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Abstract: The leaves of the olive tree (Olea europaea L.) are one of the major solid wastes from the
olive industry. Globally, the European Union is the largest producer of olive by-products, with Spain,
Italy, Greece, and Portugal accounting for almost the entire production. Many questions remain to be
solved concerning olive leaves (OL), including those related to possible differences in composition
and/or biological activities depending on their geographical origin. In the present work, OL from
Spain, Italy, Greece, and Portugal have been characterized according to their phytochemical profile,
antioxidant capacity, neuroprotective activity, and anti-inflammatory effects. The Spanish and Italian
OL samples presented the highest antioxidant and neuroprotective activities, while the Greek OL
showed the lowest. These results were strongly associated with the content of oleoside methyl ester
and p-hydroxybenzoic acid for the Spanish and Italian samples, respectively, whereas the content
of decarboxymethyl elenolic acid dialdehyde form (hydrated) was negatively associated with the
mentioned biological activities of the Greek samples. No country-related effect was observed in
the anti-inflammatory activity of OL. Comprehensively, this work could provide a useful tool for
manufacturers and R&D departments in making environmentally friendly decisions on how OL can
be used to generate nutraceutical products based on the composition and origin of this by-product.

Keywords: acetylcholinesterase; cyclooxygenase-2; flavonoids; hydroxyoleuropein; hydroxytyrosol;
luteolin; oleuropein; p-hydroxybenzoic acid; phenolics; verbascoside

1. Introduction

The olive grove industry generates large volumes of solid waste from olive trees (Olea
europaea L.), including branches, seeds, pulp, and olive leaves (OL). These by-products
are important players in the environmental impact of olive oil production due to the high
water and energy expenditure for their removal, as well as gas and trash generation. The
European Union (EU) is the biggest producer of olive by-products worldwide. Spain,
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Greece, Italy, and Portugal generate nearly 99% of the EU’s production [1,2]. OL are mainly
used for animal consumption, biomass production or incineration [3]. Nevertheless, they
are rich in numerous bioactive compounds such as secoiridoid (i.e., oleuropein), pheno-
lic alcohols (e.g., hydroxytyrosol and oleoside), flavones (e.g., luteolin and luteolin-7-o-
glucoside), and phenolic acids (i.e., verbascoside) that might be used for other applications
such as nutraceutical development [4,5]. In particular, OL has demonstrated important
biomedical properties such as antiviral, antimicrobial, anti-inflammatory, antioxidant, and
anti-Alzheimer activities [4,6,7]. Therefore, the exploitation of OL to obtain value-added
products enriched in phytochemicals might create new economic opportunities for the
olive grove industry and reduce the environmental burden generated by these by-products.

Phenolic compounds are the main class of bioactive substances present in olive by-
products, contributing to their health-promoting properties [4,6,7]. Recently, the profile and
content of phytochemicals in OL extracts have been linked to their antioxidant capacity [3].
Therefore, the composition, concentration, and extraction yield of these compounds may
affect OL applications. Numerous factors have been described as OL phytochemical profile
modulators, such as olive cultivar, climate, pruning season, drying conditions, and the
extraction solvent, among others [4]. However, many questions remain to be solved
concerning OL, including those related to possible differences in composition and/or
biological activities depending on their geographical origin.

The cholinergic hypothesis of cognitive dysfunction suggests that alterations of
acetylcholine-containing neurons in the brain promote the cognitive decline observed dur-
ing aging and neurodegenerative diseases (ND) [8]. In the same way, the pro-inflammatory
process has been to a significantly increased risk of developing ND [9–11]. In this context,
the intake of olive by-products such as OL has been associated with a reduction in cognitive
impairment and inflammation both in vitro and in vivo [4]. Some in vitro tests, such as the
inhibitory capacity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2), allow
large-scale evaluation of the neuroprotective and anti-inflammatory effects of compounds
of interest. Accordingly, the present study evaluated for the first time the direct influence
of the geographical origin on the phytochemical profile, antioxidant activity, and neuropro-
tective and anti-inflammatory effects of OL from Spain, Portugal, Italy, and Greece.

2. Materials and Methods
2.1. Chemicals and Reagents

All reagents and chemicals were analytical grades. Trizma base, hydrochloric acid,
5,5′-dithiobis-(2-nitrobenzoic acid), physostigmine, acetylthiocholine iodide, and acetyl-
cholinesterase were purchased from Merck (Darmstadt, Germany). The COX-2 Inhibitor
Screening Kit was purchased from Abcam (Cambridge, UK). LC-MS grade acetonitrile,
LC-MS grade methanol, ethanol, dimethyl sulfoxide, catechin, sodium nitrite, aluminum
chloride, sodium hydroxide, gallic acid, 2,2-difenil-1-picrilhidrazil (DPPH), iron (III) chlo-
ride hexahydrate, and formic acid used were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Folin-Ciocalteu reagent, sodium acetate solution, sodium carbonate, and 2,4,6-
tripyridyl-s-triazine (TPTZ) were purchased from Thermo Fisher (Waltham, MA, USA).
Finally, 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid) was purchased from Roche (Basel,
Switzerland), and the water used was Milli-Q type obtained from Millipore purification
equipment (Billerica, MA, USA).

