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Abstract: Therapeutic bacteriophages, commonly called as phages, are a promising potential alterna-
tive to antibiotics in the management of bacterial infections of a wide range of organisms including
cultured fish. Their natural immunogenicity often induces the modulation of a variated collection
of immune responses within several types of immunocytes while promoting specific mechanisms
of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid
possible side effects in cultivated fish, several improvements in the understanding of their biology
and the associated genomes are required. Interestingly, a particular feature with therapeutic potential
among all phages is the production of lytic enzymes. The use of such enzymes against human and
livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-
understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species
in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively.
However, the current functional use of phages against bacterial pathogens of cultured fish is still in
its infancy. Based on the available data, in this review, we summarize the current knowledge about
phage, identify gaps, and provide insights into the possible bacterial control strategies they might
represent for managing aquaculture-related bacterial diseases.

Keywords: aquaculture; bacteriophages; disease management; fish; immunology; lytic enzymes;
pathogens

1. Phage Biology and Spatial Distribution

Bacteriophages or phages, in short, are an alternative to antimicrobials to fight against
bacteria due to their unique host range that provides them with an excellent specificity.
In addition, contrary to the antibiotic’s negative physiological effects on the host and the
generation of bacterial resistance, the use of phages is eco-friendly and without major
drawbacks [1,2]. Besides, phages produce lytic enzymes with the ability to act directly on
the bacterial cell wall. An important associated advantage is that phages are ubiquitous to
all fresh and saltwater environments representing a virtually unlimited source of virions
and lytic enzymes. In seawater, the number and variety of phages have a direct and
crucial impact on the variability of microbial communities which directly modulate the
global biogeochemical cycles in the oceans [3,4]. Quantitative analyses of marine waters
using transmission electron microscopy demonstrated that non-tailed viruses are the most
abundant, followed by tailed viruses of the families Myoviridae and Podoviridae [5]. This
example represents a huge gene reservoir across Earth’s ecosystems. Despite the great
awakening interest in phage therapy and the discovery of a vast reservoir of new genes
available in the phages of aquatic ecosystems, the composition the phage populations in
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the different fish species in aquaculture, either from freshwater or saltwater environments
are not yet fully understood.

2. Phage’s Life Cycle

The phages like any other viruses depend on the metabolism of their bacterial host
for reproduction. During the reproductive process, most phage types completely consume
the resources of their host and kill them when releasing their progeny [6]. Initially, phages
must infect their host bacteria through the binding of specific receptors that selectively
sense specific components of the target bacterial cell wall such as the lipopolysaccharide in
Gram-negative, or peptidoglycan in Gram-positive, capsular polysaccharides, and superfi-
cial appendages such as pili and flagella [7–9]. Following the classical viral reproductive
strategies, once the phage inserts their nucleic acid into the bacterium’s cytoplasm, the host
cellular machinery is highjacked to induce extensive replication through the lytic cycle
(Figure 1). Alternatively, a phage also has the capacity to insert its genetic information into
the genome of the host bacterium, thus becoming a prophage. The process of prophage in-
corporation into the host chromosome is called lysogenization, and the resulting bacterium
with the prophage is called a lysogen. Therefore, the genetic material of the prophage
is transferred to each daughter cell through cell division following the lysogenic cycle
(Figure 1). A huge advantage associated with the lysogenic cycle is that daughter cells will
not produce new virus particles until conditions are favorable for the virus or some external
stimuli stress the cell and activate the highjacked genes. An additional less known phage
reproductive cycle is the so-called pseudo-lysogenic. In the pseudo-lysogenic type, the
information encoded by the genome of the phage is not translated immediately, perhaps
due to the lack of nutrients and energy for the bacterium. However, it remains inactive
inside the host, waiting until the optimal conditions recover for the bacterium to restart its
metabolic processes. Then, the phage has the capacity to start again performing the lytic or
lysogenic life cycles [10].
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Figure 1. The lytic and lysogenic cycle of bacteriophages. The lytic cycle comprises a series of events
from attachment of the bacteriophage to the bacterial cell membrane, to the release of daughter
phages by the destruction of its bacterial host. In the lysogenic cycle, phage DNA integrates into the
bacterial genome without major consequences for the bacterial cell, and where the nucleic acid of the
virus replicates along with that of its host.
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3. Phage Lytic Enzymes and Depolymerases

With increasing development and with some of our hopes against antibiotic resistance
placed on the use of complete phage particles of one or more types of phages (phage
cocktails), the lytic enzymes of these viruses have begun to enter the race of clinical devel-
opment [11,12]. Due to the possible break that legislation in human medicine may imply,
researchers in various fields such as veterinary medicine or food science and technology
have also begun to develop and produce these phage products [13–15]. Phage-encoded
proteins with potential application in these different fields are divided into endolysins, ex-
olysins, and depolymerases. Lysins derived from phages degrade bacterial peptidoglycans
and are classified into five groups, depending on the bonds these enzymatic proteins cleave
in the bacterial peptidoglycan [16]. Although their function is exclusively to degrade the
cell wall of bacteria, the lytic enzymes of phages present a tremendous structural diversity
and a significant number of different mechanisms of action [17–20].

A phage’s efficiency and the host’s specificity are determined by protein domains and
their associated specific enzymatic activities. Their structure target and degrade the cell
wall of Gram-positive or Gram-negative bacteria depending on whether they contain an
enzymatic catalytic domain and a cell wall binding domain or a single catalytic domain,
respectively. Most phage endolysins degrade the cell wall from inside the bacteria when the
lytic cycle of the phages that grow in the bacterial cytoplasm mature [20]. However, there
are also phage enzymes that degrade the bacterial cell wall from the outside; these proteins
called—exolysins -or ectolysins—are of great interest for their application as antimicrobial
agents because they can reach bacteria more quickly than if they must do so after a cycle
of phage infection [21–23]. These proteins with enzymatic activity have also been used
to destroy preformed biofilms by Gram-positive or Gram-negative bacteria, although
most studies have been carried out in vitro [24–26]. Moreover, while some naturally
occurring lysins have potent in vitro activity, they can be engineered to be more effective
in binding or traversing the bacterial wall [27–32]. Although not well known as lysins,
phage enzymes with depolymerase activity—or depolymerases—can be of great interest
for fighting pathogens and the biofilms that they form since a critical component of the
biofilm matrix is usually polymers of a different nature [33–35].

