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Abstract: Rock art offers traces of our most remote past and was made with mineral and organic
substances in shelters, walls, or the ceilings of caves. As it is notably fragile, it is fortunate that
some instances remain intact—but a variety of natural and anthropogenic factors can lead to its
disappearance. Therefore, as a valuable cultural heritage, rock art requires special conservation and
protection measures. Geomatic remote-sensing technologies such as 3D terrestrial laser scanning
(3DTLS), drone flight, and ground-penetrating radar (GPR) allow us to generate exhaustive doc-
umentation of caves and their environment in 2D, 2.5D, and 3D. However, only its combined use
with 3D geographic information systems (GIS) lets us generate new cave maps with details such
as overlying layer thickness, sinkholes, fractures, joints, and detachments that also more precisely
reveal interior–exterior interconnections and gaseous exchange; i.e., the state of senescence of the
karst that houses the cave. Information of this kind is of great value for the research, management,
conservation, monitoring, and dissemination of cave art.

Keywords: cultural heritage; rock art; geomatics; data processing; 3D terrestrial laser scanner; global
navigation satellite systems; UAV photogrammetry; ground penetrating radar; cultural manage-
ment; mapping

1. Introduction

Recently, remote-sensing techniques have been used for underground cultural heritage
sites to improve traditional documentation such as terrestrial photogrammetry [1–4], to
create orthoimages series and virtual reality scenarios [5–9], and in the case of hyperspectral
remote-sensing, to recover rock-art paintings invisible to the naked eye or covered by calcite,
dirt, or soot [10–16], which are themselves helpful for understanding the stratigraphy of
the rock art panel [17–20].

From a remote-sensing viewpoint, caves are characterized by particular conditions,
such as complex access, confined spaces, high humidity, constant temperature, absence of
natural light, a potential relationship between the interior and the exterior, etc. [4,21].

Separately, photogrammetric unmanned aerial vehicle (UAV) flights can provide accu-
rate terrain models [22,23], 3D terrestrial laser scanner (3DTLS) surveys provide detailed
and correct cave models, while ground-penetrating radar (GPR) provides information on
the particularities of the rock mass under investigation.
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It is the combined use of these tools that enables the generation of new cartographic
information on the features of cave karst complexes, such as rock thickness, fractures, joints,
sinkholes, cave seepage, water dripping, stability analysis, and gaseous exchanges, which
are valuable for conservation studies of the cave.

The Altamira Cave is an exceptional cultural heritage site that is internationally
recognized as a masterpiece of History of Art, being added to the UNESCO World Heritage
List in 1985. It is in Santillana del Mar (Cantabria) and is 296 m long, widening in some
areas, such as the Polychrome Hall. It is the first cave in which the existence of rock art
from the Palaeolithic period was identified (Figure 1).
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Figure 1. Location map and the surroundings of Altamira Cave. The cave is located in Santillana del
Mar, Cantabria, Spain.

The cave was discovered in 1868, while the cave art was discovered in 1879 by
Marcelino Sanz de Sautuola and his daughter María. The authenticity of the cave paintings
was accepted by the scientific community in 1902 [24,25]. It has paintings and engravings
that were made from over 35,000 years ago to 14,000 years ago, among which the set of
polychrome bison stands out.
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Since its discovery, it has been the object of special conservational attention and care.
It is in the upper part of an ancient karst (Figure 2a) that has a tendency to disappear by
collapse and subsidence: due to the tabular structure of the limestone and the steep slope
of the fracture planes, the geological evolution of Altamira is more marked by a series of
gravitational collapses of the limestone rock layers than by the circulation of water [26].
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Figure 2. (a) Map of the interior of the Cave including gallery names, artificial walls, pillars, and
stairs. (b) Map of the traverse and reference checkerboards, including the traverse station from which
they radiate.

