteristics. This hierarchical and localized fea-
ture learning enables CNNs to achieve remarkable accuracy
in computer vision applications. This technique exploited the
CNN model and had wafer hotspot detection. The output of
a convolutional layer with ReLU activation is given by

C(i,j) = ReLU (Z D G +m,j+n)-Fm, n)+ b)
(D

An ANN is a computational model that is used to do
tasks like pattern recognition, classification, and regression.
It is inspired by the structure and operation of the human
brain. A Wafer hotspot detection has been employed in this
component. An ANN is made of the input layer, hidden and
output layer with linked nodes arranged into layers. The first
layer of the system receives the data, which is then processed
and modified as it moves through the hidden levels using a
sequence of weighted connections and activation functions.
The weights are iteratively adjusted during training, guided
by a learning algorithm, to reduce the discrepancy between
the real and anticipated outputs. The final layer produces the
network’s output. The output of a fully connected layer with
activation is given by

n
y = Activation (Z wi - x; + b) 2)

i=1
where y is the output, cdot is the activation, w; are the weights,
b is the bias term and 7 is the number of input features.

LSTM was created to solve the vanishing gradient issue
and make it possible to learn long-term relationships in
sequential data more successfully. Time series prediction
and natural language processing are two applications where
LSTMs excel. Unlike conventional RNNs, LSTMs have
gating mechanisms and memory cells that enable them
to selectively remember or forget information over long
sequences. LSTM has a memory cell, input gate, forget gate,
and output gate. It stores information over time, regulates
information flow, and learns to adapt its gate parameters
through backpropagation. This architecture makes LSTMs
effective in handling long-term dependencies, addressing the
limitations of standard RNNs, and making them powerful
tools for sequential information processing. The LSTM
model has been deployed in this component to locate wafer
hotspots.

A kind of ANN type called an autoencoder is made
for unsupervised learning. and dimensionality reduction.
The fundamental idea behind an auto-encoder is to encode
input data into a lower-dimensional representation and then
reconstruct the input from this encoded representation.
During training, the network learns to minimize the differ-
ence between the input and the reconstructed output. The
bottleneck layer in the middle of the auto-encoder serves as
a compressed representation of the input data. Autoencoders
find applications in tasks such as data denoising, anomaly
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Convolutional Neural Networks (CNNs) + Hierarchical Attention Module (HAM)
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FIGURE 4. Hybridization of proposed model based on CNN and HAM.

TABLE 2. Hyperparameters of all the models used in this research.

Models Layers | Kernal_size | Activation Function | Epoch
CNN 8 4,4) relu,softmax 30
CNN+ANN 8 3.,3) relu,softmax 30
CNN+LSTM 11 3.,3) relu,softmax 30
CNN-+Auto encoder 9 3.,3) relu,softmax,sigmid 30
CNN+HAM 13 4,4) relu,softmax 30
ANN+HAM 14 4.4) relu,softmax 30
LSTM+HAM 9 - softmax 30
Autoencoder+ HAM 17 - relu,sigmid,softmax 30

detection, and feature learning. By forcing the model to
capture essential features in a reduced-dimensional space,
autoencoders can effectively learn meaningful representa-
tions of complex data, making them valuable tools in various
domains of machine learning. This component uses the
auto-encoder approach to implement wafer hotspot detection.
Autoencoder model, the reconstruction of the input %from the
encoded representation z can be represented by the following
equation:

X = Decoder(Encoder(X)) (3)

While deep learning models need large amounts of data
for training, data gathering, and labeling is not an easy task.
Recent efforts on surrogate modeling can potentially help in
this regard. For example, [44] combined surrogate modeling
and physics-informed ML to build a neural network that can
perform better even while small datasets are used. Physic-
based prior information can be incorporated without calcu-
lating derivates in the loss function. Similarly, the concerns
raised about the computational complexity of deep learning
models can be mitigated using the Gaussian process (GP),
as evaluated by [45]. The study designed a GP-based frame-
work to quantify prediction-related uncertainties, thereby
reducing additional evaluation of deep learning models.
Another similar endeavor is [46] where GP is combined with
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an autoencoder for multi-task spatiotemporal regression to
reduce computational complexity.

