Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization
Artículo Materias > Biomedicina Universidad Europea del Atlántico > Investigación > Artículos y libros Abierto Inglés Extremely low-frequency electromagnetic fields (ELF-MF) can modify the cell viability and regulatory processes of some cell types, including breast cancer cells. Breast cancer is a multifactorial disease where a role for ELF-MF cannot be excluded. ELF-MF may influence the biological properties of breast cells through molecular mechanisms and signaling pathways that are still unclear. This study analyzed the changes in the cell viability, cellular morphology, oxidative stress response and alteration of proteomic profile in breast cancer cells (MDA-MB-231) exposed to ELF-MF (50 Hz, 1 mT for 4 h). Non-tumorigenic human breast cells (MCF-10A) were used as control cells. Exposed MDA-MB-231 breast cancer cells increased their viability and live cell number and showed a higher density and length of filopodia compared with the unexposed cells. In addition, ELF-MF induced an increase of the mitochondrial ROS levels and an alteration of mitochondrial morphology. Proteomic data analysis showed that ELF-MF altered the expression of 328 proteins in MDA-MB-231 cells and of 242 proteins in MCF-10A cells. Gene Ontology term enrichment analysis demonstrated that in both cell lines ELF-MF exposure up-regulated the genes enriched in “focal adhesion” and “mitochondrion”. The ELF-MF exposure decreased the adhesive properties of MDA-MB-231 cells and increased the migration and invasion cell abilities. At the same time, proteomic analysis, confirmed by Real Time PCR, revealed that transcription factors associated with cellular reprogramming were upregulated in MDA-MB-231 cells and downregulated in MCF-10A cells after ELF-MF exposure. MDA-MB-231 breast cancer cells exposed to 1 mT 50 Hz ELF-MF showed modifications in proteomic profile together with changes in cell viability, cellular morphology, oxidative stress response, adhesion, migration and invasion cell abilities. The main signaling pathways involved were relative to focal adhesion, mitochondrion and cellular reprogramming. metadata Lazzarini, Raffaella; Elexpuru Zabaleta, Maria; Piva, Francesco; Giulietti, Matteo; Fulgenzi, Gianluca; Tartaglione, Maria Fiorella; Zingaretti, Laura; Tagliabracci, Adriano; Valentino, Matteo; Santarelli, Lory y Bracci, Massimo mail SIN ESPECIFICAR, maria.elexpuru@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR (2023) Effects of extremely low-frequency magnetic fields on human MDA-MB-231 breast cancer cells: proteomic characterization. Ecotoxicology and Environmental Safety, 253. p. 114650. ISSN 01476513
|
Texto
1-s2.0-S0147651323001549-main.pdf Available under License Creative Commons Attribution Non-commercial No Derivatives. Descargar (9MB) | Vista Previa |
Resumen
Extremely low-frequency electromagnetic fields (ELF-MF) can modify the cell viability and regulatory processes of some cell types, including breast cancer cells. Breast cancer is a multifactorial disease where a role for ELF-MF cannot be excluded. ELF-MF may influence the biological properties of breast cells through molecular mechanisms and signaling pathways that are still unclear. This study analyzed the changes in the cell viability, cellular morphology, oxidative stress response and alteration of proteomic profile in breast cancer cells (MDA-MB-231) exposed to ELF-MF (50 Hz, 1 mT for 4 h). Non-tumorigenic human breast cells (MCF-10A) were used as control cells. Exposed MDA-MB-231 breast cancer cells increased their viability and live cell number and showed a higher density and length of filopodia compared with the unexposed cells. In addition, ELF-MF induced an increase of the mitochondrial ROS levels and an alteration of mitochondrial morphology. Proteomic data analysis showed that ELF-MF altered the expression of 328 proteins in MDA-MB-231 cells and of 242 proteins in MCF-10A cells. Gene Ontology term enrichment analysis demonstrated that in both cell lines ELF-MF exposure up-regulated the genes enriched in “focal adhesion” and “mitochondrion”. The ELF-MF exposure decreased the adhesive properties of MDA-MB-231 cells and increased the migration and invasion cell abilities. At the same time, proteomic analysis, confirmed by Real Time PCR, revealed that transcription factors associated with cellular reprogramming were upregulated in MDA-MB-231 cells and downregulated in MCF-10A cells after ELF-MF exposure. MDA-MB-231 breast cancer cells exposed to 1 mT 50 Hz ELF-MF showed modifications in proteomic profile together with changes in cell viability, cellular morphology, oxidative stress response, adhesion, migration and invasion cell abilities. The main signaling pathways involved were relative to focal adhesion, mitochondrion and cellular reprogramming.