In general, lysins are more likely to lyse Gram-positive bacteria because their cell
wall peptidoglycan is directly exposed on the cell surface unlike Gram-negative bacteria.
However, the study of phages or their lysins has been limited to a few fish pathogens such
as Streptococcus agalactiae, Lactococcus garvieae, Renibacterium salmoninarum, Streptococcus
iniae, and S. dysgalactiae, which are highly associated with disease outbreaks in fish farms.

4. Interactions between Phage and the Fish Immune System

Contrary to the accomplishments garnered so far in mammals and cultured cells;
limited studies have correlated the immune responses of cultured fish treatment with
phages. Therefore, many knowledge gaps exist on the enhancement and link of phage
activity and the fish immune system. However, the administration route of phages is
perceived as crucial among the known interactions between phages and fish’s immune
system [36]. In vitro studies with cultured cells obtained from mucosal surfaces and
in vivo challenged experiments in fish by immersion have demonstrated that increased
phage abundance in the mucus layer protects the underlying epithelium from bacterial
infection [37,38]. Thus, the experimental results highlight that the immersion route enables
phages to penetrate fish tissues [39]. Once inside the fish body, phages will first interact
and overcome the cells of the mucosal innate immune system before searching for their
bacterial prey.

Interestingly, it has been reported that phages lack an outer lipid layer, which is a
typical target for the complement. Which leads to an intriguing question on how the phages
evade adaptive and innate immunity elements like antibodies and phagocytes respectively
to gain access to the eukaryotic cells. Transcytosis is a partial explanation which includes
free uptake by endocytosis or crossing via a leaky gut allowing for passive transit through
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the epithelium. A less understood, but exciting mechanism exists that is regarded as the
trojan horse. This mechanism explains the endocytosis of the bacterial host once colonized
by the phage and is hidden inside to secure access free of recognition.

Caudovirales phages from the families Myoviridae, Siphoviridae, and Podoviridae have
the ability to translocate across epithelial and endothelial cell lines [40]. Interestingly,
the same three phage families reported are those commonly observed interacting with
bacterial fish pathogens (See Table 1). Once phages have gained access to the fish mucosal
tissue, the extra- and intra-cellular immune recognition mechanisms exert a systematic
screening process [41]. However, the endocytic recognition starts only after lysosomal
degradation occurs inside the cell, where pathogen recognition is mediated by classical
conserved pattern recognition receptors (PRR). Some of the significant PRR responsible for
sensing viral RNA identified so far include the retinoic acid inducible gene I (RIG-I) like
receptors (RLRs) and several endosomal-associated TLRs, for example, TLR3, TLR7, TLR8,
and TLR9 [42].

After these initial encounters with the fish tissue, phages can stimulate and modulate
the host’s innate immune response [43–47]. Several intracellular or facultative intracellular
bacterial pathogens have been reported to trigger immune responses in cultured fish.
Among them are Photobacterium damselae subsp. piscicida, Renibacterium salmoninarum,
Piscirikettsia salmonis, Edwardsiella tarda, Edwardsiella ictaluri, Yersinia ruckeri, and Vibrio
parahaemolyticus were identified. However, studies on fish immunity showing the detailed
interaction of members in the genus Edwardsiella and Vibrio with phages have rarely been
reported.

4.1. Phage-Mediated Activation of Inflammation

Bacteriophage treatment was associated with opposite shifts in the inflammatory
response in several test models, both in vivo and in vitro [48–51]. However, the results
seem to depend not only on the cellular or animal model used but also on the type of phage
applied and the panel of cytokines analyzed. Phage therapy in humans can also modify
the levels of some cytokines produced by blood cells in treated patients [39]. In fish, some
researchers have analyzed the cytokines’ response to the presence of bacteriophages alone
or the coinfection of phages with their target bacteria. For example, phage therapy reduced
the expression of the proinflammatory cytokines tnfa and il1b in the inflammatory response
generated by Pseudomonas aeruginosa infection in zebrafish embryos [52,53]. Besides, using
the adult zebrafish (Danio rerio) and the E. tarda model of infection, other authors also
showed that although a phage treatment induced the expression of cytokine genes at
specific time points, a robust proinflammatory response was undetected in the host [54].
Furthermore, a recent study has shown that a phage lysate of A. hydrophila induced a
more robust immune response in Cyprinus carpio when compared to a formalin killed
vaccine [55]. As a proof-of-concept, a novel commercial preparation containing three
bacterial phages (BAFADOR®) applied on European eel (Anguilla anguilla) caused the
stimulation of cellular and humoral immune parameters in response to an experimental
challenge with A. hydrophila and P. fluorecense [56].

4.2. Phage-Specific Adaptive Responses

Due to the protein structure of the phage envelope, these proteins are the target
of the adaptive immune system, which response with the production of neutralizing
antibodies against them. Early studies with mice and even amphibians showed that phage
exposure of the animals induced primary and secondary antibody responses [57–59]. It
is expected that some phage epitopes stimulate an antibody response in experimental
models. However, antibody production depends on the route of phage administration,
the application schedule and dose, and individual features of a phage. Consequently,
the results of studies where an antibody response to phages has been verified are very
heterogeneous. Phagocytosis by immune patrolling cells seems to be a significant process
of bacteriophage neutralization within animal bodies [60]. Moreover, although blood in
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humans and animals, including fish, is deemed sterile, genomic analysis has shown a rich
phage community, which inevitably comes into continuous contact with immune cells
in this rich fluid [47]. Despite these mechanisms of phagocytosis, antigen presentation,
and antibody production by the immune cells against phages, the number of antibodies
produced does not affect phage therapy outcomes.

