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Abstract: 

Collatz's Conjecture, enunciated in 1937, remains, to this day, one of the simplest problems to enunciate and yet one of the most 

difficult to solve. In this work a complete proof of the Collatz Conjecture is presented. The solution assumes as hypothesis that 

Collatz's Conjecture is a consequence. We start with the inverse of the Collatz’s function and manipulate it. We found that every 

natural number 𝑛𝑖 ∈ ℕ can be calculated starting from 1, using the function 𝑛𝑖 = (2𝑖−Ω − 𝐶) 3Ω⁄ , where: 𝑖 ≥ 0 represents the number 

of steps (operations of multiplications by two subtractions of one and divisions by three) needed to get from 1 to 𝑛𝑖, Ω ≥ 0 represents 

the number of multiplications by three required and 0 ≤ 𝐶 ≤ 2𝑖−⌊
𝑖

3
⌋

− 2(𝑖 𝑚𝑜𝑑 3)3
⌊

𝑖

3
⌋
 is an accumulative constant that takes into account 

the order in which the operations of multiplication and division have been performed. 

Reversing the inversion, we have obtained the function: (3Ω𝑛𝑖 + 𝐶) 2𝑖−Ω⁄ = 1 that proves that Collatz Conjecture it’s a consequence 

of the above and also proofs that Collatz Conjecture it’s true since (3Ω𝑛𝑖 + 𝐶) 2𝑖−Ω⁄  is the recursive form of the Collatz’s function.   

The works has shown that for each 𝑛𝑖,𝑗 ∈ 𝑂𝑖 is meets that 2(𝑖 𝑚𝑜𝑑 3) ≤ 𝑛𝑖,𝑗 ≤ 2𝑖. Moreover, it’s also proofed that there is no loop other 

than 1, 2, 4, 1… 

1. Introduction: 

Let the following operation applicable to any natural number: 

𝑓(𝑛) = {

𝑛

2
; 𝑛 𝑒𝑣𝑒𝑛

3𝑛 + 1; 𝑛 𝑜𝑑𝑑
 

The Collatz Conjecture states that, regardless the number 𝑛 that is chosen, after applying the function 𝑓(𝑛) 

a certain number of steps, the result always tends to 1, being a single loop of 4, 2, 1. 

Previous works so far had not been able to prove the Collatz’s Conjecture. Different approaches has been 

taken: Reduced Collatz Conjecture [1], Clustering [2], Orbits [3], Convergence [4], etc. On the other hand, 

authors as [5] and [6] had worked in the reverse form of the conjecture. 

In our current understanding of positive natural numbers, we assume that the way to obtain the next natural 

number in the sequence is 𝑛𝑖+1 = 𝑛𝑖 + 1.  

Starting with 𝑛0 = 1, we can generate all natural numbers using the above formula. So, the question to 

answer is whether this is the only possible way to generate all the natural numbers. 

This paper explores the possibility that all natural numbers can be expressed according to: 

𝑛𝑖 =
2𝑖−Ω ∗ 1 − 𝐶

3Ω
, ∀𝑛𝑖 ∈ ℕ+;  2𝑖−Ω ∗ 1 − 𝐶 ≡ 0 (𝑚𝑜𝑑3) 

where: 𝑖 ≥ 0 represents the number of steps (operations of multiplications by two subtractions of one and 

divisions by three) needed to get from 1 to 𝑛𝑖, Ω ≥ 0 represents the number of multiplications by three 

required and 0 ≤ 𝐶 ≤ 2𝑖−⌊
𝑖

3
⌋ − 2(𝑖 𝑚𝑜𝑑 3)3⌊

𝑖

3
⌋
 is an accumulative constant that takes into account the order 

in which the operations of multiplication and division have been performed. 

If we clear the 1 in the above equation, we have: 

3Ω𝑛𝑖 + 𝐶

2𝑖−Ω
= 1, ∀𝑛𝑖 ∈ ℕ+;  3Ω𝑛𝑖 + 𝐶 ≡ 0 (𝑚𝑜𝑑2) 



This implies that any natural number could be reduced to 1 after a given number of multiplications by 3 

and sum of 1 and divisions by 2. This is precisely what Collatz's Conjecture states. 

So, for this demonstration we are going to assume as hypothesis that Collatz's Conjecture is a consequence. 

We will focus our efforts to demonstrate that that all natural numbers can be expressed according to: 

𝑛𝑖 =
2𝑖−Ω − 𝐶

3Ω
, ∀𝑛𝑖 ∈ ℕ+;  2𝑖−Ω ∗ 1 − 𝐶 ≡ 0 (𝑚𝑜𝑑3) 

2. Theorem 1. (Paucres-Collatz Theorem):  

Let N be a positive natural number (𝑁 ∈ ℕ+) in the Orbit 𝑂𝑖 , then N meets that: 

3Ω𝑁 + 𝐶

2𝑖−Ω
= 1, ∀𝑁 ∈ ℕ+;  3Ω𝑁 + 𝐶 ≡ 0 (𝑚𝑜𝑑2) 

After 𝛺 multiplications by 3 and sum of 1, 𝑖 − 𝛺 divisions by 2 where 𝐶 = 2𝛼(2𝛾+𝜃+𝜆+⋯+𝜓 +

2𝜃+𝜆+⋯+𝜓3Ω−Ω+1 + ⋯ + 2𝜓3Ω−2 + 3Ω−1); 𝐶 ≥ 0 is an accumulation constant that takes into account the 

number and the order in which the operations have been performed. 