1) HIERARCHICAL ATTENTION MODULE

The HAM is a sophisticated neural network architecture
designed to enhance the model’s ability to focus on relevant
information at different levels of abstraction within a given
input sequence. Operating on the principle of hierarchical
attention mechanisms, HAM integrates multiple layers of
attention to selectively weigh the importance of various
parts of the input data. This enables the model to discern
and prioritize features across different hierarchical levels,
capturing both local and global dependencies. The working
principle of HAM involves the application of attention
mechanisms at multiple hierarchical levels, allowing the
model to give various input sequence parts differing levels
of priority. By dynamically adjusting attention weights, the
module effectively attends to salient features and suppresses
irrelevant information, facilitating improved performance in
tasks such as natural language processing, image recognition,
and sequence generation. This component uses a variety
of models, including CNN, ANN, LSTM, and autoencoder,
in conjunction with the HAM module model to identify wafer
hotspots. The architecture of CNN and HAM models are
shown in Figure 4 and the hyperparameters of all models are
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given in Table 2. The ‘categorical cross entropy’ loss is used
for all models. Similarly, the ‘Adam’ optimizer is used along
with the ‘accuracy’ as the evaluation metric.

2) EVALUATION PARAMETERS

In wafer hotspot detection, the assessment of detection
algorithm effectiveness relies heavily on key evaluation
parameters. Accuracy, precision, recall, the F1 score, and the
confusion matrix are integral to measuring the performance
of these algorithms. Accuracy serves as an indicator of
overall correctness and is calculated using correct predictions
(true positive (TP), and true negative (TN)), and total
predictions. Precision plays a crucial role in minimizing
false alarms, assessing the proportion of true hotspots
among the predicted ones through the consideration of TP
and false positives (FP). On the flip side, recall evaluates
the algorithm’s proficiency in identifying actual hotspots
using TP and false negatives (FN). The F1 score considers
precision and recall, providing a comprehensive measure of
the algorithm’s overall effectiveness. To gain deeper insights
into strengths and weaknesses, the confusion matrix breaks
down TP, TN, FP, and FN. Altogether, these evaluation
parameters collaboratively contribute to refining the accuracy
and reliability of wafer hotspot detection systems. Here are
the equations and formulas for accuracy, precision, recall, and
F1 score.

(TP+1TN)
Accuracy = 4
(TP+ TN + FP + FN)
. (TP)
Precision = ————— )
(TP + FP)
(TP)
Recall = ————— (6)
(TP + FP)
2 x (Precision * Recall)
F1 score = — @)
(Precision + Recall)

IV. RESULTS AND DISCUSSION

Deep learning models’ capacity to precisely analyze and
interpret data in order to provide predictions determines
how well they work. Several criteria are used to assess this
performance, including recall, accuracy, precision, and the F1
score.

Convolutional Neural Networks: CNNs demonstrate
impressive effectiveness in addressing wafer map hotspot
classification tasks, employing evaluation metrics such as
accuracy, precision, recall, and the F1 score. These networks
acquire insights into patterns and features from wafer map
datasets and are evaluated using separate test datasets.
Precision computes the percentage of properly predicted
positive cases, whereas accuracy evaluates the ratio of
correctly categorized instances to the overall sample size.
Accuracy, precision, recall, and F1 scores are increased
in CNNs by optimizing their weights and biases. CNNs
are well known for their effectiveness and may be used
for a wide range of classification tasks, especially when
dealing with picture data. The CNN algorithm showed
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TABLE 3. Performance of convolutional neural network.

