A Novel Deep Learning-Based Classification Framework for COVID-19 Assisted with Weighted Average Ensemble Modeling
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Abierto
Inglés
COVID-19 is an infectious disease caused by the deadly virus SARS-CoV-2 that affects the lung of the patient. Different symptoms, including fever, muscle pain and respiratory syndrome, can be identified in COVID-19-affected patients. The disease needs to be diagnosed in a timely manner, otherwise the lung infection can turn into a severe form and the patient’s life may be in danger. In this work, an ensemble deep learning-based technique is proposed for COVID-19 detection that can classify the disease with high accuracy, efficiency, and reliability. A weighted average ensemble (WAE) prediction was performed by combining three CNN models, namely Xception, VGG19 and ResNet50V2, where 97.25% and 94.10% accuracy was achieved for binary and multiclass classification, respectively. To accurately detect the disease, different test methods have been proposed and developed, some of which are even being used in real-time situations. RT-PCR is one of the most successful COVID-19 detection methods, and is being used worldwide with high accuracy and sensitivity. However, complexity and time-consuming manual processes are limitations of this method. To make the detection process automated, researchers across the world have started to use deep learning to detect COVID-19 applied on medical imaging. Although most of the existing systems offer high accuracy, different limitations, including high variance, overfitting and generalization errors, can be found that can degrade the system performance. Some of the reasons behind those limitations are a lack of reliable data resources, missing preprocessing techniques, a lack of proper model selection, etc., which eventually create reliability issues. Reliability is an important factor for any healthcare system. Here, transfer learning with better preprocessing techniques applied on two benchmark datasets makes the work more reliable. The weighted average ensemble technique with hyperparameter tuning ensures better accuracy than using a randomly selected single CNN model.
metadata
Chakraborty, Gouri Shankar; Batra, Salil; Singh, Aman; Muhammad, Ghulam; Yélamos Torres, Vanessa y Mahajan, Makul
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, aman.singh@uneatlantico.es, SIN ESPECIFICAR, vanessa.yelamos@funiber.org, SIN ESPECIFICAR
(2023)
A Novel Deep Learning-Based Classification Framework for COVID-19 Assisted with Weighted Average Ensemble Modeling.
Diagnostics, 13 (10).
p. 1806.
ISSN 2075-4418
|
Texto
diagnostics-13-01806-v3.pdf Available under License Creative Commons Attribution. Descargar (7MB) | Vista Previa |
Resumen
COVID-19 is an infectious disease caused by the deadly virus SARS-CoV-2 that affects the lung of the patient. Different symptoms, including fever, muscle pain and respiratory syndrome, can be identified in COVID-19-affected patients. The disease needs to be diagnosed in a timely manner, otherwise the lung infection can turn into a severe form and the patient’s life may be in danger. In this work, an ensemble deep learning-based technique is proposed for COVID-19 detection that can classify the disease with high accuracy, efficiency, and reliability. A weighted average ensemble (WAE) prediction was performed by combining three CNN models, namely Xception, VGG19 and ResNet50V2, where 97.25% and 94.10% accuracy was achieved for binary and multiclass classification, respectively. To accurately detect the disease, different test methods have been proposed and developed, some of which are even being used in real-time situations. RT-PCR is one of the most successful COVID-19 detection methods, and is being used worldwide with high accuracy and sensitivity. However, complexity and time-consuming manual processes are limitations of this method. To make the detection process automated, researchers across the world have started to use deep learning to detect COVID-19 applied on medical imaging. Although most of the existing systems offer high accuracy, different limitations, including high variance, overfitting and generalization errors, can be found that can degrade the system performance. Some of the reasons behind those limitations are a lack of reliable data resources, missing preprocessing techniques, a lack of proper model selection, etc., which eventually create reliability issues. Reliability is an important factor for any healthcare system. Here, transfer learning with better preprocessing techniques applied on two benchmark datasets makes the work more reliable. The weighted average ensemble technique with hyperparameter tuning ensures better accuracy than using a randomly selected single CNN model.