The first writings in the local and national press reported the existence of collapses
throughout the cave. Faced with this structural instability in some parts of the cave at
the beginning of the 20th century, important transformations were proposed, such as
the raising, in the vestibular area, of a large stone wall to act as a support for the strata
of the ceiling, which was threatening to collapse. This intervention, which definitively
isolated the Polychrome room from the rest of the cavity, has generated some of the micro-
environmental conservation problems that continue to this day. Subsequent interventions
focused on trying to reverse the infiltration of rainwater through the network of fissures
and fractures in the cave, which is the main problem for the conservation of the paintings.
Artificial walls were built inside the cave (Figure 2a), some cracks were filled with hydraulic
mortar, and a layer of Portland cement was spread over the exterior surface [27].

The current state of conservation of Altamira results from structural geological problems
due to the accumulation over time of multiple transformations and micro-environmental dis-
turbances. Refurbishment works, changes in the external and internal soils, archaeological
excavations, mass visits, and other activities have generated conservation conditions differ-
ent from those that the cave had before its discovery, where its substantial conservation
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was caused by its low water infiltration rate and its stable microclimatic conditions, the
latter being caused by its natural closure [28].

The most worrying factors in the conservation of the Altamira cave concern deterio-
ration processes related to geological structural stability and infiltration water, as well as
biodeterioration and human presence. To understand their dynamics and to minimize the
alterations generated by them, it is necessary to develop effective conservation strategies
aimed at controlling the different agents of deterioration. The water that enters the cave
through the network of fissures and fractures in the overlying layer plays an important
role in the processes of dissolution and dragging of the supporting rock. The processes of
microcorrosion, loss of adhesion, cracking, washing, and loss of support are worrying and
are still active today.

Knowing and studying the underlying dynamics of these processes hypothetically
associated with the destruction of paint at Altamira is essential to design strategies to
control each alteration agent and the interactions between them.

The aim of this research was to improve the understanding of the karst system sur-
rounding Altamira Cave by combining remote-sensing technologies for its preventive
conservation, thus contributing to decision-making for its management.

An exhaustive and combined study of remote-sensing techniques was carried out,
after which we performed 3D cartography to integrate the exterior, the inner topography
of the cave, and the main discontinuities and karst features detected around. As we will
show, this 3D integrated mapping is a crucial tool for monitoring the main fluid flows into
the cave and other conservation purposes.

In the paper, Section 2 shows the data sources integrated to carry out the study, i.e.,
GNSS in different operational modes, 3DTLS for the geometrical characterization of the
cave, a UAV flight to model the terrain, and GPR for the overlying layer. Each subsection
describes the accuracies achieved with each method. Section 3 shows the results obtained
from integrating two or more techniques and how to visualize them. Finally, Section 4
contains the discussion.

2. Materials and Methods

Caves with rock art are formed by the dissolution of limestone rock by slightly acidic
water, which may involve processes of chemical and geological activity, tectonic forces, and
atmospheric influences. They are irregular in shape and variable in extent, so it is necessary
to integrate different georeferenced remote-sensing techniques to derive new cartographies
and generate new information on the cultural heritage element [29].

The flowchart that follows first required the creation of a reference frame, which was
observed using the static mode of GNSS, obtaining an average error of 1.7 cm at the vertices.
This reference frame was observed and adjusted as a microgeodetic network, obtaining an
average accuracy of 1.1 cm in the determination of vertex coordinates.

The UAV flight was georeferenced by GNSS in RTK mode. Fifty-two control points
were taken throughout the area and 40 points were taken to validate the model. The result
of the validation points was an error of 2.1 cm in planimetry and 2.8 cm in elevation.

The GPR grids were staked using GNSS in RTK mode. To keep the direction constant,
a canvas was attached to each grid. From these efforts, the three models were generated
and then integrated to be analyzed as a whole (Figure 3).
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2.1. Global Navigation Satellite System (GNSS)

GNSS (Global Navigation Satellite System) refers to the set of satellite navigation
system technologies that provide geospatial positioning with autonomous global coverage.