Epochs | Accuracy | Precision | Recall | F1-Score
5 0.669 0.7145 0.669 0.684

10 0.8484 0.8532 0.8484 | 0.8475
15 0.8716 0.8735 0.8716 | 0.8714
20 0.819 0.8291 0.819 0.8131
25 0.8948 0.8954 0.8948 | 0.8945
30 0.8894 0.9011 0.8894 | 0.8894

True

Predicted

FIGURE 5. Confusion matrix for CNN model.

impressive performance recall is 89.48%, accuracy is
89.48%, precision is 89.54%, and F1 score is 89.45%. As seen
in Table 3, these findings demonstrate the model’s capacity to
correctly forecast outcomes and successfully capture positive
examples.

Figure 5 presents the CNN model’s predictions using
testing data in the form of the confusion matrix. The
confusion matrix shows results in a cross-section of predicted
and actual classes such as 0 to 8. The X-axis shows predicted
results and the y-axis shows actual classes. The diagonal of
the confusion matrix shows the true prediction performed by
such as 0 classes in true classes and predicted classes show
1157 correct predictions out of 1293 while 136 predictions
are incorrect.

A. HYBRID MODEL OF CNN AND LSTM

CNNss are highly effective in classifying wafer map hotspots.
A novel approach combines CNN with LSTM to capture
spatial patterns and temporal dependencies in wafer map
hotspot data. The CNN component excels in feature extrac-
tion, while the LSTM model models sequential data. The
integrated model, combining two powerful neural network
architectures, enhances classification accuracy, precision,
recall, and F1 scores in wafer map data, making it promising
for various spatial and temporal classification scenarios.
The CNN+LSTM algorithm performed admirably, with an
accuracy of 90.02%, a precision of 90.53%, a recall of
90.02%, and an F1 score of 90.12%. These results show that
the model can make accurate predictions, as shown in Table 4.
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TABLE 4. Result for hybrid CNN+LSTM model.

Epochs | Accuracy | Precision | Recall | F1-Score
5 0.5329 0.557 0.5329 | 0.5239
10 0.7022 0.705 0.7022 | 0.6992
15 0.8112 0.8242 0.8112 | 0.8146
20 0.8484 0.853 0.8484 | 0.8495
25 0.8995 0.9014 0.8995 | 0.8992
30 0.9002 0.9053 0.9002 | 0.9012

True

0 1 2 3 4 5
Predicted

FIGURE 6. Confusion matrix for CNN+-LSTM model.

The confusion matrix for the CNN+LSTM model is
shown in Figure 6. Results are displayed in the confu-
sion matrix as a cross-section of actual and anticipated
classes, ranging from O to 8. Results show that the
CNN+LSTM model has 129 wrong predictions out of
1293 total predictions while 1164 predictions are correct.
These numbers are better than only using the CNN model for
prediction.

B. RESULTS FOR HYBRID CNN+AUTOENCODER MODEL

CNN has indeed showcased remarkable effectiveness when it
comes to addressing wafer map hotspot classification tasks.
To further enhance the capabilities of these models, a cutting-
edge approach involves the incorporation of CNNs with
autoencoders. This hybrid model combines the strengths of
CNNs in feature extraction from wafer map images with
the unsupervised learning abilities of autoencoders. Autoen-
coders are particularly adept at capturing the underlying
structure and reducing the dimensionality of complex data.
When merged with CNNs, this integrated model becomes
a powerful tool for hotspot classification tasks. By jointly
optimizing their weights and biases, the integrated CNNs
and Auto encoder’s model achieves heightened levels of
accuracy, precision, recall, and F1 scores in wafer map
hotspot classification. With an accuracy of 91.57%, precision
of 91.71%, recall of 91.57%, and F1 score of 91.56%,
the CNN+Auto encoder algorithm performed wonderfully.
As seen in Table 5, these findings demonstrate the model’s
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TABLE 5. Result for CNN+Autoencoder model.