2.2. Olive Leaves Collection, Classification, and Extraction

For this study, only OL from the so-called “line of flight” were used, that is, the leaves
that are collected along with the olives during the harvesting procedure. Leaves from the
ground or leaves collected directly from the tree were not included. Therefore, it is a true
by-product derived from olive harvesting that inevitably reaches the mill and for which it
would be useful to find an application. Forty-nine olive leaf samples from four different
countries were chosen for the present study. The 49 OL samples were distributed according
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to their geographical origin into Spain (n = 26), Italy (n = 6), Greece (n = 8), and Portugal
(n = 9) (Table 1).

Table 1. Ethical Statements of the OL from four different countries.

Provider Institution Region Country n

CRDOP Estepa Seville Spain 13
ACE Jaen Spain 7
IRTA Barcelona Spain 6

Pugliaolive Bari Italy 4
Parma University Parma Italy 2

NGC Peloponnese Greece 6
ACK Kalamata Greece 2

CEPAAL Alentejo Portugal 7
Esporão Alentejo Portugal 2

Abbreviations: ACE: Almazara Cruz de Esteban; ACK: Agricultural Cooperative of Kalamata; CEPAAL: Centro
de Estudos e Promoção do Azeite do Alentejo; CRDOP Estepa: Consejo Regulador Denominación de Origen
Protegida Estepa; IRTA: Instituto de investigación y tecnología agroalimentarias; NGC: NILEAS Producers Group
Company A.C. OL: olive leaves.

All samples were harvested between mid-November 2019 and mid-February 2020.
Fresh OL were dried at room temperature, ground by a blade mill, and passed through
a mesh sieve (<600 µm diameter) to obtain a fine powder. Then, plant material was
stored in sealed bags at −20 ◦C until extraction. The extraction procedure was performed
according to the flowchart shown in Figure 1. One gram (1.00 g ± 0.01 g) of dried OL
powder was mixed with 20 mL of the extraction buffer (ethanol/Mili-Q water/formic acid,
80:20:0.1, v/v/v) and stirred for two hours in the dark at room temperature. Then, the
liquid OL mixture was centrifuged twice at 2400× g for 15′, and the supernatants recovered.
Supernatants were filtered using a 0.45 µm syringe filter (PBI International, Mejaniga, Italy),
aliquoted, evaporated using a Speedvac SC110A (New York, NY, USA), and stored at
−80 ◦C until analyses [12]. The extraction yield was calculated using the Kleeb Bua Daeng
formula: yield extraction (%) = M1/M2 × 100, where M1 is the weight of the extract and
M2 is the weight of the sample unextracted [13].

2.3. Quantification of the Phytochemical Compounds via HPLC-ESI-QTOF-MS/MS Analysis

HPLC analyses were performed on an Agilent 1260 HPLC instrument (Santa Clara, CA,
USA) equipped with a binary pump, an online degasser, an auto-sampler, a thermostatically
controlled column compartment, as well as a diode array detector. The samples were
separated on an Agilent Zorbax Eclipse Plus C18 column (1.8 µm, 4.6 × 150 mm). The
mobile phases consisted of water with 0.1% formic acid (A) and methanol with 0.1%
formic acid (B) using a gradient elution according to the following profile: 0 min, 5% B;
5 min, 75% B; 10 min, 100% B; 18 min, 100% B; 25 min, 5% B. The initial conditions were
maintained for 5 min. The flow rate was 0.8 mL/min, the column temperature was 30 ◦C,
and the injection volume was 5 µL. The compound concentrations of each OL extract
were determined by using the area of each individual compound and by interpolation in
the corresponding calibration curve. Oleuropein, hydroxytyrosol, luteolin, luteolin-7-O-
glucoside, verbascoside, citric acid, and sorbitol were quantified by the calibration curves
obtained from their respective commercial standards. The remaining compounds were
tentatively quantified based on calibration curves from other compounds with structural
similarities. Results are mentioned in tables as mean ± standard deviation (SD).
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Figure 1. Schematic extraction process of the 49 OL samples. OL = olive leaves.

2.4. Total Phenolic Compounds

The total phenolic compounds (TPC) were determined according to the Folin-Ciocalteu
colorimetric method with some modifications [14]. Briefly, OL extracts and standards (gallic
acid) were mixed with Folin-Ciocalteu reagent for 5 min in a 96-well plate. Then, sodium
carbonate was added to each well, stirred, and incubated at room temperature for two
hours in the dark. Finally, absorbance was measured at 760 nm in a microplate reader,
Synergy Neo2 (Winooski, VT, USA). Results were expressed as milligrams (mg) of gallic
acid equivalent (GA) per gram (g) of dry weight (DW) extract. Data are mentioned in the
tables as mean ± SD.

2.5. Total Flavonoids Content

The total flavonoid content (TFC) was determined according to the aluminum chloride
colorimetric method with some modifications [15]. Briefly, OL extracts and standards
(catechin) were mixed with sodium nitrite for 6 min in a 96-well plate. Then, aluminum
chloride was added and incubated at room temperature for 5 min in the dark. Finally,
sodium hydroxide was added to each well, and the absorbance was measured at 510 nm in
a microplate reader, Synergy Neo2 (Winooski, VT, USA). Results were expressed as mg of
catechin equivalents (CAT)/g of DW extract. Data are mentioned in tables as “mean ± SD”.