 

Proof: 

2.1. (Part I): Preliminaries 

Let's take the following function defined for natural numbers: 

𝑓(𝑛) = {

𝑛

2
; 𝑛 𝑒𝑣𝑒𝑛

3𝑛 + 1; 𝑛 𝑜𝑑𝑑
 

Let's calculate the inverse of the function: 

Let: 

𝑦 =
𝑛

2
; 𝑛 𝑒𝑣𝑒𝑛 

Then 

𝑦−1 = 2𝑛; ∀𝑛 ∈ ℕ 

Let 

𝑦 = 3𝑛 + 1; 𝑛 𝑜𝑑𝑑 

Then: 

𝑦−1 =
𝑛 − 1

3
; ∀𝑛 𝑒𝑣𝑒𝑛 ∈ ℕ;  𝑛 − 1 ≡ 0 (𝑚𝑜𝑑3) 

Therefore, the inversion of Collatz's Conjecture implies that: 

𝑓(𝑛) = {
2𝑛; ∀𝑛 ∈ ℕ+

𝑛 − 1

3
; ∀𝑛 𝑒𝑣𝑒𝑛 ∈ ℕ;  𝑛 − 1 ≡ 0 (𝑚𝑜𝑑3) 

 

Proposition: 

𝑓(𝑛𝑖) = {
2𝑛𝑖; ∀𝑛𝑖 ∈ ℕ+

𝑛𝑖 − 1

3
; ∀𝑛𝑖  𝑒𝑣𝑒𝑛 ∈ ℕ; 𝑛𝑖 − 1 ≡ 0 (𝑚𝑜𝑑3) 

 

Or in its recursive form: 

𝑛𝑖 =
2𝑖−Ω − 𝐶

3Ω
, ∀𝑛𝑖 ∈ ℕ+;  2𝑖−Ω ∗ 1 − 𝐶 ≡ 0 (𝑚𝑜𝑑3) 

Can be used to calculate any natural number 𝑛𝑖 starting from 1. 

 



2.2. (Part II). Definition of Orbit, Multifunction and Path 

Let define as Paucres’s Orbit 𝑖 and denoted as 𝑂𝑖  the set of all natural numbers that share the condition of 

being 𝑖 steps (operations) from 1. This implies that: 

1 ∈ 𝑂0 

2 ∈ 𝑂1 

4 ∈ 𝑂2 

(8, 1) ∈ 𝑂3 

(16, 2) ∈ 𝑂4 

(32, 5, 4) ∈ 𝑂5 

And so on. 

Let define as 𝑛𝑖,𝑗 each of the natural numbers that belongs to the Orbit 𝑂𝑖  

𝑛𝑖,𝑗 ∈ 𝑂𝑖  

Let define a Multifunction 𝑀(𝑂𝑖) that allows to calculate the set of the 𝑛𝑖+1,𝑗 positive natural numbers that 

belongs to the Orbit 𝑂𝑖+1 from all the 𝑛𝑖,𝑗 numbers of 𝑂𝑖  and therefore 𝑛𝑖+1,𝑗 are at 𝑖 + 1 steps from 1. 

𝑂𝑖+1 = 𝑀(𝑂𝑖) 

Therefore: 

𝑀(𝑂𝑖) {

𝑛𝑖+1,𝑗 = 2𝑛𝑖,𝑗  ∀𝑛𝑖,𝑗 ∈ 𝑂𝑖

𝑛𝑖+1,𝑗 =
𝑛𝑖,𝑗 − 1

3
 ∀ 𝑛𝑖,𝑗  𝑒𝑣𝑒𝑛 ∈ 𝑂𝑖;  𝑛𝑖,𝑗 − 1 ≡ 0 (𝑚𝑜𝑑3)

 

According to the above: 

 Every ancestor 𝑛𝑖,𝑗 has an even 𝑛𝑖+1,𝑗  successor 

 Every ancestor 𝑛𝑖,𝑗, has, at most, two 𝑛𝑖+1,𝑗 successors (one even and one odd) 

Let’s define as Path to the succession of terms 𝑛𝑖,𝑗 , 𝑛𝑖−1,𝑗, 𝑛𝑖−2,𝑗 , … , 1 required to calculate the term 𝑛𝑖+1,𝑗 

applying the Multifunction 𝑀(𝑂𝑖). 

 

2.3. (Part III). Lemma 1.: Any positive natural number can be expressed in the form 2𝛼𝛽 where 𝛽 is 

an odd natural number greater than or equal to 1 and α is a natural number greater than or equal 

to 0. 