Epochs | Accuracy | Precision | Recall | F1-Score
5 0.6156 0.6579 0.6156 | 0.6111
10 0.7703 0.7762 0.7703 | 0.7645
15 0.8051 0.8125 0.8051 | 0.8019
20 0.7881 0.7908 0.7881 | 0.7865
25 0.8917 0.8941 0.8917 | 0.8919
30 0.9157 0.9171 0.9157 | 0.9156

True

Predicted

FIGURE 7. Confusion matrix for CNN+Autoencoder model.

ability to correctly collect positive instances and forecast
outcomes.

A confusion matrix representing all of the predictions
produced by the CNN+-Auto encoder model using testing
data is displayed in Figure 7. The confusion matrix shows the
results as a cross-section of the expected and actual classes,
with values ranging from O to 8. The predicted results are
shown on the x-axis, while the actual classes are shown on the
y-axis. On the diagonal of the confusion matrix, for instance,
is the true prediction provided by each class. Results indicate
a total of 1184 correct predictions which is higher than CNN
alone, as well as, a hybrid of CNN with LSTM. The hybrid
CNN-+Autoencoder makes only 109 wrong predictions out
of 1293 total predictions.

C. RESULTS FOR CNN+ANN MODEL

In fact, CNNs have proven to be remarkably successful
in wafer map hotspot classification tasks. In a strategy
to advance these models’ capabilities, CNNs and ANNs
are combined in a forward-looking manner. The combined
strengths of ANNs, which provide a wider range of data
processing capabilities, and CNNs, which excel at extracting
spatial features from pictures, are utilized in this integrated
model. The model gets a thorough grasp of the underlying
patterns and relationships in the wafer map data by integrating
several neural network architectures. The CNN and ANN
components are taken into consideration throughout the
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TABLE 6. Result for CNN+ANN model.

Epochs | Accuracy | Precision | Recall | F1-Score
5 0.7417 0.7989 0.7417 | 0.7359
10 0.8059 0.8274 0.8059 | 0.8108
15 0.9002 0.9057 0.9002 | 0.9012
20 0.9365 0.9367 0.9365 | 0.9364
25 0.9041 0.9089 0.9041 | 0.9043
30 0.928 0.932 0.928 0.9285

True

Predicted

FIGURE 8. Confusion matrix for CNN4+-ANN model.

iterative optimization process, which results in an integrated
model that achieves high levels of recall, accuracy, precision,
and F1 scores in wafer map hotspot classification tasks.
The CNN+ANN algorithm has excellent performance, with
an accuracy of 93.65%, precision of 93.67%, recall of
93.65%, and F1 score of 93.64%. These results show that the
model can accurately gather positive examples and predict
outcomes, as shown in Table 6.

Figure 8 shows the confusion matrix that summarises all of
the predictions made by the CNN+ANN model using testing
data. With values ranging from O to 8, the confusion matrix
displays the findings as a cross-section of the actual and
predicted classes. The model shows a superior performance
than CNN, CNN+LSTM, and CNN+Autoencoder by mak-
ing 1211 correct predictions while only 82 predictions are
wrong. It shows the model’s capability to accurately predict
various classes of wafer map hotspots.

D. EXPERIMENTAL RESULTS FOR LSTM+HAM

To complement the prowess in wafer map hotspot classifica-
tion, LSTM and the integration of the HAM offer a promising
approach. LSTMs are a kind of recurrent neural network
intended to identify patterns and sequential relationships
in data. When combined with HAM, which provides a
mechanism for the model to focus on the most relevant
information at different hierarchical levels, the resulting
model becomes well-suited for analyzing complex wafer
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TABLE 7. Result for LSTM+HAM model.