2.6. Total Antioxidant Activity

The total antioxidant capacity (TAC) of the studied OL was determined using three
different methods based on electron transfer (ET). The ET-based methods analyze the ability
of a specific antioxidant to reduce an oxidant, changing the color during this reaction. The
magnitude of the color change is directly associated with the antioxidant concentration in
the sample [16]. In this context, ABTS, FRAP, and DPPH methods were performed following
the modified protocols described by Navarro-Hortal et al. (2022), Rivas-García et al. (2022),
and Romero-Márquez et al. (2022) [17–19]. Results were expressed as µM of Trolox/g of
DW extract for the three methods. Data are mentioned in tables as “mean ± SD”.
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2.7. Acetylcholinesterase (AChE) Inhibition Assay

The AChE inhibitory activity of OL was determined by using the colorimetric method
proposed by Ellman et al. (1961), with some modifications [20]. First, OL extracts
(1000 µg/mL) were incubated with AChE (10 mU/mL) and 5,5′-dithiobis-(2-nitrobenzoic
acid) (150 µM) in 96-plate wells for 15 min at 30 ◦C. Then, the acetylthiocholine iodide
(substrate) was added, and the AChE activity was determined by measuring the changes
in the absorbance at 405 nm in a Synergy 2 Biotek plate reader for 25 min at 30 ◦C. The
AChE inhibitory activities were expressed as the mean percentage of inhibitory activity
with respect to the positive control’s ± standard error of the mean (SEM).

2.8. Cyclooxygenase-2 (COX-2) Inhibition Assay

The COX-2 inhibitory capacity of OL was determined via the Biovision COX-2 Inhibitor
Screening Kit (Milpitas, CA, USA), following the manufacturer’s instructions. First, OL
extracts (1 µg/mL) were incubated with arachidonic acid/sodium hydroxide solution and
the reaction mix (COX-2 human recombinant enzyme, COX cofactor, COX probe, and COX
assay buffer) in black 96-plate wells at 37 ◦C on a Synergy 2 Biotek plate reader for 8 min.
The fluorescent signal was registered at 535 nm for extinction and 587 nm for emission. The
COX-2 inhibitory activities were expressed as the mean percentage of inhibitory activity
with respect to the positive control ± SEM.

2.9. Statistical Analysis

The experimental procedures were performed at least three times. The statistical
software IBM SPSS 25 (Chicago, IL, USA) was used for the analysis of normality, variance
homogeneity, analysis of variance (ANOVA), and Pearson’s correlation analysis. ANOVA
was carried out, and the post hoc HSD Tukey multiple range test was considered significant
when p < 0.05. Principal component analysis (PCA) and the correlation heatmap were
performed using MetaboAnalyst V5.0, using the information obtained from the mean
values of the 49 samples, including TPC, TFC, TAC (ABTS, FRAP, and DPPH), the inhibitory
activity of AChE and COX-2, as well as the 52 compounds identified after HPLC-ESI-QTOF-
MS/MS analysis.

3. Results and Discussion
3.1. TPC, TFC and TAC

The total content of phenolic compounds and flavonoids, as well as the extraction
yield of OL with respect to the different countries, can be observed in Table 2. The Italian
OL had the lowest extraction yield. However, they presented the highest values of TPC and
TFC (40.98 ± 5.01 mg GA/g DW and 28.56 ± 6.75 mg CAT/g DW, respectively), followed
by the Portuguese samples (37.1 ± 4.2 mg GA/g DW and 15.6 ± 9.3 mg CAT/g DW,
respectively) and the Greek OL (31.69 ± 2.05 mg GA/g DW and 8.99 ± 2.47 mg CAT/g
DW, respectively). When compared with the existing evidence, the TPC of the Spanish
and Italian samples was similar, or even higher, than those found in the literature [6,21],
whereas the TFC was lower [6,21,22]. Similarly, the TPC and TFC for Greek samples were
in accordance with those obtained by Petridis et al. (2012) and Papoti et al. (2018) in OL
samples from Greek varieties [23,24]. However, there are no specific data available to
compare the TPC and TFC obtained in the Portuguese OL samples since the single study
expressed the values in fresh weight [25]. The phenolic and flavonoid content in OL extracts
can be modified by numerous factors, such as the harvesting season, drying conditions,
and extraction solvent, which can affect the determinations in order to compare between
countries [4]. According to literature, harvesting season has been shown to modulate the
TPC and TFC, with higher values for leaves cultivated between March and April [22,26].
Similarly, the drying method and the solvent used for OL extraction have been related
to changes in the phenolic and flavonoid content [21,27]. Therefore, these procedures
were standardized for the 49 samples, with all samples collected between November and
February. Likewise, for all samples, room temperature and an ethanol/water mixture were
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selected as drying and extraction methods, respectively, to reduce the influence of these
factors on the determinations.

Table 2. TPC, TFC and TAC of OL extracts from Spain, Italy, Greece, and Portugal.

Determination Spain Italy Greece Portugal

Yield (%) 26.2 ± 5.4 ab 19.5 ± 10.4 a 29.1 ± 4.8 b 29.2 ± 5.7 b

TPC (mg GA/g DW) 37.8 ± 6.8 ab 41.0 ± 5.0 b 31.7 ± 2.0 a 37.1± 4.2 ab

TFC (mg CAT/g DW) 24.7 ± 15.2 b 28.6 ± 6.7 b 9.0 ± 2.5 a 15.6 ± 9.3 ab

ABTS (µM Trolox/g DW) 517 ± 108 bc 591 ± 60 c 372 ± 61 a 459 ± 78 ab

FRAP (µM Trolox/g DW) 398 ± 169 ab 505± 124 b 266 ± 60 a 362 ± 151 ab

DPPH (µM Trolox/g DW) 240 ± 82 226 ± 55 168 ± 32 217 ± 51
Abbreviations: ABTS: 2.20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); CE: catechin equivalents; DPPH:
2.2-diphenyl-1-picryl-hydrazyl-hydrate; FRAP: ferric reducing antioxidant power; DW: dry weight; GAE: gallic
acid equivalents. OL: olive leaves. TFC: total flavonoids content. TPC: total phenolic compounds. TAC: total
antioxidant capacity. Results are expressed as mean ± SD. For each determination, different letters indicate
statistically significant differences between countries (p < 0.05).