Proof: 

Let 𝐽0 an even natural number, then it can be expressed as: 

𝐽0 = 2 ∗ 𝐽1 

Where 𝐽1 =
𝐽0

2
 

If 𝐽1 even, then it can be expressed as: 

𝐽1 = 2 ∗ 𝐽2 

Where 𝐽2 =
𝐽1

2
 

This implies:  

𝐽0 = 2 ∗ 2 ∗ 𝐽2 = 22 ∗ 𝐽2 

Repeating this process until we find an odd 𝐽𝑛 we have: 

𝐽0 = 2𝑛 ∗ 𝐽𝑛 



Thus, it is true that any even number can be expressed as 2𝛼𝛽, where 𝛽 is an odd natural number greater 

than or equal to 1 and α an natural number greater than or equals to 1. 

Let 𝐽0 an odd natural number, then it can be expressed as: 

𝐽0 = 20 ∗ 𝐽0 

Thus, it is true that any odd number can be expressed as 2𝛼𝛽 where 𝛽 is an odd natural number greater than 

or equal to 1 and α an natural number equals to 0. 

Thus, it is true that any natural number can be expressed as 2𝛼𝛽 where 𝛽 is an odd natural number greater 

than or equal to 1 and α is a natural number greater than or equal to 0. 

 

2.4. (Part IV). Lemma 2.: Every odd number obtained by the multifunction 𝑀(𝑂𝑖) depends, indirectly, 

on an odd ancestor. 

Proof: 

Any odd number 𝑛𝑖+1,𝑗 obtained from the multifunction 𝑀(𝑂𝑖)  depends on an even 𝑛𝑖,𝑗 ancestor that meets 

the condition: 

𝑛𝑖+1,𝑗 =
𝑛𝑖,𝑗 − 1

3
 ∀ 𝑛𝑖,𝑗  𝑒𝑣𝑒𝑛 ∈ 𝑂𝑖 ;  𝑛𝑖,𝑗 − 1 ≡ 0 (𝑚𝑜𝑑3) 

But, since 𝑛𝑖,𝑗 is even, it can be written as 2𝛼𝛽. Therefore, the above expression can be rewritten as: 

𝑛𝑖+1,𝑗 =
2𝛼𝛽 − 1

3
 ;  2𝛼𝛽 − 1 ≡ 0 (𝑚𝑜𝑑3) 

But 𝛽 is an odd natural number greater than or equal to 1, so every odd number depends, indirectly, on an 

odd number. 

 

2.5. (Part V). Lemma 3.: 1 is the only odd natural number that depends on itself after a single division 

by three. 

Proof: 

Let 

𝛽 =
2𝛼𝛽 − 1

3
 

Solving for 𝛽 from the equation above we have: 

𝛽 =
1

2𝛼 − 3
 

Since 𝛽 is an odd natural number greater than or equal to 1, it has to be met that: 

2𝛼 − 3 > 0 

2𝛼 − 3 ≤ 1 

Solving the previous inequalities for 𝛼 we have:  

𝛼 > log2 3 

𝛼 ≤ log2 4 

Thus: 

𝛼 = 2 

And therefore: 

𝛽 =
1

22 − 3
= 1 



Therefore, the only odd natural number that depends on itself after a division by three is 1.  

In other words, 1 is the only odd natural number with the ability to self-generate after a division by three. 

Lemma 3. 

Let 𝛽 be an odd natural number, it is satisfied that 𝛽 = 1 is the only odd that meets the condition: 

𝛽 =
22𝛽 − 1

3
 

2.6. (Part VI). Lemma 4.: 𝑛𝑖,𝑗 =
2𝑖−Ω−𝐶

3Ω ;  2𝑖−Ω − 𝐶 ≡ 0 (𝑚𝑜𝑑3) is a general expression for 𝑀(𝑂𝑖) . 

Proof: 

Denote Α as the number of multiplications by two, denote Ω as the number of divisions by three required 

to obtain a number from 1. 

Let’s define a Paucres’s root as:  

20 = 1 

Let’s define as a Paucres’s even to any even natural number that can be obtained from the root according 

to:  

𝑛Α,𝑗 =
2Α ∗ 20 − 0

1
   

Where Α = i is the index of the Orbit of the even generated. Α ≥ 1 since 21 = 2 is the first even positive 

natural number. 

Let’s define as a Paucres’s odd to any odd natural number obtained from a Paucres’s even as: 

𝑛Α+Ω,𝑗 =

2Α ∗ 20 − 0
1

− 30

31
;  2𝐴 − 1 ≡ 0 (𝑚𝑜𝑑3) 

Where Α + 1 = i is the index of the Orbit of the odd generated. Α (even) ≥ 2 since 22 = 4 is the first even 

natural number that generates an odd natural number. Let’s denote 1 = Ω because there is a single division 

by three. Thus, Α + Ω = i is the Orbit of the odd generated. Then: 

𝑛Α+Ω,𝑗 =

2Α ∗ 20 − 0
1

− 30

31
=

2Α ∗ 20 − 0 − 3Ω−1

3Ω
=

2Α ∗ 20 − 3Ω−1

3Ω
=

2Α − 3Ω−1

3Ω
;  2𝐴 − 3Ω−1 ≡ 0 (𝑚𝑜𝑑3) 

Let’s take a 𝑛Α+𝛾+Ω+1,𝑗 =
2𝛾(𝑛Α+Ω,𝑗)−1

3
 odd natural number obtained from 𝑛Α+Ω,𝑗 after a given 𝛼 number of 

multiplications by 2, a subtraction of 1 and a division by three. 