Epochs | Accuracy | Precision | Recall | F1-Score
5 0.5282 0.5322 0.5282 | 0.514

10 0.6744 0.6882 0.6744 | 0.6776
15 0.7687 0.7744 0.7687 | 0.7577
20 0.8043 0.8149 0.8043 | 0.7991
25 0.8522 0.8549 0.8522 | 0.852

30 0.8917 0.8943 0.8917 | 0.8919

True

Predicted

FIGURE 9. Confusion matrix for LSTM+HAM model.

map datasets. LSTMs process sequential wafer map data,
considering manufacturing process temporal dependencies.
HAM allows selective attention to areas of interest, enhancing
hotspot detection accuracy. Hierarchical attention structure
helps discern critical patterns at multiple scales. High accu-
racy, precision, recall, and F1 scores make them valuable for
image data classification tasks. the LSTM+HAM algorithm
performs quite well as accuracy of 89.17%, precision of
89.43%, recall of 89.17%, and F1 score of 89.19%. As seen
in Table 7, these findings demonstrate that the model can
reliably collect good instances and forecast results.

A confusion matrix encapsulating all of the predictions
generated by the LSTM+HAM model using testing data
is displayed in Figure 9. The confusion matrix shows the
performance of a hybrid model in correctly predicting the
samples for each class. Results indicate the LSTM+HAM
models make 1153 correct predictions while 140 predic-
tions are wrong. This performance is poor compared to
CNN, CNN+LSTM, CNN+Autoencoder, and CNN+ANN
models.

E. RESULTS FOR AUTOENCODERS+HAM MODEL

Autoencoders excel at uncovering latent patterns and features
within data, which is particularly valuable in the context
of wafer map analysis. By employing HAM, this integrated
model can selectively emphasize crucial regions of the wafer
maps, thereby elevating the precision and accuracy of hotspot
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TABLE 8. Result for Auto encoder+HAM model.

Epochs | Accuracy | Precision | Recall | F1-Score
5 0.6419 0.6315 0.6419 | 0.624

10 0.8399 0.8508 0.8399 | 0.84

15 0.8012 0.8144 0.8012 | 0.8006
20 0.8925 0.8981 0.8925 | 0.8941
25 0.9226 0.9271 0.9226 | 0.9227
30 0.9187 0.9242 0.9187 | 0.9191

True

Predicted

FIGURE 10. Confusion matrix for Auto encoder+HAM model.

detection. The hierarchical nature of the attention module
enables the model to discern critical patterns across multiple
scales, which is essential for situations where hotspot features
may manifest at various levels of granularity within the
data. His holistic solution enhances the precision, recall,
and F1 scores, establishing its efficacy in addressing wafer
map hotspot classification and solidifying its applicability
in image data classification tasks. The Auto encoder+HAM
algorithm works rather well, with an accuracy of 92.26%,
precision of 92.71%, recall of 92.26%, and F1 score of
92.27%. These results show that the model can consistently
gather excellent examples and estimate outcomes, as seen in
Table 8.

Figure 10 shows a confusion matrix that contains all of
the predictions made by the Auto encoder+HAM model
utilizing testing data. With values ranging from O to 8, the
confusion matrix displays the findings as a cross-sectional
of the actual and predicted classes. Results regarding correct
and wrong predictions by the hybrid Autoencoder+HAM
model indicate that 1193 samples are predicted correctly
out of 1293 samples while 100 predictions are wrong. The
performance of the Autoencoder+HAM model is better
than LSTM+HAM, however, poor than other hybrid models
implemented in this study.

F. HYBRID MODEL ANN+HAM

To further bolster the capabilities of wafer map hotspot
classification, the inclusion of ANN in conjunction with the
HAM provides a promising alternative. ANNs are a useful
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TABLE 9. Result for ANN+HAM model.