The origins of GNSS date to the 1970s with the development of the US military GPS
(Global Positioning System), which, through a network of satellites, a GNSS receiver can
determine its position in four dimensions (longitude, latitude, altitude, and time) [30].

In September 2013, a network of points was created using three TOPCON Hyper II [31]
receivers simultaneously, 2 of which were moved to other vertices after 1 h of observation
to create the reference frame, which was the beginning of the traverse of the cave. The
geodetic reference system used to create the reference frame was the European Terrestrial
Reference System 1989 (ETRS89).

The software Topcon Tools [32] was used to calculate observed phase changes to form
the differencing observation equations, perform the least-squares adjustment, and output
the adjusted baseline vector components. The mean accuracy of the reference frame was
1.7 cm.

GPR grids were staked out by using the Real Time Kinematic (RTK) mode. The RTK
positioning technique is based on the carrier solution of the signals transmitted by the
global navigation satellite systems GPS; in our case, Glonass and Navstar. A reference
station provides instantaneous corrections for mobile stations, which brings the obtained
accuracy to the centimeter level. The base station retransmits the phase of the carrier it
measured, and the mobile units compare their own phase measurements with that received
from the reference station. This lets the mobile stations calculate their relative positions
with millimeter accuracy, with their absolute relative positions being related to the base
station coordinates. This technique requires the availability of at least one reference station
with known coordinates that has a GNSS receiver and a radio transmitter modem. The
station generates and transmits differential corrections for the stations, which use the data
to precisely determine their positions [33,34].

2.2. 3D Terrestrial Laser Scanning

Having an accurate cartographic model of a cave is important when knowledge-
based prediction models need to be estimated from georeferenced parameters such as
microbiological, climatic, hydrochemical, geomorphological, etc. that are highly correlated
either between them or with what happens in the exterior [18].

Starting from a vertex of the reference frame “b-2” (Figure 2b), a closed traverse
back-and-forth was made that was adjusted and compensated through the cave using a
TOPCON GPT-7503 total station [35]. Sixteen traverse stations were needed, and the total
length was 430 m. The angular closure error was 0.0218g, and the linear closure error was
X = −0.001 m, Y = −0.005 m, Z = 0.
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A total of 66 checkerboards distributed around the cave were radiated from the vertices
of the traverse; these are the reference system of the 3D laser scanner, on which the scans
are georeferenced. (Figure 2b).

The field campaign was carried out in December 2013; a FARO FOCUS X-130 [36]
was used, and 300 scans were required. Calibrated spheres were used as tie points and the
traverse checkerboards as references, which were adjusted with an accuracy of 2.7 mm for
95% of the points (Figure 2a) [37].

This new model updated the traditional values of the Altamira cave, which are as
follows:

• Length: 296.5 m (20 longer)
• Area: 11,390.9 m2

• Volume: 9372.7 m3

The 3D model enabled us to obtain, apart from the classical cartographies of plant and
section planes, other cartographies such as the height of roofs, floors, and galleries.

2.3. Unmanned Aerial Vehicle

Currently, the use of drones for surveying and mapping work is widespread. Drones
allow surveys of large areas to be carried out with high reliability in a shorter time than us-
ing traditional techniques such as Topographic Total Stations (TTS) and GNSS. UAVs make
it possible to obtain something fundamental for our model, which is to have continuous,
sufficiently precise information of the entire work area, including places that are difficult to
access: in our case, the sinkholes [38–40].

The platform selected for the execution of the photogrammetric flights was a TOPCON
Intel Falcon 8+ Drone [41], on which a Sony A7 R Mark ii full-frame camera [42] was
mounted with a Sony Sonnar T* FE 35 mm F/2.8 lens. The flights were carried out with the
flight-planning system in a simple and fast way.