On the other hand, due to the numerous and constant presence of large numbers
of phages in our microbiota, it is not surprising that a low but stable background of
antibodies against them is produced. Therefore, in some human or animal tests, high
antibody levels have not been found against the phages used. Phage-derived RNA and
ssDNA could directly contribute to B cell activation and the synthesis of anti-bacteriophage
antibodies [61,62]. Despite the production of antibodies by animals against phage core or
tail proteins, the induction of antibodies seems irrelevant for treating infections because the
antibacterial effects of phages are faster than antibody formation in acute infections [63].
Conversely, the production of antibodies against phages could interfere with the outcome
of the infection in chronic infections [64]. However, no robust studies have demonstrated
an antibody-mediated immune response after inoculation or experimental infection with
phages in fish.

5. Phage Diversity in the Aquatic Environment

Bacteriophages or phages are relatively simple viruses that target a bacterial host.
These viruses are extraordinarily abundant and diverse. Phages are common in soil and
human and animal guts, so they are readily isolated from feces and sewage. Moreover, due
to the exponential advancement of bioinformatics and massive sequencing techniques, the
geospatial distribution of viruses in freshwater or saltwater ecosystems is an incipient area
of research. Fish and shellfish that inhabit those environments also harbor copious amounts
of phages in their digestive tracts [65,66]. Bacteriophages floating in waters are also very
abundant, with an estimate of 10 million virus-like particles in 1 mL of seawater [67].

Virus classification is typically based on characteristics such as type of nucleic acid,
virion structure or morphology, replication mode, host target and clinical and epidemiolog-
ical features of disease they cause, and even geographical distribution [68]. Researchers
working in aquaculture mainly use Transmission Electron Microscopy (TEM) and nucleic
acid enzymatic sensitivity to determine the morphology and nucleic acid type of the phages
used. In recent years, thanks to cryo-Electron Microscopy (cryo-EM), Nuclear Magnetic
Resonance (NMR), and X-ray crystallography analysis, we have been able to study the
structures of numerous bacteriophages. Genomic sequencing and analysis of the DNA
isolated from phages can also provide reasonably accurate taxonomic information. The use
of sequences alone sets a significant challenge for traditional phage taxonomy; historically it
has been based primarily on descriptive definitions, but nothing prevents these techniques
from being used simultaneously for the better characterization and study of phages.

There are three primary basic morphologies in bacteriophages: (1) filamentous form,
(2) icosahedral form, and (3) icosahedral form with a tail through which it binds to its
target bacteria. The latter is the best known and most studied morphology, with three
components: a capsid where the dsDNA genome is packed, a tail—which can be rigid
or flexible, short, or long—that serves as a syringe during infection to transfer the phage
genome into the bacterial cell, and a unique recognition system at the end of the tail that
specifically recognizes the host cell and penetrates its cell wall.

As temperate phages are expected to execute both types of infection modes, only
lytic phages can be used to fight bacterial infections because their action destroys the host
and causes new nascent phages to spread among adjacent bacterial populations. Phages
showing the lytic mechanism of replication are also known as virulent phages, while
phages exhibiting lytic and lysogenic cycles are temperate phages. The temperate phages
exhibit horizontal gene transfer, where they can transfer antibiotic resistance genes to other
bacteria, and therefore they are not preferred for phage therapy unless their genome is
analyzed, and it is shown that they do not contain those resistance genes
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In recent years, numerous bacteriophages that target the primary bacterial fish pathogens
have been isolated and partially characterized (Table 1). Many of these studies with phages
have proven their efficiency against pathogenic bacteria in vitro. In fact, some researchers
have even carried out field trials over the last decade using different routes of admin-
istration (orally, intraperitoneally, or intramuscularly injected, administered in feed, or
added to fish thank water). Most of these studies use the work of Ackermann or the
criteria of the International Committee on Taxonomy of Viruses (ICTV, accessible online)
as a basis to identify their phage isolates [69–71]. For further taxonomic classification and
phage characterization, more detailed information, such as genomic data, has begun to be
included in scientific publications [72–74].

As phages are ubiquitously present in nature, the sources of isolated phages against
fish pathogens are quite diverse (Table 1). Fish can harbor phages easily as demonstrated
long ago in an experiment in which phages were detected in fish tissue after bath exposure
to a specified concentration of an E. coli phage [39]. Detection of bacteriophages can be
carried out by classical infection assays such as single-host, double or multiple-host enrich-
ment, followed by selection through phage plating with the target host strain, allowing
the determination of phage infectivity. As observed in Tables 1 and 2, most researchers
working with pathogenic fish bacteria prefer to use enrichment with a single strain to
isolate phages. Instead of enriching phage-containing samples, some authors use the phage
isolation technique called the double-agar layer [75,76], choosing a single indicator strain.

After phage amplification from their initial host strain, researchers use phage DNA
extraction, DNA sensitivity to DNases or RNases, and virion microscopy visualization for
quick taxonomic classification. Bacterial whole-genome sequencing (WGS), which focuses
on the prophage state inside the bacterial chromosome, is also helpful for knowing the
whole phage coding sequences and phage viability determination. Bacteria can carry more
than half a dozen complete or incomplete prophages on their chromosomes. Therefore,
researchers can use genomic characterization to choose lytic phages that do not contain
enzymes that favor integration into the bacterial chromosome, such as recombinases,
integrases, or repressor sequences of the lytic cycle—characteristics of lysogenic phages—
and of course that do not contain resistance genes or bacterial virulence factors.