Epochs | Accuracy | Precision | Recall | F1-Score
5 0.7332 0.7371 0.7332 | 0.7217
10 0.8074 0.8127 0.8074 | 0.8065
15 0.8685 0.8728 0.8685 | 0.8682
20 0.9134 0.9146 0.9134 | 0.9138
25 0.9288 0.9298 0.9288 | 0.9289
30 0.9451 0.9481 0.9451 | 0.9451

True

Predicted

FIGURE 11. Confusion matrix for ANN+HAM model.

addition to the toolset for wafer map analysis because of
their reputation for being able to recognize intricate patterns
and correlations within data. When paired with HAM, this
integrated model becomes proficient in focusing on critical
areas within the wafer maps, thereby enhancing precision
and accuracy in hotspot detection. The hierarchical structure
of the attention mechanism empowers the model to discern
crucial patterns across multiple scales, a crucial feature
in scenarios where hotspot characteristics may manifest at
varying levels of granularity within the dataset. This holistic
solution not only contributes to higher precision, recall,
and F1 scores but also solidifies its efficacy in addressing
wafer map hotspot classification. The ANN+HAM algorithm
performs rather well with an accuracy of 94.51%, precision of
94.81%, recall of 94.51%, and F1 score 0of 94.51%. As Table 9
demonstrates, these findings demonstrate that the model can
reliably collect top-notch instances and estimate results.

A confusion matrix including every prediction the
ANN+HAM model produced using testing data is displayed
in Figure 11. The confusion matrix shows the results as
a cross-sectional of the actual and projected classes, with
values ranging from O to 8. The model is able to make
1222 predictions showing superior performance compared to
other models used in this study. The model has only 71 wrong
predictions.

G. EXPERIMENTAL RESULTS FOR CNN+HAM HYBRID
MODEL

The inclusion of CNN in conjunction with the HAM presents
a compelling alternative. CNNs are renowned for their
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TABLE 10. Result for CNN+HAM model.

Epochs | Accuracy | Precision | Recall | F1-Score
5 0.7548 0.7629 0.7548 | 0.7554
10 0.8484 0.8461 0.8484 | 0.846

15 0.8832 0.8885 0.8832 | 0.8832
20 0.9157 0.916 0.9157 | 0.9153
25 0.9397 0.9407 0.9397 | 0.9397
30 0.9458 0.948 0.9458 | 0.9459

True

Predicted

FIGURE 12. Confusion matrix for CNN+HAM model.

prowess in discerning intricate patterns and features within
data, and their application within the context of wafer
map analysis holds significant promise. The hierarchical
structure of the attention mechanism equips the model
with the ability to identify critical patterns across various
scales, a fundamental requirement in scenarios where hotspot
features may manifest at different levels of granularity within
the dataset. When combined with HAM, this integrated model
becomes adept at directing its attention toward crucial regions
of the wafer maps, resulting in an elevation of precision and
accuracy in hotspot detection. The CNN+HAM algorithm
works rather well, with an accuracy of 94.58%, precision of
94.48%, recall of 94.58%, and F1 score of 94.59%. These
results show that the model can consistently gather excellent
cases and predict outcomes, as Table 10 illustrates.

Figure 12 provides a confusion matrix with all of the
predictions the CNN+HAM model made using testing data.
With values ranging from O to 8, the confusion matrix
displays the findings as a cross-sectional of the actual and
predicted classes. The CNN+HAM hybrid outperforms all
other models implemented in this study with 1223 correct
predictions with only 70 wrong predictions for nine classes
of wafer map hotspots.

H. RESULTS OF K-FOLD CROSS-VALIDATION
The proposed approach has to go through k-fold cross-

validation in order to validate the outcome. The findings for
k = 3,5,7, and 10 are shown in Tables 11, 12, 13, and 14,
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TABLE 11. Model performance with k = 3.

Fold | Accuracy | Precision | Recall | F1-Score

1 0.9397 0.9429 0.9397 | 0.9403

2 0.9490 0.9490 0.9490 | 0.9488

3 0.9512 0.9515 0.9513 | 0.9512

Mean | 0.9466 0.9478 0.9467 | 0.9468
TABLE 12. Model performance with k = 5.

Fold Accuracy | Precision | Recall | F1-Score

1 0.9537 0.9566 0.9537 | 0.9541

2 0.9189 0.9217 0.9189 | 0.9195

3 0.9537 0.9519 0.9537 | 0.9536

4 0.9729 0.9731 0.9729 | 0.9728

5 0.9341 0.9348 0.9466 | 0.9468

Mean | 0.9467 0.9476 0.9492 | 0.9494
TABLE 13. Model performance with k = 7.