Tipo de Documento: | Artículo |
---|---|
Palabras Clave: | Extremely low-frequency magnetic fields (ELFMF); Breast cancer; Proteome profiling; Oxidative stress; Cell adhesion Cellular reprogramming |
Clasificación temática: | Materias > Biomedicina |
Divisiones: | Universidad Europea del Atlántico > Investigación > Artículos y libros |
Depositado: | 20 Feb 2023 23:30 |
Ultima Modificación: | 21 Oct 2024 23:31 |
URI: | https://repositorio.uneatlantico.es/id/eprint/5969 |
Acciones (logins necesarios)
![]() |
Ver Objeto |
en
close
Enzymatic treatment shapes in vitro digestion pattern of phenolic compounds in mulberry juice
The health benefits of mulberry fruit are closely associated with its phenolic compounds. However, the effects of enzymatic treatments on the digestion patterns of these compounds in mulberry juice remain largely unknown. This study investigated the impact of pectinase (PE), pectin lyase (PL), and cellulase (CE) on the release of phenolic compounds in whole mulberry juice. The digestion patterns were further evaluated using an in vitro simulated digestion model. The results revealed that PE significantly increased chlorogenic acid content by 77.8 %, PL enhanced cyanidin-3-O-glucoside by 20.5 %, and CE boosted quercetin by 44.5 %. Following in vitro digestion, the phenolic compound levels decreased differently depending on the treatment, while cyanidin-3-O-rutinoside content increased across all groups. In conclusion, the selected enzymes effectively promoted the release of phenolic compounds in mulberry juice. However, during gastrointestinal digestion, the degradation of phenolic compounds surpassed their enhanced release, with effects varying based on the compound's structure.
Peihuan Luo mail , Jian Ai mail , Qiongyao Wang mail , Yihang Lou mail , Zhiwei Liao mail , Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Maurizio Battino mail maurizio.battino@uneatlantico.es, Elwira Sieniawska mail , Weibin Bai mail , Lingmin Tian mail ,
Luo
<a class="ep_document_link" href="/17819/1/1-s2.0-S2214804325000679-main%20%281%29.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
What works in financial education? Experimental evidence on program impact
Financial education is increasingly essential for safeguarding both individual and corporate well-being. This study systematically reviews global financial education experiments using a dual-method framework that integrates a deep learning classifier with advanced multivariate statistical techniques. Our analysis indicates that while short-term improvements in financial literacy are common, such gains tend to diminish over time without ongoing reinforcement. Moreover, the limited impact of digital innovations and monetary incentives suggests that successful financial education depends on more than simply deploying technological solutions or extrinsic rewards. Overall, this review provides valuable insights into the evolving landscape of financial education in a dynamic economic context and underscores the need for sustainable strategies that secure lasting improvements in financial literacy.
Gonzalo Llamosas García mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es,
García
en
close
Epigallocatechin gallate (EGCG) is the most abundant polyphenol in tea. Owing to the different fermentation degrees, differences in polyphenol composition of water extracts of green tea, white tea, oolong tea, and black tea occur, and affect health value. This study revealed that the content of EGCG decreases with the increase in the degree of fermentation. In tea with a high fermentation degree, EGCG was stably present in the form of ammoniation to yield nitrogen-containing EGCG derivative (N-EGCG). The content of N-EGCG in tea was negatively correlated with the content of EGCG. Furthermore, the content of l-serine and L-threonine in tea was positively and negatively correlated with N-EGCG and EGCG levels, respectively, suggesting that they may participate in the formation of N-EGCG as nitrogen sources. This study proposes a new fermentation-induced polyphenol-amino acid synergistic mechanism, which provides a theoretical basis for the study of the biotransformation reaction mechanism of tea polyphenols.
Yuxuan Zhao mail , Jingyimei Liang mail , Wanning Ma mail , Mohamed A. Farag mail , Chunlin Li mail , Jianbo Xiao mail ,
Zhao
<a href="/17825/1/foods-14-02648-v2.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: Western dietary patterns worldwide are increasingly dominated by energy-dense, nutrient-deficient industrial foods, often identified as ultra-processed foods (UPFs). Such products may have detrimental health implications, particularly if nutritionally inadequate. This study aimed to examine the intake of unhealthy UPFs among children and adolescents from five Mediterranean countries (Italy, Spain, Portugal, Egypt, and Lebanon) involved in the DELICIOUS project and to assess the association with dietary quality indicators. Methods: A survey was conducted with a sample of 2011 parents of children and adolescents aged 6 to 17 years to evaluate their dietary habits. Diet quality was assessed using the Youth Healthy Eating Index (Y-HEI), the KIDMED index to determine adherence to the Mediterranean diet, and compliance with national dietary guidelines. Results: Increased UPF consumption was not inherently associated with healthy or unhealthy specific food groups, although children and adolescents who consumed UPF daily were less likely to exhibit high overall diet quality and adherence to the Mediterranean diet. In all five countries, greater UPF intake was associated with poorer compliance with dietary recommendations concerning fats, sweets, meat, and legumes. Conclusions: Increased UPF consumption among Mediterranean children and adolescents is associated with an unhealthy dietary pattern, possibly marked by a high intake of fats, sweets, and meat, and a low consumption of legumes.
Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Alice Rosi mail , Evelyn Frias-Toral mail , Osama Abdelkarim mail , Mohamed Aly mail , Achraf Ammar mail , Raynier Zambrano-Villacres mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Nunzia Decembrino mail , Alessandro Scuderi mail , Alice Leonardi mail , Lorenzo Monasta mail , Fernando Maniega Legarda mail , Ana Mata mail , Adrián Chacón mail , Pablo Busó mail , Giuseppe Grosso mail ,
Giampieri
<a class="ep_document_link" href="/17826/1/foods-14-02445.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends.
Di Zhang mail , Efakor Beloved Ahlivia mail , Benjamin Bonsu Bruce mail , Xiaobo Zou mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Dragiša Savić mail , Jaroslav Katona mail , Lingqin Shen mail ,
Zhang