There are several in vitro assays to determine the TAC of agri-food matrices and their
by-products. Most of them are one-electron transfer-based methods, but their sensitivity
depends on several factors such as pH, hydrophobic or lipophilic affinity, etc. [16]. There-
fore, it is strongly recommended to use at least two different methods for the determination
of TAC, particularly when studying such phytochemically complex matrices as OL extracts.
In the present work, TAC was assessed by three different methods. For the ABTS assay,
the highest value was obtained by the Italian and Spanish OL samples, followed by the
Portuguese OL. In contrast, the lowest ABTS score was obtained by the Greek samples. A
similar profile was obtained for the FRAP test, with the highest antioxidant capacity for the
Italian samples, whereas the Greek samples had the lowest. No statistical differences were
obtained for the DPPH assay among samples from different origins. These results can be
partially explained due to the content of phenolic compounds and, specifically, flavonoids
present in OL, which were directly associated with their antioxidant capacity (Figure 2).
According to the obtained data, a strong association was found between TPC and TFC
and ABTS and FRAP, whereas the association with DPPH was lower but still statistically
significant. These results were also supported by Zhang et al. (2022), who showed a strong
association between TFC and ABTS (r = 0.6236; p < 0.001) and FRAP (r = 0.6856; p < 0.001),
whereas DPPH was not significant in 32 OL samples from China [3].

These differences might also be explained by the different methods used to determine
antioxidant capacity. To mention, the application of the DPPH method is limited due to
the nitrogenous nature of the free radical, as the kinetic reaction is not linear between the
free radical and the antioxidant compounds [16]. In addition, some antioxidants can react
slowly or even be inert to the DPPH radical, and some reactions with phenolic compounds
can be reversible in the DPPH assay [16,28,29]. Therefore, lower antioxidant capacity values
can be obtained by this method, which might explain the absence of statistical differences
in the literature [3,28]. In contrast, the ABTS and FRAP methods have been shown to be
more valid than the DPPH assay for the evaluation of antioxidant activity [16,28].
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Figure 2. Pearson’s correlation scatterplot of the relationships between (A) ABTS and TPC, (B) FRAP
and TPC, (C) DPPH and TPC, (D) ABTS and TFC, (E) FRAP and TFC, and (F) DPPH and TFC.
Abbreviations: ABTS: 2.20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); CE: catechin equivalents;
DPPH: 2.2-diphenyl-1-picryl-hydrazyl-hydrate; FRAP: ferric reducing antioxidant power; DW: dry
weight; GAE: gallic acid equivalents. Dashed line represents the regression curve.

3.2. Phytochemical Compounds Quantification

Table 3 shows the phytochemical profile of OL according to its geographical origin,
where 52 compounds were quantified and divided into ten groups.

Table 3. Phytochemical identification and quantification of the OL extracts from Spain, Italy, Greece,
and Portugal.

Compound Formula m/z Error (ppm) Spain Italy Greece Portugal

Sugars
Sorbitol C6H14O6 181.0723 −2.61 9.76 ± 5.82 b 3.47 ± 3.4 a 10.16 ± 5.57 b 8.39± 2.35 ab

D-Sedoheptulose C7H14O7 209.0671 −1.91 0.53 ± 0.2 0.35 ± 0.21 0.69 ± 0.31 0.58 ± 0.11
D-glucose/D-fructose/

D-galactose C6H12O6 179.0563 −0.73 0.76 ± 0.21 b 0.36 ± 0.14 a 0.74 ± 0.27 b 0.77 ± 0.22 b

D-xylose/L-arabinose C5H10O5 149.0456 −0.35 0.31 ± 0.09 0.19 ± 0.07 0.25 ± 0.14 0.27 ± 0.05
Disccharide C12H20O10 323.0982 0.6 0.28± 0.07 ab 0.33 ± 0.1 b 0.23 ± 0.11 a 0.27± 0.06 ab

Methyl disaccharide C11H20O9 295.1036 −0.3 0.5 ± 0.15 a 0.27 ± 0.21 b 0.39 ± 0.18 ab 0.41± 0.07 ab

Organic acids
Gluconic acid C6H12O7 195.0517 −3.43 8.02 ± 4.38 5.4 ± 6.53 10.23 ± 8.1 5.14 ± 3.29
Ribonic acid C5H10O6 165.041 −3.22 3.89 ± 1.34 b 1.46 ± 0.98 a 3.55 ± 1.76 b 3.6 ± 0.77 b

Quinic acid C7H12O6 191.0567 −2.85 8.4 ± 4.92 a 6.61 ± 6.39 a 13.87 ± 7.06 b 8.84 ± 3.87 a

Malic acid C4H6O5 133.0148 −4.03 0.97 ± 0.75 3.51 ± 1.42 2.93 ± 1.33 0.97 ± 0.33
Citric acid/Isocitric acid C6H8O7 191.0201 −1.63 1.03 ± 0.75 0.78 ± 0.19 1.7 ± 1.07 0.39 ± 0.19