Fold | Accuracy | Precision | Recall | F1-Score

1 0.9568 0.9622 0.9568 | 0.9576

2 0.9351 0.9382 0.9351 | 0.9352

3 0.9297 0.9306 0.9297 | 0.9297

4 0.9405 0.9421 0.9405 | 0.9403

5 0.9784 0.9784 0.9784 | 0.9783

6 0.9673 0.9707 0.9673 | 0.9681

7 0.9185 0.9208 0.9185 | 09184

Mean | 0.9466 0.9490 0.9466 | 0.9468
TABLE 14. Model performance with k = 10.

Fold Accuracy | Precision | Recall | F1-Score

1 0.9538 0.9607 0.9538 | 0.9544

2 0.9538 0.9561 0.9538 | 0.9537

3 0.9231 0.9228 0.9231 | 0.9240

4 0.9147 0.9157 0.9147 | 0.9144

5 0.9379 0.9458 0.9379 | 0.9374

6 0.9690 0.9705 0.9689 | 0.9690

7 0.9767 0.9771 0.9767 | 0.9767

8 0.9690 0.9713 0.9690 | 0.9694

9 0.9379 0.9418 0.9379 | 0.9381

10 0.9302 0.9328 0.9302 | 0.9297

Mean | 0.9466 0.9495 0.9466 | 0.9467

respectively. The results demonstrated in Table 13 show that
the proposed model performs much better withk =5 and k =
7 in K-fold cross-validation. Overall, the performance of the
proposed model is similar for all values of k, with marginal
differences.

I. COMPARATIVE ANALYSIS OF ALL MODELS

All of the models employed in this study have results
displayed in Table 15. For accuracy, precision, recall,
and F1 scores, results are given. The proposed model
performs better than the other models, which are all
optimized to obtain the best results with the provided dataset:
CNN, CNN+LSTM, CNN+Auto encoder, CNN+ANN,
LSTM+HAM, Autoencoder+HAM, ANN+HAM, and
CNN-+HAM. Still, the performance of the hybrid models is
better than all the other models now in use. Of all the models
employed in this study, the best results are obtained using
CNN+HAM with a 0.9458 accuracy score. The CNN+HAM
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TABLE 15. Results of deep learning models using hyperparameter tuning.

Models Epoch Accuracy| Precision | Recall | F1-Score
CNN 25 0.8948 0.8954 0.8948 | 0.8945
CNN+LSTM 30 0.9002 0.9053 0.9002 | 0.9012
CNN+Auto encoder 30 0.9157 0.9171 0.9157 | 0.9156
CNN+ANN 20 0.9365 0.9367 0.9365 | 0.9364
RNN+HAM 30 0.8685 0.8682 0.8685 | 0.8681
GRU+HAM 30 0.8955 0.8987 0.8955 | 0.8933
LSTM+HAM 30 0.8917 0.8943 0.8917 | 0.8919
Autoencoder+HAM 25 0.9226 0.9271 0.9226 | 0.9227
ANN+HAM 30 0.9451 0.9481 0.9451 | 0.9451
CNN+HAM 30 0.9458 0.948 0.9458 | 0.9459
TABLE 16. Comparative analysis with existing literature.
Reference Year | Technique Result
[47] 2020 | CNN-FC, CNN-GAP Accuracy =90.9%, 93.6%
[48] 2018 | SENet Accuracy=93.55%
[49] 2019 | MobileNetV3 Accuracy=92.09%
[50] 2019 | CNN Accuracy = 93.25%
[51] 2020 | CNN Accuracy = 94.00%
[52] 2020 | CNN Accuracy = 92.13%
[53] 2020 | CNN Accuracy = 90.44%
[54] 2019 | CNN Accuracy = 93.00%
[55] 2019 | CNN Accuracy = 89.5%
[56] 2019 | CNN Accuracy =91.2%
[57] 2019 | SCSDAE Accuracy = 94.39%
[58] 2020 | SVAE Accuracy = 90.9%
[59] 2018 CNN Accuracy = 91.00%, Precision = 94.9%, Recall = 94.5%
[60] 2021 DCNN Accuracy = 93.75%, Precision = 93.81%, Recall = 93.79%, F1-score = 93.76%
Proposed 2023 CNN+HAM Accuracy = 94.58%, Precision = 94.8%, Recall = 94.58%, F1-score = 94.59%
K-fold 2023 CNN+HAM with K-fold | Accuracy = 97.84%, Precision = 97.84%, Recall = 97.84%, F1-score = 97.83%