To reach a ground sample distance (GSD) of 2 cm, the flight-planning system was
used to obtain measurements throughout the entire cave environment (40 Ha). More than
4800 pictures were taken, 52 Ground Control Points (GCP) were measured with RTK-GNSS
to reference the flight, and another 40 points were measured for quality control. The mean
error of the control points was 1.76 cm.

This allowed us to obtain 2D information such as orthoimages, 2.5D information such
as a Digital Surface Model, which was filtered to remove trees to obtain a Digital Elevation
Model (DEM), and 3D information such as point clouds and a 3D model of the whole area.
The 3D model of the cave environment (40 Ha) was created at a definition of 12 million
triangles textured with 8 textures of 8192 × 8192 pixels (Figure 4), while the model of
the area next to the cave (4 Ha) was created with 4 million polygons and 4 textures of
8192 × 8192 pixels, which is the model we used for integrating the rest of the data. Both
models were exported to .Obj, a geometry definition file format, to be integrated with
other data.
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2.4. Ground-Penetrating Radar

Ground-Penetrating Radar (GPR) is commonly used in the investigation of the inter-
nal structure of rock masses, which are generally defined as mechanically discontinuous,
anisotropic and heterogeneous environments [43–45]. GPR provides continuous, high-
resolution information on the internal structure of a rock mass and its physical properties in
both vertical and lateral directions [46–49]. The data recorded with the GPR (radargrams)
depend on the transmission of the electromagnetic wave in the medium and the amount of
energy reflected, diffracted, or critically refracted by the medium. Therefore, the propaga-
tion of a wave depends on the electromagnetic properties (magnetic permittivity, electrical
conductivity, and dielectric permittivity) of the medium through which it is transmitted
and the contrast of these electromagnetic properties with those of other media.

In a rock-mass survey, GPR is used to map discontinuities, mainly fractures, joints,
cavities, detachments, and bedding planes [50–54]. To study the features of a karstic system,
the GPR technique is useful for mapping and assessing rock discontinuities [55–60].

2.4.1. Field Data Acquisition

It was necessary to collect data from the whole site of the Altamira Cave and its
surroundings. A three-dimensional (3D) GPR methodology was carried out to pinpoint
and define the existence and geometry of the main discontinuities and fractures in the karst
system where the cave is located. One feature of GPR surveying is the inevitable decrease in
resolution with depth. The frequency of the antenna is a crucial choice. Different resolutions
and penetration depths can be achieved using antennas with different nominal center
frequencies: higher resolution and shallower penetration depths are typically obtained with
higher frequency antennas, while deeper penetrations and lower resolution are achieved
with lower frequency antennas [61,62]. A commercial GPR equipment SIR-3000 (GSSI) was
used for the study. In this study, we present the results of three GPR grids.
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- In order to pinpoint discontinuities and karst structures in deep layers, a 100 MHz
nominal center frequency antenna was used for the area in and around Altamira Cave.
The 100 MHz antenna was able to penetrate to depths of about 10 m in the study area,
and a centimeter resolution could be achieved [63,64]. The design of the GPR profile
grid mainly took into account the dimensions and directionalities of a series of karst
structures and faults, in some cases extending over more than half a kilometer, mapped
in previous studies in the Altamira Cave area [65,66]. Therefore, a profile grid for GPR
data acquisition was designed with equidistant 2D orthogonal lines, spaced every 3
m, with respect to a longitudinal axis that was, in turn, perpendicular to the main
fracture directions in the Altamira Cave area, as described in these previous studies.
Every 2D profile line was topographically georeferenced by GNSS (Figures 5 and 6).
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- Due to the importance of the cave paintings on the Polychrome Hall ceiling for the
Cave of Altamira, it was considered necessary to study the first meters of its overlying
rock strata and its lapiés area in greater detail and at a higher resolution. Two GPR
profile grids were planned in the Polychrome Hall area:

◦ A profile grid for the study of its strata in the first meters using a 400 MHz
nominal center frequency antenna to identify discontinuities and karst struc-
tures. The 400 MHz antenna was able to penetrate to depths of about 4 m in
the study area, with centimeter resolution [67].