It is convenient to integrate as many techniques as possible in phage studies to offer
more robust information regarding the phage of interest. Recently, new and more complex
techniques such as Atomic Force Microscopy are able to provide information about phage
integrity close to physiological conditions [77–79]. The preferred tool currently utilized for
classifying phages is transmission electron microscopy, followed by phage DNA sequencing
(Table 1). The steps followed to isolate and characterize phages used in in vitro assays or
field trials against fish and shellfish bacterial pathogens are shown (Figure 2). The phages
used against Gram-negative fish pathogens belong primarily to the Myoviridae family,
followed by the Siphoviridae and Podoviridae families. Other minor families that display lytic
activity against Gram-negative pathogens are Tectiviridae and Autographiviridae. Against
Gram-positive pathogens, the Siphoviridae family predominates, although phages of the
Picoviridae and Caudoviridae families with lytic activity against these pathogens have also
been isolated.
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6. Bacteriophages against Biofilms in Aquaculture Facilities

All bacterial fish pathogens can form biofilms in vitro and in vivo given the proper
environmental conditions [80–82]. Biofilm formation is an intrinsic characteristic of bacteria
because living within these structures favors the uptake of nutrients and protection against
the physical, chemical, or biological agents found in aquatic environments. This process
always occurs sequentially, and the mechanisms have been understood for a couple of
decades [83]. Firstly, the adhesion of the bacteria to a living or inert surface is required. This
process used to be favored both by intrinsic factors of the bacteria such as the mobility or the
expression of a polysaccharide capsule [80] and by physical—chemical and environmental
factors, such as temperature [81], or the type of substrate to which the bacteria attach itself.
After this union, the formation of microcolonies occurs, and these small groups of bacteria
will evolve into big macro-colonies that make up the biofilm. An essential characteristic of
mature biofilms is that they contain a heterogeneous matrix that maintains cohesion between
the bacteria that form it and favors their adherence to the surface on which the biofilm
is formed. Biofilms are extremely difficult to eradicate because the bacterial cells inside
them are more protected from any chemical or biological agent, so they tend to easily resist
conventional antibiotics and common disinfectants [84,85]. Biofilm formation is essential in
veterinary medicine since they can represent the focus of recurrent infections [86,87]. From
the fully formed and mature biofilms, bacteria are released and constitute a population of
planktonic cells that will form new biofilms in other places, allowing recurrent infections or
the contamination of new environments favorable for their proliferation.

Biofilms are also of particular interest in the food industry, where there are a series of
ubiquitous microorganisms that are very difficult to eliminate from the food itself and food
processing settings and environments. Phages alone or in phage cocktails were successfully
used against both Gram-positive [88–92] and Gram-negative bacterial biofilms [93–98]. De-
spite these assays being performed in a wide variety of situations and against numerous
pathogens in human medicine, veterinary medicine, and food production systems, these
studies have been carried out mainly in the laboratory in vitro. Therefore, it will also be
interesting to know the options that fish pathologists may have to eradicate the biofilms that
bacteria produce in aquaculture. Phages were also tested against bacterial fish pathogens
producing biofilms in vitro, but the number of studies conducted following these settings is
very minimal [99]. Therefore, it is important that the action of the phages against fully formed
biofilms is also evaluated when searching for lytic phages against pathogenic fish bacteria.
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Table 1. Phages used against Gram-negative bacterial fish and shellfish pathogens.

Gram-Negative
Targets Source Enrichment φ Characterization

Method
Phage Strains

Name Family * Genome Length References

Aeromonas
hydrophila

River water No TEM φ2 and φ5 Myoviridae ~20 kb [100]

Fishponds; Polluted
rivers Single TEM N21, W3, G65,

Y71 and Y81
Myoviridae;
Podoviridae n.d. [101]

Stream water Single TEM, dsDNA pAh-1 Myoviridae ~64 kb [102]

Sea water Single TEM, DNA
sequencing Akh-2 Siphoviridae 114,901 bp [103]

Carp tissues Single TEM AHP-1 Myoviridae n.d. [104]

Lake water Single TEM, dsDNA, DNA
sequencing AhyVDH1 Myxoviridae 39,175 bp [105]

River water No TEM, dsDNA, DNA
sequencing MJG Podoviridae 45,057 bp [106]

Sewage water Single TEM AH1 n.d. n.d. [107]

Striped catfish pond
water Single TEM, dsDNA, DNA

sequencing PVN02 Myoviridae 51,668 bp [108,109]

River water TEM, dsDNA pAh1-C
pAh6-C Myoviridae 55 kb

58 kb [110]

Wastewater No TEM, dsDNA, DNA
sequencing Ahp1 Podoviridae ~42 kb [111]

Aeromonas
punctata Stream water Single TEM, dsDNA IHQ1 Myoviridae 25–28 kb [112]

Aeromonas
salmonicida

River waters, two
passing through fish

farms
Single TEM, DNA

sequencing

SW69-9
L9-6

Riv-10
Myoviridae

173,097 bp,
173,578 bp and

174,311 bp
[113]

River water Single TEM, DNA
sequencing phiAS5 Myoviridae 225,268 bp [114]

Sediment of a
Rainbow trout
culture farm

Single TEM, dsDNA, DNA
sequencing PAS-1 Myoviridae ~48 kb [115]

Wastewater from a
seafood market No TEM, DNA

sequencing AsXd-1 Siphoviridae 39,014 bp [116]

Sewage network
water from a lift

station
Single TEM

AS-A
AS-D
AS-E

Myoviridae n.d. [117,118]

River water No TEM HER 110 Myoviridae n.d. [119,120]

Aeromonas spp.
Gastrointestinal

content of variated
fish species

No TEM, DNA
sequencing phiA8-29 Myoviridae 144,974 bp [66,121]