Substituting 𝑛Α+Ω,𝑗 =
2Α−3Ω−1

3Ω  into 𝑛Α+𝛾+Ω+1,𝑗 =
2𝛾(𝑛Α+Ω,𝑗)−1

3
 we have: 

𝑛Α+𝛾+Ω+1,𝑗 =
2𝛾 2Α − 3Ω−1

3Ω − 1

3
=

2𝐴+𝛾 − (2𝛾 + 3Ω)

3Ω+1
;  2𝐴+𝛾 − (2𝛾 + 3Ω) ≡ 0 (𝑚𝑜𝑑3) 

 Updating the value of Α + 𝛾 = 𝐴 and Ω + 1 = Ω, the above expression can be written as: 

𝑛A+Ω,𝑗 =
2𝐴 − (2𝛾 + 3Ω−1)

3Ω
;  2𝐴 − (2𝛾 + 3Ω) ≡ 0 (𝑚𝑜𝑑3) 

Let’s call 2𝛾 + 3Ω−1 = 𝐶, then 𝐶 is an accumulation constant that takes into account the number operations 

of multiplication performed before dividing by three: 

𝑛A+Ω,𝑗 =
2𝐴 − 𝐶

3Ω
;  2𝐴 − 𝐶 ≡ 0 (𝑚𝑜𝑑3) 

Now let's define a new odd that depends on the updated 𝑛A+Ω,𝑗 according to: 



𝑛A+𝜃+Ω+1,𝑗 =
2𝜃(𝑛A+Ω,𝑗) − 1

3
 

Substituting, we have: 

𝑛A+𝜃+Ω+1,𝑗 =
2𝜃 (

2𝐴 − (2𝛾 + 3Ω−1)
3Ω ) − 1

3
=

2𝐴+𝜃 − 2𝜃(2𝛾 + 3Ω−1) − 3Ω

3Ω+1
 

𝑛A+𝜃+Ω+1,𝑗 =
2𝐴+𝜃 − 2𝛾+𝜃 − 2𝜃3Ω−1 − 3Ω

3Ω+1
;  2𝐴+𝜃 − 2𝛾+𝜃 − 2𝜃3Ω−1 − 3Ω ≡ 0 (𝑚𝑜𝑑3) 

Updating the value of Α + 𝜃 = 𝐴 and Ω + 1 = Ω, the above expression can be written as: 

𝑛Α+Ω,𝑗 =
2Α − 𝐶

3Ω
;  2𝐴 − 𝐶 ≡ 0 (𝑚𝑜𝑑3) 

With  

𝐶 = 2𝛾+𝜃 + 2𝜃3Ω−2 + 3Ω−1 

Recursively, then any odd natural number 𝑛Α+Ω,𝑗  can be expressed according to: 

𝑛Α+Ω,𝑗 =
2Α − 𝐶

3Ω
;  2𝐴 − 𝐶 ≡ 0 (𝑚𝑜𝑑3) 

With  

𝐶 = 2𝛾+𝜃+⋯+𝜆+𝜓 + 2𝜃+⋯+𝜆3Ω−Ω+1 + ⋯ + 2𝜃3Ω−2 + 3Ω−1 

On the other hand, as all 𝑛Α+Ω,𝑗 has been obtained after applying the multifunction 𝑀(𝑂𝑖), this implies that 

the sum of the number of multiplications by two plus the number of divisions by three has to be equal to 

the index 𝑖 of the Orbit 𝑂𝑖 . 

This implies that Α + Ω = 𝑖, thus, Α = 𝑖 − Ω. 

In this way, the above expression can be written as: 

𝑛𝑖,𝑗 =
2𝑖−Ω − 𝐶

3Ω
; 2𝑖−Ω − 𝐶 ≡ 0 (𝑚𝑜𝑑3) 

Which is a valid expression to obtain all odd natural numbers for any Orbit 𝑂𝑖 . 

Moreover, if 𝑛𝑖,𝑗 is odd, then it can be used to generate an even number according to 2𝛼𝛽, then: 

𝑛𝑖+𝛼,𝑗 = 2𝛼
2𝑖−Ω − 𝐶

3Ω
; 2𝑖−Ω − 𝐶 ≡ 0 (𝑚𝑜𝑑3) 

𝑛𝑖+𝛼,𝑗 =
2𝑖+𝛼−Ω − 2𝛼𝐶

3Ω
; 2𝑖+𝛼−Ω − 2𝛼𝐶 ≡ 0 (𝑚𝑜𝑑3) 

Rewriting the above expression to refer to 𝑛𝑖,𝑗 we have: 

𝑛𝑖,𝑗 =
2𝑖−Ω − 2𝛼𝐶

3Ω
; 2𝑖−Ω − 2𝛼𝐶 ≡ 0 (𝑚𝑜𝑑3) 

Updating 2𝛼𝐶 = 𝐶 we have: 

𝑛𝑖,𝑗 =
2𝑖−Ω − 𝐶

3Ω
;  2𝑖−Ω − 𝐶 ≡ 0 (𝑚𝑜𝑑3)  

Therefore, the expression 𝑛𝑖,𝑗 =
2𝑖−Ω−𝐶

3Ω ;  2𝑖−Ω − 𝐶 ≡ 0 (𝑚𝑜𝑑3)  is valid to represent any positive natural 

number obtained from 𝑀(𝑂𝑖). 