◦ A profile grid for the study of its lapiés zone using a 900 MHz nominal center
frequency antenna to define the lapiés groove system. The 900 MHz antenna
was able to penetrate to depths of about 1.5 m in the study area with a centime-
ter resolution [68].

These two grids were designed according to the extensive system of lineaments in the
exterior and interior of Altamira Cave, mainly in the form of joints and with predominant
directions N45, N68, N110, N168, and N-S [69]. Accordingly, both profile grids for GPR data
acquisition were designed with equidistant 2D orthogonal lines, spaced every 1 m, with
respect to a longitudinal axis that was, in turn, perpendicular to the main joints directions
in the Polychrome Hall area, as described in the aforementioned previous study. Every 2D
profile line was topographically georeferenced by GNSS (Figures 7 and 8).
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Figure 8. (a) Location and (b) radargram (profile T-97) recorded with the 400 MHz antenna, in which
two levels of discontinuities in the rock mass were detected. The first and more superficial level
corresponds to the lapiés (delimited with a black dashed line), and the second corresponds to a zone
of fractures, joints, and detachments (delimited with a yellow dashed line). Vertical discontinuities
corresponding to vertical fractures were also detected. (c) Radargram (profile T-97) recorded with the
900 MHz antenna, in which discontinuities with better resolution were detected at the lapiés level
(delimited with a black dashed line). Vertical discontinuities corresponding to vertical fractures and
rock pinnacles separated by grooves were also detected.

In the field campaign, 454 profiles were recorded: 329 profiles totalling 20,850 m2

were surveyed with the 100 MHz antenna, 76 profiles totalling 850 m2 with the 400 MHz
antenna, and 49 profiles totalling 550 m2 with the 900 MHz antenna.

2.4.2. Data Processing
Velocity Estimation

The GPR reflection data was acquired in the same week under very similar weather
conditions with no rainfall. Thus, the subsurface moisture conditions in this investigated
area could be considered almost constant for the investigated depth during the acquisition
of the GPR field data. This velocity estimation assumption was made for the velocity-to-
depth conversions, considering that possible changes in subsurface conditions could cause
velocity variations that would affect these velocity-to-depth conversions [61,69].

The average velocity of the GPR wave was determined by the hyperbola fitting method
on a set of hyperbolas recorded in different profiles, obtaining an average velocity value
of 11.17 cm/ns. The dielectric permittivity (ε) was calculated to be 7.2, according to the
following equation for low-loss media [61,62]:

ε =
( c

v

)2

where v is the electromagnetic wave velocity and c is the velocity of light in free space
(c ≈ 29.97 cm/ns).

This value was applied for the calculation of the processed depths in the investigated
site of Altamira Cave.

Selected Processing Flow

Post-acquisition processing procedures were applied to the raw field GPR data sets
to produce amplitude maps and rendered 3D images with all reflection profiles in the
grids [61,62,69]. In this study, a data-processing procedure was applied to the raw data sets
using RADAN 7.6 software (Geophysical Survey Systems, Inc., GSSI). The main processing
steps are shown in Figure 9. The first step was a 1D processing consisting of zero-time
correction (time-zero adjustment). After this, the 2D processing was applied to the reflection
profiles according to these steps: (i) background removal; (ii) bandpass filters; (iii) linear
amplitude gains; (iv) a time-to-depth conversion based on the calculated velocity average
for the overlying rock strata. Next, each processed reflector profile was aligned within the
grids described, with corresponding topographic corrections, to produce 3D horizontal
amplitude maps and isosurface images (isoamplitude surface rendering).
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Figure 9. Flowchart of the main processing steps applied to raw reflection data collected by GPR in
this study.