Citrobacter
freundii Sewage water No TEM, DNA

sequencing IME-JL8 Siphoviridae 49,838 bp [122]

Edwardsiella
ictaluri

Water from catfish
ponds Single TEM, dsDNA, DNA

sequencing

eiAU
eiDWF
eiMSLS

Siphoviridae
42.80 kbp
42.12 kbp
42.69 kbp

[123,124]

River water Multiple DNA Sequencing PEi21 Myoviridae 43,378 bp [125,126]

Striped catfish kidney
and liver Single TEM, dsDNA MK7 Myoviridae ~34 kb [127]

Edwardsiella
tarda

Seawater Single TEM, dsDNA ETP-1 Podoviridae ~40 kb [54]

River water No TEM, DNA
sequencing pEt-SU Myoviridae 276,734 bp [128]

Wastewater Single DNA sequencing PETp9 Myoviridae 89,762 bp [129]

Fish tissues and
rearing seawater No TEM, DNA

sequencing GF-2 Myoviridae 43,129 bp [130]

Flavobacterium
columnare

River water Single TEM, DNA
sequencing

FCL-2 Myoviridae 47,142 bp [38,131,132]

Fishpond’s water and
bottom sediments No TEM, dsDNA FCP1-FCP9 Podoviridae n.d. [133]

Flavobacterium
psychrophilum

Rainbow trout farm
water Single/double TEM, dsDNA

ø (FpV-1 to
FpV-22)

Podoviridae
Siphoviridae
Myoviridae

(~8 to ~90 kb) [134,135]

Ayu kidneys and
pondwater collected

from ayu farms
Multiple TEM, dsDNA

PFpW-3, PFpC-Y
PFpW-6, PFpW-7

PFpW-8

Myoviridae;
Podoviridae;
Siphoviridae

n.d. [136]
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Table 1. Cont.

Gram-Negative
Targets Source Enrichment φ Characterization

Method
Phage Strains

Name Family * Genome Length References

Photobacterium
damselae subsp.

damselae

Raw oysters Single TEM, dsDNA Phda1 Myoviridae 35.2–39.5 kb [137]

Gastrointestinal tract
of lollipop catshark Single TEM, DNA

sequencing vB_Pd_PDCC-1 Myoviridae 237,509 bp [138]

Pseudomonas
plecoglossicida

Ayu pond water and
diseased fish No TEM, DNA

sequencing
PPpW-3
PPpW-4

Myoviridae
Podoviridae

43,564 bp
41,386 bp [139,140]

Pseudomonas
aeruginosa Wastewater No TEM, DNA

sequencing MBL n.d. 42,519 bp [141]

Shewanella spp. Wastewater
from a marketplace Single TEM, DNA

sequencing
SppYZU01 to

SppYZU10
Myoviridae;
Siphoviridae.

SppYZU01
(43.567 bp)
SppYZU5

(54.319 bp)

[142]

Tenacibaculum
maritimum Seawater Multiple TEM, DNA

sequencing
PTm1
PTm5 Myoviridae 224,680 bp

226,876 bp [143]

Vibrio
alginolyticus

Aquaculture tank
water Single TEM, DNA

sequencing VEN Podoviridae 44,603 bp [144]

Marine sediment No TEM, DNA
sequencing ValKK3 Myoviridae 248,088 bp [145]

Marine water Single TEM, dsDNA St2
Grn1 Myoviridae 250,485 bp

248,605 bp [146]

Vibrio
anguillarum

Soft tissues from
clams and mussels No TEM, dsDNA

309
ALMED
CHOED
ALME
CHOD
CHOB

Several
shapes ~47–48 kb [147]

Sewage water Double dsDNA VP-2
VA-1 n.d. n.d. [148]

Water samples from
fish farms Multiple TEM, DNA

sequencing

ø H1, H7, S4-7,
H4, H5
H8, H20

S4-18, 2E-1, H2

Myoviridae
Siphoviridae
Podoviridae

~194–195 kb
~50 kb

~45–51 kb
[149]

Vibrio campbellii

Host strain (V.
campbellii) isolated

form a dead shrimp
No TEM, DNA

sequencing HY01 Siphoviridae 41.772 bp [150]

Hepatopancreas of
Pacific

white shrimp
Single dsDNA, DNA

sequencing vB_Vc_SrVc9 Autographiviridae ~43.15 kb [151]

Vibrio harveyi

Shrimp farm,
hatcheries and
marine water

Multiple TEM, dsDNA A Siphoviridae n.d. [152]

Vibrio harveyi No TEM, dsDNA VHML Myovirus-
like n.d. [153]

Shrimp pond water Single TEM, dsDNA PW2 Siphoviridae ~46 kb [154]

Water and sediment
samples Single TEM, dsDNA VHM1, VHM2

VHS1
Myoviridae,
Siphoviridae

~55 kb,
~66 kb
~69 kb

[155]

Hatchery water and
oyster tissues Single TEM, dsDNA vB_VhaS-a

vB_VhaS-tm Siphoviridae ~82 kb
~59 kb [156]

Commercial clam
samples Multiple Genomic analysis,

dsDNA

ø VhCCS-01
VhCCS-02
VhCCS-04
VhCCS-06
VhCCS-17
VhCCS-20
VhCCS-19
VhCCS-21

Siphoviridae,
Myoviridae n.d. [157]

Oyster, clam, shrimp,
and seawater samples No TEM, DNA

sequencing VHP6b Siphoviridae 78,081 bp [158]

shrimp hatchery and
farm water,

oysters from
estuaries, coastal

sea water

Multiple TEM, dsDNA

Viha10
Viha8
Viha9
Viha11

Viha1 to Viha7

Siphoviridae
-

Siphoviridae
Myoviridae

(Viha4)

n.d.
~44–94 kb

~85 kb (Viha4)
[159,160]

Seawater sample Single TEM VhKM4 Myoviridae n.d. [161]
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Table 1. Cont.