Where: 

𝑖 represents the Orbit of 𝑛𝑖,𝑗 

Ω represents the number of divisions by three needed to obtain 𝑛𝑖,𝑗 



𝐶 = 2𝛼(2𝛾+𝜃+𝜆+⋯+𝜓 + 2𝜃+𝜆+⋯+𝜓3Ω−Ω+1 + ⋯ + 2𝜓3Ω−2 + 3Ω−1) is an integer accumulation constant 

greater than or equal to zero that takes into account the number and order in which the operations of 

multiplication by 2 and subtraction of 1 and division by three have been performed. 

 

2.7. (Part VII). Lemma 5.: 𝑛𝑖,𝑗 =
2𝑖−Ω−𝐶

3Ω ;  2𝑖−Ω − 𝐶 ≡ 0 (𝑚𝑜𝑑3) is bounded from above. 

Proof: 

Let 

𝑛𝑖,𝑗 =
2𝑖−Ω − 𝐶

3Ω
 

Then 

𝑛𝑖,𝑗 =
2𝑖−Ω − 𝐶

3Ω
≤

2𝑖−Ω

3Ω
≤

2𝑖

3Ω
≤ 2𝑖 

Therefore, 𝑛𝑖,𝑗 ≤ 2𝑖 and then 𝑀𝑎𝑥(𝑛𝑖,𝑗) = 2𝑖 

Solving for 𝑖 we have: 

𝑖 = log2 𝑛𝑖,𝑗 

But 𝑖 must be an integer greater than or equal to 0, then: 

𝑖 = ⌊log2 𝑛𝑖,𝑗⌋ 

The above proof has great connotation for the demonstration of the Collatz Conjecture, since it implies that, 

for any positive natural number 𝑁 it is possible to find an 𝑂𝑖 , from which any 𝑛𝑖,𝑗  ∈  𝑂𝑖  is less than or equal 

to N. 

∀𝑁 ∈ ℕ+ ∃𝑖;  ∀𝑛𝑖,𝑗 ∈ 𝑂𝑖 , 𝑛𝑖,𝑗 ≤ 𝑁 

Where: 

𝑖 = ⌊log2 𝑁⌋ 

2.8. (Part VIII). Lemma 6.: 𝑛𝑖,𝑗 =
2𝑖−𝛺−𝐶

3𝛺  is bounded from below. 

Proof. 

For an Orbit 𝑖, with 𝑖 ≥ 0 and a number 𝛺 of divisions by three it is satisfied that: 

𝑛𝑖,𝑗 =
2𝑖−Ω − 𝐶

3Ω
 

According to the constraints in the statement of the problem, every 𝑛𝑖,𝑗 is a positive natural number, 

therefore, it has to meet that: 

𝑛𝑖,𝑗 =
2𝑖−Ω − 𝐶

3Ω
≥ 1 

This implies: 

𝑀𝑖𝑛(𝑛𝑖,𝑗) ≥ 1 

𝑀𝑖𝑛(𝑛𝑖,𝑗) = 1 

The constraints of the problem cause the function to be bounded from below. 

However, it was shown that the value of 1 is reached infinite times in the loop 1, 2, 4, 1.... However, only 

for some values of 𝑖 it’s meet that 𝑛𝑖,𝑗 = 1. 



This implies that there must be a function that generates the appropriate succession of terms of the 1, 2, 4, 

1… loop for each value of 𝑖.  

For fixed values of 𝑖, Ω it has to be meet that: 

𝑀𝑖𝑛(𝑛𝑖,𝑗) =
2𝑖−Ω − 𝑀𝑎𝑥(𝐶)

3Ω
 

Previously it has been shown that: 

1 =
22 − 1

3
=

4 − 1

3
 

Rewriting the above equation in the form of the general equation we have: 

1 =
2𝑖−Ω − 𝑀𝑎𝑥(𝐶)

3Ω
=

23−1 − 1

31
=

22 − 1

3
 

Multiplying by 2 on both sides of the equal sign we have: 

2 =
22+1 − 2 ∗ 1

31
=

23 − 2

3
 

Multiplying again by 2 on both sides of the equal sign we have: 

4 =
23+1 − 2 ∗ 2 ∗ 1

31
=

24 − 4

3
 

But 4 can be used to generate 1, subtracting 1 and dividing by three. Therefore: 

1 =

24 − 4
3

− 1

31
=

24 − 7

32
 

This implies that, recursively, all the terms of 𝑀𝑎𝑥(𝐶) can be calculated for a given values of 𝑖, Ω. 

We will proceed to establish a calculation method for 𝛺 as a function of 𝑖 for these conditions. 

The loop 1, 2, 4, 1... has 3 steps (two multiplications by 2 and a division by three). After these steps, the 

value of Ω is increased by 1. Let's then define a way to calculate Ω as a function of 𝑖. 