3. Results
3.1. Integration of UAV and 3DTLS

First, the UAV terrain model was integrated with the 3DTLS model of the cave because
all information is georeferenced. From this, the surface position of the galleries and the
proximity of the ceiling to the exterior terrain could be analyzed (Figure 10).
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Figure 10. Visualization of the 3D model of the cave below a low-detail mesh obtained from
UAV model.

A cartography was created with the overlying layer thickness of the cave (Figure 11) [29].
These maps consist of a raster with a resolution of 1 × 1 cm2, in which each pixel has the
minimum distance between the ceiling of the cave and the ground recorded by the UAV
flight for each pair of XY coordinates [70].
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Figure 11. Overlying layer thickness model of Altamira Cave.

3.2. Intregration of UAV and GPR

After processing the data recorded with the three central frequency antennas (100 MHz,
400 MHz and 900 MHz), we obtained 3D isosurface models with significant discontinuities
in the overlying layer of the Altamira Cave bed and with higher resolution in the layer
overlying the Polychrome Hall.

3.2.1. Results from the Overlying Layer of the Altamira Cave Site Derived from the
100 MHz Antenna

Subvertical reflectors and vertical diffractions were mapped and recorded in the GPR
profiles that correspond to internal discontinuities in the rock mass (fractures, joints, detach-
ments, bedding planes, etc.). Some of the vertical/subvertical discontinuities, with great
in-depth development, were only a few meters from the surface. These vertical/subvertical
discontinuities represent important accesses/pathways for the exchange processes between
the interior of the cave and the exterior. Mainly, these vertical/subvertical discontinuities
were detected in the following areas (Figure 12):

• The surrounding sinkholes (cave entrance, areas of Hoya Hall and El Pozo).
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• The Polychrome Hall.
• The Stalactites Cave.
• The Hoya Hall.
• The artificial walls.
• An area to the NW where a house and a cowshed with its dunghill were located.
• The end zone of the westernmost branch line.

In addition, this GPR survey pinpointed several sinkholes in two areas (Figure 12):

• To the northwest of the Altamira Cave, specifically on the road to the south of the
Museum building and where buildings and constructions demolished (house, bar,
stable, and a dunghill) were located.

• In the end zone of the westernmost branch line of Altamira Cave.
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Hall; (e) the artificial walls; (f) an area to the NW where a house and a cowshed with its dunghill 
were located; (g) the end zone of the westernmost branch line. Sinkhole areas pinpointed by GPR in 
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The existence of vertical/subvertical discontinuities (fractures) detected in the Hoya 
Hall area would justify the construction of the artificial walls at the beginning of the 20th 
century. 

Figure 12. Zonal distribution map of subvertical reflectors and vertical diffractions (fractures) from
GPR profiles in the rock massif of Altamira Cave: (a) the surrounding sinkholes, cave entrance, areas
of Hoya Hall and Pozo Hall; (b) the Polychrome Hall; (c) the Cave of the Stalactites; (d) the Hoya
Hall; (e) the artificial walls; (f) an area to the NW where a house and a cowshed with its dunghill
were located; (g) the end zone of the westernmost branch line. Sinkhole areas pinpointed by GPR in
the rock massif of Altamira Cave are indicated by yellow ovals.

The existence of vertical/subvertical discontinuities (fractures) detected in the Hoya
Hall area would justify the construction of the artificial walls at the beginning of the
20th century.
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This mapping has revealed discontinuities in specific areas of the Cave de Altamira
that suggest that in past times, the extension of the Cave was greater than it is today and
that it had several entrances/accesses.

3.2.2. Results from the Overlying Layer of the Polychrome Hall Derived from the 400 MHz
and 900 MHz Antennae

The 3D model from the data recorded with the 400 MHz center frequency antenna
indicated two levels containing a large number of high amplitude reflectors and vertical
diffractions in the first few meters of depth of the overlying layer (Figure 13):

• A first level from the surface to a depth of about 1.20 m, which corresponds to the
lapiés zone.