Tipo de Documento: | Artículo |
---|---|
Palabras Clave: | deep learning; convolutional neural network; image classification; COVID-19; ensemble prediction |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Europea del Atlántico > Investigación > Artículos y libros Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica |
Depositado: | 29 May 2023 23:30 |
Ultima Modificación: | 21 Oct 2024 23:31 |
URI: | https://repositorio.uneatlantico.es/id/eprint/7313 |
Acciones (logins necesarios)
Ver Objeto |
<a class="ep_document_link" href="/10290/1/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf"><img class="ep_doc_icon" alt="[img]" src="/10290/1.hassmallThumbnailVersion/Influence%20of%20E-learning%20training%20on%20the%20acquisition%20of%20competences%20in%20basketball%20coaches%20in%20Cantabria.pdf" border="0"/></a>
en
open
The main aim of this study was to analyse the influence of e-learning training on the acquisition of competences in basketball coaches in Cantabria. The current landscape of basketball coach training shows an increasing demand for innovative training models and emerging pedagogies, including e-learning-based methodologies. The study sample consisted of fifty students from these courses, all above 16 years of age (36 males, 14 females). Among them, 16% resided outside the autonomous community of Cantabria, 10% resided more than 50 km from the city of Santander, 36% between 10 and 50 km, 14% less than 10 km, and 24% resided within Santander city. Data were collected through a Google Forms survey distributed by the Cantabrian Basketball Federation to training course students. Participation was voluntary and anonymous. The survey, consisting of 56 questions, was validated by two sports and health doctors and two senior basketball coaches. The collected data were processed and analysed using Microsoft® Excel version 16.74, and the results were expressed in percentages. The analysis revealed that 24.60% of the students trained through the e-learning methodology considered themselves fully qualified as basketball coaches, contrasting with 10.98% of those trained via traditional face-to-face methodology. The results of the study provide insights into important characteristics that can be adjusted and improved within the investigated educational process. Moreover, the study concludes that e-learning training effectively qualifies basketball coaches in Cantabria.
Josep Alemany Iturriaga mail josep.alemany@uneatlantico.es, Álvaro Velarde-Sotres mail alvaro.velarde@uneatlantico.es, Javier Jorge mail , Kamil Giglio mail ,
Alemany Iturriaga
<a href="/15625/1/s41598-024-74127-8.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the physiological responses of plants mostly crops to drought stress have been revealed through the use of complex algorithms like gradient boosting, support vector machines (SVM), recurrent neural network (RNN), and long short-term memory (LSTM), combined with a thorough examination of the TYRKC and RBR-E3 domains in stress-associated signaling proteins across a range of crop species. Modern resources were used in this study, including the UniProt protein database for crop physiochemical properties associated with specific signaling domains and the SMART database for signaling protein domains. These insights were then applied to deep learning and machine learning techniques after careful data processing. The rigorous metric evaluations and ablation analysis that typified the study’s approach highlighted the algorithms’ effectiveness and dependability in recognizing and classifying stress events. Notably, the accuracy of SVM was 82%, while gradient boosting and RNN showed 96%, and 94%, respectively and LSTM obtained an astounding 97% accuracy. The study observed these successes but also highlights the ongoing obstacles to AI adoption in agriculture, emphasizing the need for creative thinking and interdisciplinary cooperation. In addition to its scholarly value, the collected data has significant implications for improving resource efficiency, directing precision agricultural methods, and supporting global food security programs. Notably, the gradient boosting and LSTM algorithm outperformed the others with an exceptional accuracy of 96% and 97%, demonstrating their potential for accurate stress categorization. This work highlights the revolutionary potential of AI to completely disrupt the agricultural industry while simultaneously advancing our understanding of plant stress responses.