model also has superior results concerning precision, recall,
and F1 score showing its potential for accurate hotspot
detection in wafer maps.

J. LIMITATIONS

The proposed approach shows promising results and per-
forms well compared to existing approaches on wafer hotspot
detection, however, it has several limitations. First, for
generalizability, further experiments are needed on additional
datasets. Second, a total of nine types of wafer defects have
been considered in this study, adding more would broaden
the scope of the model’s applicability. Third, deep learning
models are complex, require large amounts of training data,
and have higher computational complexity. These aspects can
be further investigated to improve their performance. Lastly,
the use of transfer learning can be investigated in the context
of wafer hotspot detection in the future.

K. PERFORMANCE COMPARISON WITH EXISTING
APPROACHES

A comparative study is conducted between several models
from the existing body of literature that used various machine
and deep learning algorithms to detect defects in semiconduc-
tors. For example, [47] uses CNN-fully connected (CC-FC)
and CNN with global average pooling (CNN-GAP) models
and reports a 90.9% and 93.6% accuracy for FC and GAP,
respectively. Similarly, other studies [48], [49] have utilized
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SENet, MobileNet, etc. for the same purpose. Table 16
shows a performance comparison of the current study with
these studies indicating a better performance of the proposed
model. In addition, we have considered other CNN variants
for image classification for comparison and implemented
them on the dataset used in the current study to carry out an
extensive investigation. The results from those studies also
indicate that the CNN+HAM provides better results.

V. CONCLUSION

In the realm of semiconductor fabrication, the quest for
efficient and reliable methods to detect wafer hotspots
during the production process has led to the inte-
gration of advanced artificial intelligence techniques.
Leveraging CNNs in combination with various attention
mechanisms, such as the hierarchical attention module,
this approach explores an array of models to opti-
mize hotspot detection. The models considered include
CNN, CNN+LSTM, CNN+Autoencoder, CNN+ANN,
LSTM+HAM, Autoencoder+HAM, ANN+HAM and
CNN-+HAM. Among these, the CNN+HAM model emerged
as the frontrunner, showcasing the highest accuracy of
94.58%. According to the experimental results, CNN+HAM
performed better than expected, with a k-fold cross-validation
accuracy score of 97.84% for values of k that are 3,5, 7, and
10, respectively. This result underscores the effectiveness of
the HAM’s attention mechanism in enhancing the CNN’s
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ability to detect and prioritize hotspots, thereby providing
a robust and accurate solution for raising the standard and
effectiveness of the procedure used in the manufacture of
semiconductors. To encourage future developments in flaw
identification so that engineers and researchers may verify
and test against new designs and feature sizes, much thought
must be given to creating a repository with actual flaws.
Combining ongoing innovation, expansion, and development
shows a lot of potential for reliable and effective defect
identification. The model’s robustness and generalizability
should be improved by adding data from different wafer
production conditions. Investigating complex attention
methods can enhance the model’s focus on important wafer
areas. Integrating the model with real-time monitoring
systems for hotspot identification and remedial measures
is also important. Combining CNN-based methods with
reinforcement learning can increase detection accuracy in
dynamic manufacturing situations through adaptive learning.
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