Gram-Negative
Targets Source Enrichment φ Characterization

Method
Phage Strains

Name Family * Genome Length References

Vibrio ordalii Macerated specimens
of mussels No TEM, DNA

sequencing B_VorS-PVo5 Siphoviridae 80,578 bp [162]

Vibrio para-
haemolyticus

Sewage sample No TEM, dsDNA VPp1 Tectiviridae ~15 kb [163]

Polluted seawater No TEM, dsDNA KVP40
KVP41 Myoviridae n.d. [164,165]

Seawater or mussels Single dsDNA SPA2
SPA3 n.d. ~21 kb [166]

Coastal water Single TEM, DNA
sequencing pVP-1 Siphoviridae 111,506 bp [167,168]

V. parahaemolyticus
isolated from sewage

samples collected
from an aquatic
product market

No TEM, DNA
sequencing

vB_VpS_BA3
vB_VpS_CA8 Siphoviridae 58,648 bp

58,480 bp [169]

Shrimp pond water Single TEM, DNA
sequencing VP-1 Myoviridae 150,764 bp [170]

Coastal sand
sediment double TEM, DNA

sequencing VpKK5 Siphoviridae 56,637 bp [171,172]

Vibrio
splendidus

Raw sewage obtained
from local hatcheries Single TEM PVS-1, PVS-2

PVS-3
Myoviridae;
Siphoviridae n.d. [173]

Seawater near a fish
farm cage Single TEM, DNA

sequencing vB_VspP_pVa5 Podoviridae 78,145 bp [174]

Vibrio
coralliilyticus

sewage in oyster
hatchery Single TEM pVco-14 Siphoviridae n.d. [175]

Vibrio vulnificus

Seawater sample Single TEM, DNA
sequencing SSP002 Siphoviridae 76,350 bp [176,177]

Abalone samples No TEM, sequencing VVPoo1 Siphoviridae 76,423 bp [178]

Initial host strain
(V. vulnificus) No TEM

VV1
VV2
VV3
VV4

Tectiviridae n.d. [179]

Vibrio sp. Sewage draining exits Single TEM, DNA
sequencing

VspDsh-1
VpaJT-1
ValLY-3

ValSw4-1
VspSw-1

Siphoviridae

46,692 bp
60,177 bp
76,310 bp
79,545 bp

113,778 bp

[180]

Yersinia ruckeri

Wastewater
containing

suspended trout feces
from a settling pond

at a trout farm

Single TEM NC10 Podoviridae n.d. [181]

Sewage No TEM YerA41 (several
phages)

icosahedral
head,

contractile
tail

n.d. [182]

Sewage No TEM, DNA
sequencing, dsDNA R1-37 Myoviridae ~270 kb [183,184]

φ Phage enrichment with “single” or “multiple” bacterial hosts; * Classification determined by the authors; TEM (Transmission Electron
Microscopy); dsDNA (Double stranded DNA); n.d. (Not determined); ø Several phage strains were isolated but only selected strains were
fully characterized.
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Table 2. Phages used against Gram-positive bacterial fish and shellfish pathogens.

Gram-Positive
Targets Source Enrichment φ Characterization

Method
Phage Strains

Name Family * Genome Length References

Lactococcus
garvieae

L. garvieae isolated
from diseased

yellowtail
No TEM, dsDNA PLgY(16) Siphoviridae n.d. [185]

Yellowtail (Y)
Water (W)

Sediments (S)
Single TEM, dsDNA

PLgW1-6
PLgY16
PLgY30
PLgY886

PLgS1

Siphoviridae >20 kbp [186–188]

Domestic compost Single TEM, DNA
sequencing GE1 Siphoviridae 24,847 bp [189]

L. garvieae host No TEM, DNA
sequencing PLgT-1 Siphoviridae 29,284 bp [190–192]

Rainbow trout farm
water Single TEM, DNA

sequencing WP-2 Picovirinae 18,899 bp [193]

Streptococcus
agalactiae Tilapia pond No TEM HN48 Caudoviridae n.d. [194]

S. iniae S. iniae host No TEM, dsDNA

vB_SinS-44
vB_SinS-45
vB_SinS-46
vB_SinS-48

Siphoviridae

~51.7 kb
~28.4 kb
~66.3 kb
~27.5 kb

[195]

Weissella ceti W. ceti host strain No TEM PWc Siphoviridae 38,783 bp [196]

φ Phage enrichment with “single” or “multiple” bacterial hosts; * Classification determined by the authors; TEM (Transmission Electron
Microscopy); dsDNA (Double stranded DNA); n.d. (Not determined).

7. Potential of Phage Therapy in Aquaculture Settings

During the fish and shellfish production cycle, these animals are already in daily
contact with billions of bacteriophages, which assures us that they are safe. However, in
their use against bacterial infections where massive phage production is required, we must
consider several factors.