Secoiridoids
Oleuropein C25H32O13 539.177 0.2 10.27 ± 18.69 4.72 ± 9.04 0.11 ± 0.06 2.69 ± 6.61

1-β-D-Glucopyranosyl
acyclodihydroelenolic acid

isomer 1
C17H28O11 407.1562 −0.42 0.37 ± 0.17 0.32 ± 0.13 0.4 ± 0.22 0.33 ± 0.19

Decarboxymethyl elenolic acid
dialdehyde form isomer 1

(Hydroxylated)
C10H14O5 213.0769 0.09 0.19 ± 0.1 a - 0.18 ± 0.03 b 0.16 ± 0.09 a

Oleoside/secologanoside C16H22O11 389.109 −0.05 1.61 ± 1.13 - - 0.93 ± 1.03
1-β-D-Glucopyranosyl

acyclodihydroelenolic acid
isomer 2

C17H28O11 407.1561 −0.23 0.67 ± 0.37 a 0.18 ± 0.07 a 0.67 ± 0.45 ab 1.21 ± 0.76 b

Decarboxymethyl elenolic acid
dialdehyde form (Hydrated) C9H14O5 201.0772 −1.63 0.15 ± 0.17 0.11 ± 0.07 0.32 ± 0.14 -
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Table 3. Cont.

Compound Formula m/z Error (ppm) Spain Italy Greece Portugal

Decarboxymethyl elenolic acid
dialdehyde form isomer 2

(Hydroxylated)
C9H12O5 199.0615 −1.21 0.28 ± 0.14 0.33 ± 0.17 0.67 ± 0.8 0.42 ± 0.33

Decarboxylated form of hydroxy
elenolic acid isomer 2 C10H14O5 213.0768 0.11 - - 0.5 ± 0.12 -

Oleoside methyl ester C17H24O11 403.1243 0.94 1.03 ± 1.18 0.46 ± 0.6 - 0.7 ± 0.72
Aldehydic form of

decarboxymethyl elenolic acid C10H16O5 215.0929 −1.69 0.24 ± 0.19 0.13 ± 0.12 0.51 ± 0.52 0.07 ± 0.01

Hydroxyoleuropein C25H32O14 555.1712 1.45 0.48 ± 0.58 0.52 ± 0.26 - 0.54 ± 0.56
Oleuropein diglucoside C31H42O18 701.2288 1.85 0.31 ± 0.12 - - -

Oleuropein isomer C25H32O13 539.1767 0.78 3.15 ± 2.27 1.19 ± 1.67 - -
Ligstroside C25H32O12 523.1815 1.36 0.86 ± 0.12 - - -
Flavonoids

Luteolin-7,4-O-
diglucoside/Rutin C27H30O16 609.1451 1.84 0.15 ± 0.05 - - 0.07 ± 0.05

Luteolin rutinoside isomer 2 C27H30O15 593.1505 1.39 0.1 ± 0.05 - 0.07 ± 0.05 -
Luteolin-7-O-glucoside C21H20O11 447.0934 0.12 1.14 ± 0.67 1.74 ± 2.37 0.62 ± 0.53 1.1 ± 1.22

Apigenin-7-O-rutinoside C27H30O14 577.1559 0.7 0.52 ± 0.22 b 0.18 ± 0.05 a 0.32 ± 0.11 a 0.34± 0.08 ab

Taxifolin C15H12O7 303.0509 0.52 0.04 ± 0.04 - - -
Apigenin-7-O-glucoside C21H20O10 431.0981 0.87 0.29 ± 0.16 0.5 ± 0.36 0.09 ± 0.04 0.38 ± 0.13

Luteolin glucoside C21H20O11 447.0934 0.06 4.96 ± 2.06 b 2.9 ± 2.06 ab 1.28 ± 0.93 a 3.43± 1.19 ab

Chrysoeriol-7-O-
glucoside/Diosmetin-7-O-

glucoside
C22H22O11 461.1086 0.86 0.62 ± 0.16 b 0.53± 0.35 ab 0.27 ± 0.15 a 0.67± 0.16 ab

Azelaic acid C9H16O4 187.0979 −1.55 0.5 ± 0.36 a 2.02 ± 1.47 b 0.13 ± 0.05 a 0.27 ± 0.1 a

Luteolin glucoside C21H20O11 447.0932 0.46 0.45 ± 0.12 b 0.23 ± 0.07 a 0.45 ± 0.24 ab 0.4 ± 0.11 ab

(+)-Eriodictyol C15H12O6 287.0565 −1.05 0.19 ± 0.09 b - - 0.08 ± 0.08 a

Isorhamnetin-3-O-β-D-(6-p-
coumaroyl)
glucoside

C31H28O14 623.1395 1.94 0.03 ± 0.02 0.1 ± 0.12 0.04 ± 0.05 0.08 ± 0.08

Luteolin C15H10O6 285.0412 −2.43 0.27 ± 0.19 0.38 ± 0.18 0.43 ± 0.3 0.19 ± 0.08
Apigenin C15H10O5 269.046 −1.49 0.14 ± 0.08 a 0.73 ± 0.27 b 0.18 ± 0.16 a 0.12 ± 0.08 a

Diosmetin C16H12O6 299.0562 −0.32 0.19 ± 0.09 a 0.51 ± 0.13 c 0.32 ± 0.16 b 0.16 ± 0.07 a