Let: 

Ω = ⌊
𝑖

3
⌋ 

We will now proceed to find an expression for 𝑀𝑎𝑥(𝐶) for each values of 𝑖: 

2𝑖−⌊
𝑖
3

⌋ − 𝑀𝑎𝑥(𝐶)

3⌊
𝑖
3

⌋
= 1 

Clearing 𝑀𝑎𝑥(𝐶) we have: 

2𝑖−⌊
𝑖
3

⌋ − 3⌊
𝑖
3

⌋ = 𝑀𝑎𝑥(𝐶) 

Taking a common factor of 20 in the member of the left we have: 

20 (2𝑖−⌊
𝑖
3

⌋ − 3⌊
𝑖
3

⌋) = 𝑀𝑎𝑥(𝐶) 

The above equation allows to calculate the values of 𝑀𝑎𝑥(𝐶) for: 

𝑖 = 0 + 3𝑘; 𝑘 ∈ ℕ, 𝑘 ≥ 0 

For the second case we have: 

2𝑖−⌊
𝑖
3

⌋ − 𝑀𝑎𝑥(𝐶)

3⌊
𝑖
3

⌋
= 2 

Clearing 𝑀𝑎𝑥(𝐶) we have: 



2𝑖−⌊
𝑖
3

⌋ − 2 ∗ 3⌊
𝑖
3

⌋ = 𝑀𝑎𝑥(𝐶) 

Taking a common factor of 21 in the member of the left we have: 

21 (2𝑖−1−⌊
𝑖
3

⌋ − 3⌊
𝑖
3

⌋) = 𝑀𝑎𝑥(𝐶) 

The above equation allows to calculate the values of 𝑀𝑎𝑥(𝐶) for: 

𝑖 = 1 + 3𝑘; 𝑘 ∈ ℕ, 𝑘 ≥ 0 

For the third case we have: 

2𝑖−⌊
𝑖
3

⌋ − 𝑀𝑎𝑥(𝐶)

3⌊
𝑖
3

⌋
= 4 

Clearing 𝑀𝑎𝑥(𝐶) we have: 

2𝑖−⌊
𝑖
3

⌋ − 4 ∗ 3⌊
𝑖
3

⌋ = 𝑀𝑎𝑥(𝐶) 

Taking a common factor of 22 in the member of the left we have: 

22 (2𝑖−2−⌊
𝑖
3

⌋ − 3⌊
𝑖
3

⌋) = 𝑀𝑎𝑥(𝐶) 

The above equation allows to calculate the values of 𝑀𝑎𝑥(𝐶) for: 

𝑖 = 2 + 3𝑘; 𝑘 ∈ ℕ, 𝑘 ≥ 0 

Now we will proceed to find a general expression for 𝑀𝑎𝑥(𝐶) ∀i ≥ 0 by combining the above three 

equations: 

2(𝑖 𝑚𝑜𝑑 3) (2𝑖−(𝑖 𝑚𝑜𝑑 3)−⌊
𝑖
3

⌋ − 3⌊
𝑖
3

⌋) = 𝑀𝑎𝑥(𝐶) 

2𝑖−⌊
𝑖
3

⌋ − 2(𝑖 𝑚𝑜𝑑 3)3⌊
𝑖
3

⌋ = 𝑀𝑎𝑥(𝐶) 

In such a way that: 

𝑀𝑖𝑛(𝑛𝑖,𝑗) =
2𝑖−⌊

𝑖
3

⌋ − (2𝑖−⌊
𝑖
3

⌋ − 2(𝑖 𝑚𝑜𝑑 3)3⌊
𝑖
3

⌋)

3⌊
𝑖
3

⌋
 

𝑀𝑖𝑛(𝑛𝑖,𝑗) =
2(𝑖 𝑚𝑜𝑑 3)3⌊

𝑖
3

⌋

3⌊
𝑖
3

⌋
 

𝑀𝑖𝑛(𝑛𝑖,𝑗) = 2(𝑖 𝑚𝑜𝑑 3) 

Then, 
2𝑖−Ω−𝐶

3Ω  is bounded: 

2(𝑖 𝑚𝑜𝑑 3) ≤
2𝑖−Ω − 𝐶

3Ω
≤ 2𝑖 

With: 

0 ≤ Ω ≤ ⌊
𝑖

3
⌋ 

And: 

0 ≤ 𝐶 ≤ 2𝑖−⌊
𝑖
3

⌋ − 2(𝑖 𝑚𝑜𝑑 3)3⌊
𝑖
3

⌋
 

2.9. (Part IX). Lemma 7.: 𝑙𝑖𝑚
𝑖→0

2𝑖−𝛺−𝐶

3𝛺 = 1 

Proof: 

Let’s define the following functions in ℝ: 



𝑓(𝑥) = 2𝑥 

𝑔(𝑥) = 2(𝑥 𝑚𝑜𝑑 3) 