As phage treatments constantly require isolating the bacterium causing the disease,
once a helpful phage is characterized against this bacterial strain, a stable batch of tech-
nically challenging preparations must be produced for field use. Consequently, one of
the most critical challenge for microbiologists working directly or indirectly with aqua-
culture is the standardization of stocks used to treat infections or combat biofilms in
aquaculture facilities. These stocks require strict quality control for purity, viability, and
stability, implying that the correct conservation of the stocks is necessary for preparations
containing single or mixed phages (phage cocktail). Titer, dosage, and quality of phage
preparations are crucial parameters in standardizing experiments in the laboratory and
experimental infections in field trials. Since we know that while some phages can grow
exponentially inside a bacterial population from a low initial concentration, other phages
need to maintain a relationship between the number of bacteria and the number of phage
particles to achieve an adequate performance. Therefore, we must empirically verify this
critical parameter. Very recently, a phage cocktail containing seven bacteriophages (three
against A. hydrophila and four against P. fluorescens) has been tested in the European eel
(Anguilla anguilla) and rainbow trout (Oncorhynchus mykiss), reducing the mortality of fish
challenged with strains of these two species of bacteria [56,197]. Cocktails have also been
used successfully in laboratory tests or small field trials in food protection or veterinary
and human medicine [198–201]. In these and other studies, many phages (cocktail) are
used to carry out the experiments, but in most cases, only the phage that has presented
better results in vitro is subsequently characterized [117,118,133,202]. Second, it would be
desirable to know phage genetics with sufficient precision. After all, we must consider
that when we intend to use bacteriophages in aquaculture, they may contain genes for
resistance to antibiotics or bacterial virulence genes that can produce noticeable side effects
because they replicate exponentially in contact with their target bacteria. We must also
remember that many antibiotic residues end up in continental or oceanic waters due to
anthropogenic activities. Therefore, we must be aware that even phages isolated from
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aquatic environments can carry antibiotic resistance genes or virulence factors [203,204].
At present, although each time their number increases, not all phages used in in vitro or
in vivo assays against fish or shellfish bacterial pathogens have been entirely genetically
analyzed or characterized (Tables 1 and 2).

The list of species of fish bacterial pathogens in which lytic phages have been studied
is not complete. It may be essential to conduct these studies in species of greater inter-
est in aquaculture, such as Photobacterium damselae subsp. piscicida, bacterial anaerobes,
mycobacteria, Nocardia, several Aeromonas species, Enterobacterales, pseudomonads, vib-
rios, and the Gram-positive bacteria mentioned above. Few studies with fish bacterial
pathogens have characterized or evaluated the presence or evolution of phage-resistant
strains. Some works have investigated this phenomenon in various fish pathogens such as
Flavobacterium [205–207], Yersinia ruckeri [181], Aeromonas salmonicida [117,208], and Vibrio
anguillarum [148]. The mechanisms by which bacteria become resistant to phages is also an
area of intensive research, especially since the discovery and application of the clustered
regularly interspaced short palindromic repeats (CRISPR) system.

Most of the studies with fish pathogens have used controlled laboratory conditions to
verify the control exerted by these lytic phages to their pathogenic bacterial host. However,
more studies on these interactions under natural conditions would be desirable. One
of the critical parameters is the multiplicity of infection (MOI). The use of high or low
multiplicities of infection seems to be a key parameter for achieving effective lysis of
the bacterial population and the appearance of resistance to the phages used. Therefore,
comparative studies are needed to relate MOIs used in vitro and in aquatic environments,
where phages are exposed to environmental conditions and factors such as dilution or
variability of the target bacteria in their natural environment. A better understanding of the
biology of viruses and a greater capacity to standardize the settings related to preclinical or
laboratory research can also help in the advancement of regulatory affairs. As bacteriophage
research continues to grow, we believe that microbiologists and immunologists working in
areas related to aquaculture can use phages or their lytic enzymes to offer many promising
advances in the fight against pathogenic bacterial species affecting cultured fish and
shellfish.

8. Future Perspectives

Innovative technologies to enhance fish health and decrease diseases are paramount
to achieve the global perspectives on food sustainability required by the blue growth phi-
losophy and fulfill the blue economy goals proposed by the new aquaculture 4.0 strategy.
However, the growing food demands strongly stimulate the intensification of production,
generating the need for economically viable and environmentally sustainable practices
that may rely on improved health management strategies. The use of antibiotics and
chemotherapies in aquaculture has been widely used to reduce infectious diseases and pro-
mote growth [209]. However, since antibiotics lead to bacterial resistance generation, their
use is discouraged nowadays, and several countries with major fish-producing facilities
have banned their inclusion in biosecurity plans. Therefore, to improve fish robustness in
aquaculture settings, several strategies based on the use of alternative sources like phyto-
genics [210], live microbes [211,212], their metabolic products like short-chain fatty acids
(SCFA) [213] and sphingolipids [214], or structural components like peptidoglycan [215]
or B-glucan [216] have been extensively tested in the last century as possible therapeutics
for fish. Nevertheless, despite the entire group being potentially effective, all the previous
strategies lack any specificity against a particular fish disease.

In contrast, as discussed in the present review, phages are extremely specific in their
ability to infect and destroy certain species or strains of bacteria without affecting the core
commensal microbiota of the host. Therefore, phage therapy is well suited to be part of the
multidimensional strategies focused on increasing fish health in culture and, at the same
time, a promising tool in counteracting the rise of antibiotic-resistant bacteria. However,
it is necessary to exercise caution since the potential evolution of phage resistance also
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exists [217]. Although resistance may occur, the concept of phage training for therapy
through experimental coevolution has recently emerged and deserved future attention.
Both Gram-negative and Gram-positive bacteria have been efficiently lysed by specific
phages in vitro [218,219]. Therefore, the putative use of phage lytic enzymes and their
interaction with the immune system of cultured aquatic organisms is an entirely new area
demanding tremendous exploration. Although, the constant discovery of new phages with
variated phenotypes and genotypes [220,221], hampers the integrative knowledge that
requires stronger in vivo evidence to consolidate the specific phage-pathogenic bacteria as
established biotechnology in aquaculture.