Luteolin rutinoside isomer 1 C27H30O15 593.1502 1.79 - 0.03 ± 0.02 - -
Phenolic alcohols
Hydroxytyrosol C8H10O3 153.0556 −0.84 0.12 ± 0.09 a 0.35 ± 0.13 b 0.05 ± 0.01 a 0.12 ± 0.13 a

Hydroxytyrosol glucoside C14H20O8 315.1086 −0.08 0.36 ± 0.46 0.50 ± 1 0.36 ± 0.38 0.33 ± 0.45
4-Ethylguaiacol C9H12O2 151.0764 0.36 0.1 ± 0.06 0.09 ± 0.02 0.15 ± 0.11 0.08 ± 0.03

Iridoids
Loganic acid C16H24O10 375.1297 0.15 0.26 ± 0.06 b 0.11 ± 0.11 a 0.13 ± 0.09 a 0.26 ± 0.1 b

7-Epiloganin C17H26O10 389.1457 −0.58 0.7 ± 0.21 ab 0.98 ± 0.35 b 0.54 ± 0.43 a 0.51 ± 0.22 a

Lamiol C16H26O10 377.146 −1.34 0.93 ± 0.34 b 0.1 ± 0.06 a 0.74 ± 0.66 b 0.79 ± 0.29 b

Hydroxycoumarins
Esculetin C9H6O4 177.0198 −2.32 0.14 ± 0.06 b 0.68 ± 0.19 c 0.05 ± 0.02 a 0.1 ± 0.04 ab

Esculin C15H16O9 339.0721 0.23 0.08 ± 0.05 0.04 ± 0.03 - 0.04 ± 0.02
Hydroxycinnamic acid

Verbascoside C29H36O15 623.1974 1.41 0.41 ± 0.52 0.38 ± 0.25 0.08 ± 0.04 0.18 ± 0.14
Decaffeoylverbascoside C20H30O12 461.1665 0.19 1.33 ± 0.86 0.6 ± 0.64 0.96 ± 0.93 1.04 ± 0.36

Phenolic acids
p-Hydroxybenzoic acid C7H6O3 137.0247 −1.67 - 0.05 ± 0.04 - 0.09 ± 0.14

Other compounds
Lauroside B/Euphorbioside A C19H32O9 403.1972 0.48 0.28 ± 0.16 a 0.3 ± 0.29 ab 0.37 ± 0.29 ab 0.71 ± 0.39 b

Results are expressed as milligrams of compound (mean ± SD) per gram of dry weight. For each compound,
different letters between countries indicate statistically significant differences (p < 0.05). The symbol (-) was
added when the specific compound was not detected. m/z: mass-to-charge ratio. OL: olive leaves. ppm: parts
per million.

Sorbitol was the most abundant sugar in the OL extracts (Table 3), with the Italian
samples having the lowest content. Regarding the organic acids, quinic acid was the most
abundant, with the Greek samples being the richest in this compound. No statistical differ-
ences were found in most of the quantified secoiridoid molecules, but when considering
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the complete sum of this family of compounds, the Spanish OL stood out above the rest
(Figure 3C).

Figure 3. Box and whisker Plot of (A) sugars, (B) organic acids, (C) secoiridoids, (D) flavonoids,
(E) phenolic alcohols, (F) iridoids, (G) hydroxycoumarins, (H) hydroxycinnamic acids, (I) phenolic
acids, and (J) total compounds present in OL from Spain, Italy, Portugal, and Greece. Results
are expressed as mean ± SD. For each parameter, different letters indicate statistically significant
differences between countries (p < 0.05). OL: olive leaves.

Similar results were observed for the flavonoid content (Figure 3D). In this case, the
Spanish and Italian samples presented the highest flavonoid content, highlighting the
content in luteolin and its derivatives (luteolin glucoside and luteolin-7-O-glucoside), as
well as apigenin and its derivatives (apigenin-7-O-glucoside and apigenin-7-O-rutinoside).
The Italian samples, but not the Spanish ones, showed the highest content of hydroxytyrosol
(Table 3). In the same way, other phenolic compounds, such as iridoids (e.g., 7-epiloganin)
and hydroxycoumarins (e.g., esculetin), were spotlighted in the Spanish and Italian samples,
while lamiol and lauroside B were abundant in the Greek and Portuguese OL. Taken
together, the most representative phytochemical compounds in the OL studied in this work,
including phenolic alcohols (hydroxytyrosol), flavonoids (luteolin-7-O-glucoside, luteolin-
4-O-glucoside, and apigenin-7-O-glucoside), as well as secoiridoids and their derivatives
(oleoside and ligstroside), were lower compared to the OL extracts previously reviewed
by Romero-Márquez et al. (2023) from Spain, China, Italy, and Turkey. An exception was
observed in the oleuropein content, reaching levels compatible with the literature in the
Spanish, Italian, and Portuguese OL samples [4].

Although it has been suggested that the olive variety may contribute to the differences
in terms of phytochemical composition [26,30], some authors have shown that despite the
differences between cultivars, Spanish OL have a higher content of flavonoids and secoiri-
doids than Italians, indicating a similar effect of geographical origin beyond the variety of
OL used [22]. In fact, the pruning season has been demonstrated to be the major influence
on the phytochemical profile, even in the same cultivar [22,26]. In the same way, regular an-
nual precipitation and warm summer temperatures, as well as limited pluvial floods, have
been associated with an improvement in the phytochemical content of olive trees [31,32].
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Therefore, in the context of climate change, there is a strong northwest-southeast gradient
in these features in Europe. In particular, Eastern Mediterranean countries such as Greece
have reported a reduction in annual precipitation, an increase in summer hot and dry
weather, and winter flood conditions [33]. In contrast, south-west Mediterranean countries
such as Spain or Italy seem to conserve similar bioclimatic conditions [34]. These results
might explain the differences reported in the phytochemical profile regarding Spain, Italy,
and Greece. Therefore, in the present work, it has been demonstrated that the geographical
origin dramatically influences the content of some compounds such as sugars, secoiridoids,
flavonoids, iridoids, hydroxycoumarins, and hydroxycinnamic acids in olive leaves.