ℎ(𝑥) =
2𝑥−𝑎 − 𝐶

3a
, 0 ≤ 𝑎 ≤ ⌊

𝑥

3
⌋ 

Let's calculate the limit when 𝑥 → 0 for the three functions: 

lim
𝑥→0

2𝑥 = 20 = 1 

lim
𝑥→0

2(𝑥 𝑚𝑜𝑑 3) = 20 = 1 

Applying the intermediate function theorem, then: 

lim
𝑥→0

2𝑥−𝑎 − 𝐶

3a
= 1 

Thus: 

lim
𝑖→0

2𝑖−Ω − 𝐶

3Ω
= lim

𝑖→0
 𝑛𝑖,𝑗 = 1 

The result of the limit above shows that, for all 𝑛𝑖,𝑗 ∈ 𝑂𝑖, there is a Path 𝑛𝑖−1,𝑗 , 𝑛𝑖−2,𝑗 , … 𝑛𝑖−(𝑖−3),𝑗 , 4, 2, 1 

that converges to 1. 

 

2.10. (Part X): Lemma 8.: All positive natural numbers can be expressed as                                   

𝑁 =
2𝑖−Ω∗1−𝐶

3Ω , ∀𝑁 ∈ ℕ+ 

Proof: 

Let's suppose that: 

𝑁 ≠
2𝑖−Ω ∗ 1 − 𝐶

3Ω
 

Clearing for 𝑖 we have: 

𝑖 ≠ log2(6Ω𝑁 + 2Ω𝐶) 

Let’s define: 

𝑦 = 𝑓(𝑥, Ω, C ) = log2(6Ω𝑥 + 2Ω𝐶) ;  Ω, C ≥ 0, 𝑥 ≥ 1  

Under this conditions, it’s meet that: 

6Ω𝑥 + 2Ω𝐶 ≥ 1; ∀Ω, C ≥ 0, 𝑥 ≥ 1 

Then, the domain of 𝑓(𝑥, Ω, C ) is: 

𝐷(𝑓(𝑥, Ω, C)) = {(𝑥, Ω, C)|6Ω𝑥 + 2Ω𝐶 ≥ 1} 

In addition, as 𝑓(𝑥, Ω, C ) is a logarithmic function, then 𝑓(𝑥, Ω, C )is continuous throughout its domain. 

The range of images of 𝑓(𝑥, Ω, C ) is: 

𝑅𝑎𝑛𝑔𝑒(𝑓(𝑥, Ω, C )) = {𝑦 ∈ ℝ; 𝑦 ≥ 0} = [0, ∞) 

As 𝑓(𝑥, Ω, C ) is a logarithmic function, then the range 𝑓(𝑥, Ω, C )is also continuous. 

Then: 

𝑦 ≠ log2(6Ω𝑥 + 2Ω𝐶) ∀𝑦 ≥ 0 

Is a contradiction. 

Thus: 

𝑖 ≠ log2(6Ω𝑁 + 2Ω𝐶) ∀𝑖 ≥ 0 

Is also a contradiction. 



Then: 

𝑖 = log2(6Ω𝑁 + 2Ω𝐶) ∀𝑖 ≥ 0 

This implies that: 

∀𝑁 ∈ ℕ+ ∃ Ω, C ≥ 0; 6Ω𝑁 + 2Ω𝐶 = 2𝑖 

After the previous proof we can state the following: 

Lemma 8.  

Let N be a positive natural number; then N meets that: 

𝑁 =
2𝑖−Ω ∗ 1 − 𝐶

3Ω
, ∀𝑁 ∈ ℕ+;  2𝑖−Ω ∗ 1 − 𝐶 ≡ 0 (𝑚𝑜𝑑3)  

2.11. (Part XI): Lemma 9.: There is no loop other than 1, 2, 4, 1… 

Proof: 

If there is a loop other than 1, 2, 4, 1..., this implies that a number has the ability to auto-generate after a 

certain number of multiplications by two, subtractions of one and divisions by three. 

Applying the general expression, we will investigate if there is an odd that depends on itself after an 𝛼 

number of steps with 𝛼 − 𝛾 multiplications by 2 and 𝛾 subtractions of 1 and divisions by 3: 

Let: 

𝑛𝑖,𝑗 =
2𝑖−Ω − 𝑐1

3Ω
 

Let’s define a new 𝑛𝑖+𝛼,𝑗 = 𝑛𝑖,𝑗  obtained from 𝑛𝑖,𝑗 after 𝛼 number of steps with 𝛼 − 𝛾 multiplications by 2 

and 𝛾 subtractions of 1 and divisions by 3 as: 

𝑛𝑖+𝛼,𝑗 =
2𝛼−𝛾𝑛𝑖,𝑗 − 𝑐2

3γ
 

Substituting 𝑛𝑖,𝑗 =
2𝑖−Ω−𝑐1

3Ω  in 𝑛𝑖+𝛼,𝑗 =
2𝛼𝑛𝑖,𝑗−𝑐2

3γ  we have: 

𝑛𝑖+𝛼,𝑗 =
2𝛼−𝛾 2𝑖−Ω − 𝑐1

3Ω − 𝑐2

3γ
 

Then: 

𝑛𝑖+𝛼,𝑗 =
2𝑖+𝛼−(Ω+γ) − 𝐶

3Ω+γ
 

Solving for 𝐶 we have: 