In the context of automation, recent researchers utilizing diverse mammalian models
have demonstrated novel systems for single-virion identification of common pathogens
using machine learning (ML) algorithm training. Consequently, easy access to big genomic
data recently generated is fundamental to fuel the novel ML algorithms. The combination
resulting from this may lead to the generation of a fast and accurate selection of bacte-
riophages with the specific characteristics and properties required to lysate the specific
bacterial strains affecting fish culture grounds. Finally, creating biobanks of fish bacterio-
phages and their products (lysins) following established legal and regulatory frameworks
for safe and stable use in countries with intensive aquaculture operations requires extensive
maneuvers of the regulatory authorities and the pharmaceutical industry interested in their
exploitation on a large-scale setting.
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rysowski, J. Phages and Immunomodulation. Future Microbiol. 2017, 12, 905–914. [CrossRef]

47. Van Belleghem, J.D.; Clement, F.; Merabishvili, M.; Lavigne, R.; Vaneechoutte, M. Pro-and Anti-Inflammatory Responses of
Peripheral Blood Mononuclear Cells Induced by Staphylococcus aureus and Pseudomonas aeruginosa Phages. Sci. Rep. 2017, 7, 1–13.
[CrossRef]

48. Dufour, N.; Delattre, R.; Chevallereau, A.; Ricard, J.-D.; Debarbieux, L. Phage Therapy of Pneumonia Is Not Associated with an
Overstimulation of the Inflammatory Response Compared to Antibiotic Treatment in Mice. Antimicrob. Agents Chemother. 2019,
63, e00379-19. [CrossRef]

49. Khan Mirzaei, M.; Haileselassie, Y.; Navis, M.; Cooper, C.; Sverremark-Ekström, E.; Nilsson, A.S. Morphologically Distinct
Escherichia coli Bacteriophages Differ in Their Efficacy and Ability to Stimulate Cytokine Release in vitro. Front. Microbiol. 2016, 7,
437.

50. Secor, P.R.; Michaels, L.A.; Smigiel, K.S.; Rohani, M.G.; Jennings, L.K.; Hisert, K.B.; Arrigoni, A.; Braun, K.R.; Birkland, T.P.; Lai, Y.
Filamentous Bacteriophage Produced by Pseudomonas aeruginosa Alters the Inflammatory Response and Promotes Noninvasive
Infection in vivo. Infect. Immun. 2017, 85, e00648-16. [CrossRef]

51. Trend, S.; Chang, B.J.; O’Dea, M.; Stick, S.M.; Kicic, A.; WAERP; AusREC; AREST CF. Use of a Primary Epithelial Cell Screening
Tool to Investigate Phage Therapy in Cystic Fibrosis. Front. Pharmacol. 2018, 9, 1330. [CrossRef]

52. Cafora, M.; Deflorian, G.; Forti, F.; Ferrari, L.; Binelli, G.; Briani, F.; Ghisotti, D.; Pistocchi, A. Phage Therapy against Pseudomonas
aeruginosa Infections in a Cystic Fibrosis Zebrafish Model. Sci. Rep. 2019, 9, 1–10. [CrossRef]

53. Cafora, M.; Forti, F.; Briani, F.; Ghisotti, D.; Pistocchi, A. Phage Therapy Application to Counteract Pseudomonas aeruginosa
Infection in Cystic Fibrosis Zebrafish Embryos. JoVE (J. Vis. Exp.) 2020, e61275. [CrossRef]

54. Nikapitiya, C.; Chandrarathna, H.; Dananjaya, S.; De Zoysa, M.; Lee, J. Isolation and Characterization of Phage (ETP-1) Specific
to Multidrug Resistant Pathogenic Edwardsiella tarda and Its in vivo Biocontrol Efficacy in Zebrafish (Danio rerio). Biologicals 2020,
63, 14–23. [CrossRef]

55. Yun, S.; Jun, J.W.; Giri, S.S.; Kim, H.J.; Chi, C.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J. Immunostimulation of Cyprinus
carpio Using Phage Lysate of Aeromonas hydrophila. Fish Shellfish. Immunol. 2019, 86, 680–687. [CrossRef]

56. Schulz, P.; Robak, S.; Dastych, J.; Siwicki, A.K. Influence of Bacteriophages Cocktail on European Eel (Anguilla anguilla) Immunity
and Survival after Experimental Challenge. Fish Shellfish. Immunol. 2019, 84, 28–37. [CrossRef]

57. Lin, H.; Caywood, B.E.; Rowlands, D., Jr. Primary and Secondary Immune Responses of the Marine Toad (Bufo marinus) to
Bacterophage F2. Immunology 1971, 20, 373.

58. Bradley, S.; Kim, Y.; Watson, D. Immune Response by the Mouse to Orally Administered Actinophage. Proc. Soc. Exp. Biol. Med.
1963, 113, 686–688. [CrossRef]

59. Young, R.; Ruddle, F.H. Inactivation of T-2 Bacteriophage by Sensitized Leucocytes in vitro. Nature 1965, 208, 1105–1106.
[CrossRef]

60. Van Belleghem, J.D.; Dąbrowska, K.; Vaneechoutte, M.; Barr, J.J.; Bollyky, P.L. Interactions between Bacteriophage, Bacteria, and
the Mammalian Immune System. Viruses 2019, 11, 10. [CrossRef]

61. Bekeredjian-Ding, I.B.; Wagner, M.; Hornung, V.; Giese, T.; Schnurr, M.; Endres, S.; Hartmann, G. Plasmacytoid Dendritic Cells
Control TLR7 Sensitivity of Naive B Cells via Type I IFN. J. Immunol. 2005, 174, 4043–4050. [CrossRef]

62. Hashiguchi, S.; Yamaguchi, Y.; Takeuchi, O.; Akira, S.; Sugimura, K. Immunological Basis of M13 Phage Vaccine: Regulation
under MyD88 and TLR9 Signaling. Biochem. Biophys. Res. Commun. 2010, 402, 19–22. [CrossRef]

63. Hodyra-Stefaniak, K.; Miernikiewicz, P.; Drapała, J.; Drab, M.; Jończyk-Matysiak, E.; Lecion, D.; Kaźmierczak, Z.; Beta, W.;
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