3.3. Multivariate Data Analysis
3.3.1. Principal Component Analysis

PCA has been extensively used as an unsupervised exploratory method to decrease
the dimensionality of datasets. It has been widely used in several research fields, such as
microbiome studies, population genetics, epidemiology, and agricultural science [3]. In
the present work, it was applied considering the large volume of data/variables analyzed,
with the intention of better interpreting the obtained results and visualizing possible
relationships among them. In that sense, the PCA was performed by the MetaboAnalyst
V5.0 using the information obtained from the 49 samples, including: TPC, TFC, TAC (ABTS,
FRAP, and DPPH), the inhibitory activity of AChE and COX-2, as well as the 52 compounds
quantified by HPLC-ESI-QTOF-MS/MS.

The first two principal components (PCs) described 37.8% of total variance (PC1:
23.1% and PC2: 14.7%) and were used to visualize the relationship between countries.
The distribution of the four evaluated countries is shown in Figure 4. As shown in the
score plots, PC1 was able to separate the Italian samples from the Greek ones, whereas
PC2 was able to separate the Italian samples from the Portuguese OL. Nevertheless, the
Spanish OL could not be differentiated as a group due to their high variability and were
randomly distributed in Figure 4. Most of the samples from Spain, Greece, and Portugal
are distributed in the right part of PC1 and the upper part of PC2, whereas the Italian
samples are in the opposite quadrant. An interesting feature was observed concerning
the distribution of 7 samples from Spain in a similar way to the Italian OL. The Spanish
samples situated in the bottom-left quadrant have in common that they are from Andalusia,
the south of Spain. This might be explained due to the similarities between the Italian and
Andalusian climates, which exert similar threshold temperatures that have been associated
with bioclimatic requirements for olive development [34].

3.3.2. Inhibitory Activity of AChE and COX-2 as Well as Correlation Analysis

The cholinergic hypothesis of cognitive dysfunction suggests that an alteration of
acetylcholine concentration in neurons of the brain promotes the cognitive decline observed
during aging and numerous NDs, such as Alzheimer’s disease (AD) [8]. In this case, the
hyperactivity of some enzymes, such as acetylcholinesterase (AChE), is associated with
cognitive dysfunction, favoring the degradation of acetylcholine and promoting the deficit
of these neurotransmitters in the brain. These events result in memory loss and other
cognitive symptoms related to dementia. Therefore, cholinergic-based strategies have been
proposed as a realistic approach to drug development for the treatment of ND. As far as
it is known, this is the first study evaluating the inhibitory AChE activity of OL based on
geographical origin on a large scale. As can be observed in Figure 5, the highest inhibitory
AChE activity was exhibited by the Spanish (38.46 ± 3.72) and the Italian (36.64 ± 6.76)
samples. In contrast, the lowest AChE inhibitory activity was observed by the Greek OL
(17.81 ± 4.53). These differences might be attributed to differences in the aforementioned
phytochemical profile.
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Figure 4. PCA score plot results obtained from the mean values of the seven colorimetric determi-
nations (TPC, TFC, ABTS, FRAP, DPPH, AChE, and COX-2) and the 52 phytochemical compounds
present in the OL from Spain, Italy, Greece, and Portugal. OL: olive leaves.

Figure 5. Acetylcholinesterase (AchE) and cyclooxygenase-2 (COX2) inhibitory activity exerted by OL
extracts from Spain, Italy, Greece, and Portugal. Results are expressed as the mean ± standard error
of the mean. For each of the parameters, bars with different letters indicate statistically significant
differences between countries (p < 0.05). OL: olive leaves.

Pearson’s correlation analysis showed that AChE inhibitory activity may be influenced
by numerous compounds in the OL from different origins. As shown in Figure 6A, the
AChE inhibitory activity of the Spanish samples was strongly associated with the oleoside
methyl ester content. In the same way, loganic acid, hydroxyoleuropein, chrysoeriol-7-O-
glucoside, and oleuropein content were moderately associated with the neuroprotective
activity exerted by the Spanish samples. Verbascoside, glucose, luteolin glucoside, lamiol,
decaffeoylverbascoside, and methyl disaccharide were slightly associated with the anti-
AChE in the Spanish OL samples (Figure 6A,C). Similarly, the anti-AChE activity exerted by
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the Italian samples was associated differently with their specific phytochemical profile. A
strong association was found between p-hydroxybenzoic acid and anti-AChE activity. In the
same way, other compounds such as luteolin-7-O-glucoside, isorhammentin-3-O-β-D-(6-p-
coumaroyl) glucoside, and hydroxytyrosol and its derivatives were moderately correlated
with the neuroprotective activity exerted by the Italian samples. The anti-cholinergic
activity of the Portuguese samples was associated with oleoside methyl ester in a similar
way to the Spanish samples, indicating a possible influence of the geographical region
on the anti-cholinergic activity promoted by this compound (Figure 6A,C). Nevertheless,
despite the different correlations with specific compounds, no statistical differences were
found between the anti-AChE activity of the Spanish, Italian, and Portuguese samples.
This effect might be attributed to the fact that the total phenolic content is similar among
samples. Therefore, the specific individual phytochemical compound contribution to the
anti-cholinergic activity might be masked due to synergistic activity with the rest of the
compounds, as previously described [4]. However, the Greek samples exhibited the lowest
anti-cholinergic activity compared to the rest. In this case, an interesting result concerning
the neuroprotective effect was found. A strong negative correlation was observed between
the high content of the hydrated decarboxymethyl elenolic acid dialdehyde form in the
Greek samples and the anti-cholinergic activity exerted (Figure 6A). This association and
the low phenolic content might explain, at least in part, the low AChE inhibitory activity
exerted by the Greek samples. Up to date, this is the first research that has evaluated
the country-related neuroprotective effect of OL on a large scale and opened the door for
further research for the development of cholinergic-based nutraceutical formulations using
local olive leaves. It should be highlighted that despite the similar neuroprotective effect
exerted by the Spanish, Italian, and Portuguese OL, the low extraction yield obtained by
the Italian samples might limit their use as potential nutraceutical formulations, requiring
higher amounts of OL to achieve profitable extract production.