Tariq Ali mail , Saif Ur Rehman mail , Shamshair Ali mail , Khalid Mahmood mail , Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Tahir Khurshaid mail , Imran Ashraf mail ,
Ali
en
close
Technological firms invest in R&D looking for innovative solutions but assuming high costs and great (technological) uncertainty regarding final results and returns. Additionally, they face other problems related to R&D management. This empirical study tries to determine which of the factors favour or constrain the decision of these firms to engage in R&D. The analysis uses financial data of 14,619 ICT listed companies of 22 countries from 2003 to 2018. Additionally, macroeconomic data specific for the countries and the sector were used. For the analysis of dynamic panel data, a System-GMM method is used. Among the findings, we highlight that cash flow, contrary to the known theoretical models and empirical evidences, negatively impacts on R&D investment. Debt is neither the right source for R&D funding, as the effect is also negative. This suggests that ICT companies are forced to manage their R&D activities differently, relying more on other funding sources, taking advantage of growth opportunities and benefiting from a favourable macroeconomic environment in terms of growth and increased business sector spending on R&D. These results are similar in both sub-sectors and in all countries, both bank- and market based. The exception is firms with few growth opportunities and little debt.
Inna Alexeeva-Alexeev mail inna.alexeeva@uneatlantico.es, Cristina Mazas Pérez-Oleag mail cristina.mazas@uneatlantico.es,
Alexeeva-Alexeev
<a class="ep_document_link" href="/15198/1/nutrients-16-03859.pdf"><img class="ep_doc_icon" alt="[img]" src="/15198/1.hassmallThumbnailVersion/nutrients-16-03859.pdf" border="0"/></a>
en
open
Carotenoids Intake and Cardiovascular Prevention: A Systematic Review
Background: Cardiovascular diseases (CVDs) encompass a variety of conditions that affect the heart and blood vessels. Carotenoids, a group of fat-soluble organic pigments synthesized by plants, fungi, algae, and some bacteria, may have a beneficial effect in reducing cardiovascular disease (CVD) risk. This study aims to examine and synthesize current research on the relationship between carotenoids and CVDs. Methods: A systematic review was conducted using MEDLINE and the Cochrane Library to identify relevant studies on the efficacy of carotenoid supplementation for CVD prevention. Interventional analytical studies (randomized and non-randomized clinical trials) published in English from January 2011 to February 2024 were included. Results: A total of 38 studies were included in the qualitative analysis. Of these, 17 epidemiological studies assessed the relationship between carotenoids and CVDs, 9 examined the effect of carotenoid supplementation, and 12 evaluated dietary interventions. Conclusions: Elevated serum carotenoid levels are associated with reduced CVD risk factors and inflammatory markers. Increasing the consumption of carotenoid-rich foods appears to be more effective than supplementation, though the specific effects of individual carotenoids on CVD risk remain uncertain.
Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Imanol Eguren García mail imanol.eguren@uneatlantico.es, Álvaro Lasarte García mail , Thomas Prola mail thomas.prola@uneatlantico.es, Raquel Martínez Díaz mail raquel.martinez@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es,
Sumalla Cano
en
close
Uterine leiomyomas are the most common benign, monoclonal, gynaecological tumors in a woman’s uterus, while leiomyosarcoma is a rare but aggressive condition caused by the malignant transformation of the myometrium. To overcome the common obstacles related to the methods usually used to study these pathologies, we aimed to devise three-dimensional models of myometrium, uterine leiomyoma and leiomyosarcoma cell lines, using two different types of biocompatible scaffolds. Specifically, we exploited the agarose gel matrix in common 6-well plates and the alginate matrix using Bioprinting INKREDIBLE + (CELLINK), a pneumatic extruded base equipped with a system with double printheads, and a UV printer LED curing system. Both methods allowed the development of 3D spheroids of all three cell types, that were also suitable for morphological investigations. We showed that all cell types embedded in both agarose and alginate formed spheroids in their growth medium. The spheroids successfully proliferated and self-organized into complex structures, developing a sustainable system that emulated the condition of the tissues through the accumulation of extracellular matrix. These models could be useful for a better understanding of pathophysiology, etiopathogenesis, and testing new methods or molecules from a preventive and therapeutic point of view.
Pamela Pellegrino mail , Stefania Greco mail , Abel Duménigo Gonzàlez mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Stefano Raffaele Giannubilo mail , Giovanni Delli Carpini mail , Franco Capocasa mail , Bruno Mezzetti mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Andrea Ciavattini mail , Pasquapina Ciarmela mail ,
Pellegrino