• A second level located in a variable interval between 1.70 m and 2.80 m depth, which
may correspond mainly to the existence of fractures, joints, and an extended zone of
detachments.
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Figure 13. 3D amplitude isosurface model of the main discontinuities in the overlying layer of
the Polychrome Hall with the 400 MHz antenna, showing the two levels of discontinuities (lapiés
zone—fractures, joints, and detachment zone) and the vertical fractures.

A presence of a number of vertical/subvertical discontinuities (fractures) connecting
these two levels and extending in depth (>3.80 m depth) was also detected. These mapped
discontinuities represent significant access/pathways for the exchange processes between
the interior of the Polychrome Hall and its external environment.

The second level was detected only to the north and east of the projection of the
Polychrome Hall (Figure 14). This level could represent an area of water load located at a
higher level than the ceiling of the Polychrome Hall, i.e., there is a probability of a local
and temporary generation of a hanging aquifer where water from the surrounding area
would build up on possible impermeable levels at its base. It is also necessary to consider
the possibility that in times of high exterior–interior exchange, many particles deposited
there may end up inside the Polychrome Hall.
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(impluvium) of water into the horizons that make up the geological structure of the over-
lying layer of Polychrome Hall. This is the case in three of the vertical fracture zones ob-
served and coincides with the temporary contributions of water in the walls of the Poly-
chrome Hall, with two of them being located in its north wall and one of them in its south 
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Figure 14. Amplitude slice, 2.20 m depth with the 400 MHz antenna, showing the fracture, joint, and
detachment zone (marked in white) on the vertical projection of the Polychrome Hall. This zone of
discontinuities is located only to the north and east of the Polychrome Hall projection.

In addition, this second level could contribute to the direct and lateral infiltration (im-
pluvium) of water into the horizons that make up the geological structure of the overlying
layer of Polychrome Hall. This is the case in three of the vertical fracture zones observed
and coincides with the temporary contributions of water in the walls of the Polychrome
Hall, with two of them being located in its north wall and one of them in its south wall, as
shown in Figure 15.
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Figure 15. Amplitude slice, 3.50 m depth with the 400 MHz antenna, showing with white arrows
the locations of the projections of the vertical/subvertical fractures that correspond to the 3 zones
of temporary water inflow observed in the interior of the Polychrome Hall. Two of them are on the
north wall and one is on the south wall.

In addition, the existence of this detachment level (level of high-amplitude reflectors),
which borders the Polychrome Hall to the north and east, could be related to

◦ the decision at the beginning of the 20th century to construct the artificial walls to the
north and east of the Polychrome Hall, or

◦ the current topography of the surface above Polychrome Hall, reflecting a change in
orientation and slope that tilts towards the NE on the surface, which coincides with
the surface projection of this detected level of high amplitude reflectors (Figure 16), or
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◦ the distensive processes caused by the collapse of the sinkholes surrounding the north
and southeast of the Polychrome Hall [65–68,71].

Remote Sens. 2023, 15, x FOR PEER REVIEW  18  of  25 
 

 

o the distensive processes  caused by  the  collapse of  the  sinkholes  surrounding  the 

north and southeast of the Polychrome Hall [65–68,71]. 

 

 
(a) 

 
(b) 

Figure 16. Projection of the Polychrome Hall on the topographic map, showing a change of orienta‐

tion and slope (indicated with black arrow) that tilts to the NE (a), and which also corresponds to 

the projection of the second level of discontinuities in its amplitude depth slice (2.20 m depth) (b). 

Figure 16. Projection of the Polychrome Hall on the topographic map, showing a change of orientation
and slope (indicated with black arrow) that tilts to the NE (a), and which also corresponds to the
projection of the second level of discontinuities in its amplitude depth slice (2.20 m depth) (b).
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In summary, we observed that the overlayer of Polychrome Hall is more affected by
fracturing in its northern and eastern areas. Similarly, its fracturing increases from west
to east.