On the other hand, the anti-inflammatory effect of OL was explored by analyzing
the in vitro inhibitory activity of COX-2. COX-2 is a highly inducible enzyme required to
produce prostaglandins, which are involved in the inflammatory process [35]. Selective
nonsteroidal anti-inflammatory drugs inhibit COX-2, which has been associated with a
marked reduction in the risk of developing NDs such as AD [9–11]. However, the increased
intake of these selective COX-2 inhibitors has been associated with an increase in side
effects during aging [36]. Therefore, the use of natural compounds for the formulation of
COX-2 inhibitor-based strategies might contribute to drug development for the treatment
of inflammation related to ND. Despite the remarkable anti-inflammatory activity exerted
by the different OLs, no origin-related effect was observed (Figure 5). Pearson’s correlations
indicate that the major contribution to the anti-inflammatory activity exerted by OL was
attributed to hydroxyoleuropein, oleoside, verbascoside, oleuropein, oleoside methyl ester,
and luteolin-7-O-glucoside content (Figure 6B). These results are in accordance with the
literature, which showed that OL [37,38], and numerous isolated compounds such as
oleuropein and its derivatives [38,39], verbascoside [40], and luteolin-7-O-glucoside [41]
were able to reduce COX-2 activity. However, there is not enough information in the current
literature about the anti-inflammatory effect of oleosides and their derivatives, and this
work provides the opportunity for further research to evaluate the potential biomedical
properties of these compounds.
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Figure 6. Pearson’s correlation analysis of the relationships between (A) AChE inhibitory activ-
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Abbreviations: ABTS: 2.20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); FRAP: ferric reducing
antioxidant power; TFC: total flavonoids content; TPC: total phenolic compounds.

4. Conclusions

The present work evaluated the influence of the geographical origin on the phytochem-
ical profile, antioxidant activity, and neuroprotective and anti-inflammatory effects of OL
from Spain, Portugal, Greece, and Italy. The results pointed out that the geographical origin
considerably influenced the phytochemical profile, especially in relation to the content of
sugars, secoiridoids, flavonoids, iridoids, hydroxycoumarins, and hydroxycinnamic acids.
The antioxidant capacity was associated with the total content of phenolic compounds and
flavonoids, which stood out in the samples from Spain and Italy. It was also shown that the
inhibitory acetylcholinesterase activity was influenced by several compounds present in
the OL, with the Spanish, Italian, and Portuguese samples being the most interesting for
this purpose. Despite the remarkable ability to inhibit cyclooxygenase-2 activity exerted
by the different OLs, no origin-related effect was observed for this marker among the
investigated countries. It should be highlighted that the extraction yield of the Italian
samples was lower, which might condition their use as potential nutraceutical formulations
by requiring higher amounts of OL to achieve profitable extract production. These results
might indicate that not every OL can be used for different purposes and that it might be
used according to its phytochemical profile. As limitations of the study, it can be mentioned
that the in vitro tests for evaluating the AChE and COX-2 inhibitory activity allow the
analysis of the large-scale effect of numerous food by-products but do not take into account
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the complexity of the biological systems and the potential interaction of the enzyme stud-
ied with other cellular components, which could influence the inhibitory activity of the
compounds studied in vivo. Likewise, the multivariate data analysis applied is not able to
find a causal relationship between the variables studied. However, it is a robust tool for
generating a concept map of the observed effect.

Comprehensively, this work provides useful information for manufacturers and R&D
departments to make environmentally friendly decisions on how OL can be used to generate
nutraceutical products based on the composition and origin of this by-product.
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Temporal Variation of Phenolic and Mineral Composition in Olive Leaves Is Cultivar Dependent. Plants 2020, 9, E1099. [CrossRef]

27. Kontogianni, V.G.; Charisiadis, P.; Margianni, E.; Lamari, F.N.; Gerothanassis, I.P.; Tzakos, A.G. Olive Leaf Extracts Are a Natural
Source of Advanced Glycation End Product Inhibitors. J. Med. Food 2013, 16, 817–822. [CrossRef]

28. Pokorná, J.; Venskutonis, P.R.; Kraujalyte, V.; Kraujalis, P.; Dvořák, P.; Tremlová, B.; Kopřiva, V.; Ošt’ádalová, M. Comparison of
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