𝐶 = 2𝑖+𝛼−(Ω+γ) − 𝑛𝑖+𝛼,𝑗3Ω+γ 

Earlier we showed that: 

2𝑖−⌊
𝑖
3

⌋ − 2(𝑖 𝑚𝑜𝑑 3)3⌊
𝑖
3

⌋ = 𝑀𝑎𝑥(𝐶) 

For the Orbit 𝑂𝑖+𝛼 the above equation can be expressed as: 

2𝑖+𝛼−⌊
𝑖+𝛼

3
⌋ − 2((𝑖+𝛼) 𝑚𝑜𝑑 3)3⌊

𝑖+𝛼
3

⌋ = 𝑀𝑎𝑥(𝐶) 

Then: 

2𝑖+𝛼−(Ω+γ) − 𝑛𝑖+𝛼,𝑗3Ω+γ ≤ 2𝑖+𝛼−⌊
𝑖+𝛼

3
⌋ − 2((𝑖+𝛼) 𝑚𝑜𝑑 3)3⌊

𝑖+𝛼
3

⌋
 

Solving for 𝑛𝑖+𝛼,𝑗: 

𝑛𝑖+𝛼,𝑗 ≤ −
2𝑖+𝛼−⌊

𝑖+𝛼
3

⌋ − 2((𝑖+𝛼) 𝑚𝑜𝑑 3)3⌊
𝑖+𝛼

3
⌋ − 2𝑖+𝛼−(Ω+γ)

3Ω+γ
 



Then: 

𝑛𝑖+𝛼,𝑗 ≤
2𝑖+𝛼−(Ω+γ) − (2𝑖+𝛼−⌊

𝑖+𝛼
3

⌋ − 2((𝑖+𝛼) 𝑚𝑜𝑑 3)3⌊
𝑖+𝛼

3
⌋)

3Ω+γ
 

But: 

2𝑖−⌊
𝑖
3

⌋ − 2(𝑖 𝑚𝑜𝑑 3)3⌊
𝑖
3

⌋ = 𝑀𝑎𝑥(𝐶) 

Then: 

𝑛𝑖+𝛼,𝑗 ≤
2𝑖+𝛼−(Ω+γ) − 𝑀𝑎𝑥(𝐶)

3Ω+γ
 

But in Lemma 6 we had proofed that: 

𝑀𝑖𝑛(𝑛𝑖,𝑗) =
2𝑖−Ω − 𝑀𝑎𝑥(𝐶)

3Ω
 

Then for 𝑛𝑖+𝛼,𝑗 we have: 

𝑀𝑖𝑛(𝑛𝑖+𝛼,𝑗) =
2𝑖+𝛼−(Ω+γ) − 𝑀𝑎𝑥(𝐶)

3Ω+γ
 

Thus: 

𝑛𝑖+𝛼,𝑗 ≤ 𝑀𝑖𝑛(𝑛𝑖+𝛼,𝑗) 

Then: 

𝑛𝑖+𝛼,𝑗 = 𝑀𝑖𝑛(𝑛𝑖+𝛼,𝑗) 

𝑛𝑖+𝛼,𝑗 = 2((𝑖+𝛼) 𝑚𝑜𝑑 3) = 1, 2, 4, 1 … 

But: 

𝑛𝑖+𝛼,𝑗 = 𝑛𝑖,𝑗 

Then: 

𝑛𝑖,𝑗 = 2(𝑖 𝑚𝑜𝑑 3) = 1, 2, 4, 1 … 

This proof allows to extend the Lemma 3. 

Lemma 9. 

Let 𝑁 ∈ ℕ+ be a positive natural number, then it is satisfied that 𝑁 = 1, 𝑁 = 2 𝑎𝑛𝑑 𝑁 = 4 are the only 

natural numbers that meets the condition: 

𝑁 =
2𝛼−𝛾𝑁 − 𝐶

3γ
;  2𝛼−𝛾𝑁 − 𝐶 ≡ 0 (𝑚𝑜𝑑 3)  

after an 𝛼 number of steps with 𝛼 − 𝛾 multiplications by 2 and 𝛾 subtracts from 1 and divisions by 3 

2.12.  (Part XII): Final Remarks of the Proof of the Collatz Conjecture:  

After all the previous Lemmas we can now Proof the Collatz Conjecture 

In Lemma 8 we have proofed a general expression for 𝑁, ∀𝑁 ∈ ℕ+. Then in Lemma 9 we have proofed 

that there is no loop other than 1, 2, 4, 1… 

Then, let: 

𝑁 =
2𝑖−Ω ∗ 1 − 𝐶

3Ω
, ∀𝑁 ∈ ℕ+;  2𝑖−Ω ∗ 1 − 𝐶 ≡ 0 (𝑚𝑜𝑑3) 

Clearing the 1 in the expression above we have: 

3Ω𝑁 + 𝐶

2𝑖−Ω
= 1, ∀𝑁 ∈ ℕ+;  3Ω𝑁 + 𝐶 ≡ 0 (𝑚𝑜𝑑2) 

Which is precisely the proof that Collatz's Conjecture it’s true.    □ 
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