The 900 MHz center frequency antenna was used for the 3D study of the lapiés area
of the Polychrome Hall. In this study, a large number of high-amplitude reflectors were
recorded and mapped from the surface to about 1.20 m depth. These high-amplitude
reflectors correspond to the rugged water-modeled limestone surface, consisting of rock
pinnacles separated by grooves. The lineaments of this groove complex in the lapiés derived
from 3D mapping agree with the predominant directions of the joint system (N45, N68,
and N168) mapped in the Polychrome Hall rock outcrops [68]. (Figure 17). This lapiés area
represents a permeable soil system that allows both runoff and infiltration of water, as well
as the flow of gases.
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3.3. Visualization of the Integration of UAV, 3DTLS, and GPR

The 3D GPR model derived from the 100 MHz antenna recordings provides informa-
tion about the most important discontinuities in the Altamira Cave karst system up to a
depth of about 8 m (Figure 18).
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Figure 18. Image of integrating the UAV model, 3DTLS and GPR (100 MHz antenna), showing the
discontinuities in the Polychrome overlying layer (in light brown) and the backside of the Polychrome
Hall (in dark brown).

This model, showing the 3D amplitude isosurfaces, has been integrated with the
UAV and 3DTLS models in Blender, an open-source 3D computer graphics software [72],
to manage data and determine the spatial relationships between them by measuring or
making sections (Figure 19) with variable thickness.

A video (Figure 20) showing the remarkable discontinuities recorded during the
geophysical campaign in the karstic formation of the Altamira Cave was also rendered.
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and 3DTLS (grey) models.
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4. Discussion

Geologically speaking, Altamira Cave is in a senile state with a clear tendency to
disappear through natural evolution, given that the processes of destruction are more
important than those of sedimentation [26]. The existence of an important network of
fissures, fractures, joints, and displacements present from the top of the cave to the cave
ceilings themselves affects cave stability and conditions important changes in the circula-
tion of infiltration water, generating relevant alterations on the painting such as flaking,
washing/erosion, and the concretion of carbonates [73,74].

The criteria used for the management and custody of Altamira Cave have led to the
application of measures aimed at protecting the cave, its paintings, and its surroundings
to guarantee their correct conservation. The research and conservation work in the cave,
within the framework of its Preventive Conservation Plan, is aimed at gaining a better
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understanding of the active deterioration processes to establish a detailed diagnostic
procedure that facilitates indirect conservation actions.

Accurate georeferencing is key for integrating remote-sensing techniques in order to
derive useful information from the cultural heritage, since it allows us to see the relation-
ships between different parts of the cave with the exterior and how the soil is preserved.
The study carried out on the mountain where Altamira Cave itself is located posed a re-
search challenge of great relevance for the cave’s conservation: to determine the exact access
routes and the trajectories of the infiltration water which, through the lines of fractures,
fissures, and joints, access the different parts of the cave, especially the Polychrome Hall.

Integrating GNSS, 3DTLS, UAV photogrammetry and GPR permits a rapid, accurate,
and reliable recording of complex features such as caves or cavities [18]. This information
can be used to derive cartography such as floor plans, contour lines, longitudinal and
cross sections, and three-dimensional analysis such as the height or thickness of galleries,
or analyze and map the system of fractures from the exterior to almost the cave ceiling.
Very significant vertical and subvertical fractures were detected, as well as the connections
between these fractures and joints, establishing the access routes for infiltration water and
relating them to the drip points located on the ceilings of the cave. All this information
on moisture that is directly or indirectly associated with the main fractures and fissures
mapped has been linked to many of the drip points involved in processes of erosion, flaking,
disintegration, and washing away by dissolution of some of the mineral components
present in the cave ceilings [75].

This model integration supports the decision-making of cave managers by enabling
them to engage with advanced predictive models and simulations within a knowledge-
based system.
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